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Abstract: An effective remote sensing image scene classification approach using patch-based
multi-scale completed local binary pattern (MS-CLBP) features and a Fisher vector (FV) is proposed.
The approach extracts a set of local patch descriptors by partitioning an image and its multi-scale
versions into dense patches and using the CLBP descriptor to characterize local rotation invariant
texture information. Then, Fisher vector encoding is used to encode the local patch descriptors (i.e.,
patch-based CLBP features) into a discriminative representation. To improve the discriminative
power of feature representation, multiple sets of parameters are used for CLBP to generate multiple
FVs that are concatenated as the final representation for an image. A kernel-based extreme learning
machine (KELM) is then employed for classification. The proposed method is extensively evaluated
on two public benchmark remote sensing image datasets (i.e., the 21-class land-use dataset and
the 19-class satellite scene dataset) and leads to superior classification performance (93.00% for the
21-class dataset with an improvement of approximately 3% when compared with the state-of-the-art
MS-CLBP and 94.32% for the 19-class dataset with an improvement of approximately 1%).

Keywords: remote sensing image scene classification; completed local binary patterns; multi-scale
analysis; fisher vector; extreme learning machine

1. Introduction

Remote sensing is an effective tool for Earth observation, which has been widely applied in
surveying land-use and land-cover classifications and monitoring their dynamic changes. With the
improvement of spatial resolution, remote-sensing images present more detailed information such
as spatial arrangement information and textural structures, which are of great help in recognizing
different land-use and land-cover scene categories. The goal of image scene classification is to recognize
the semantic categories of a given image based on some priori knowledge. Due to intra-class variations
and wide range of illumination and scale changes, scene classification of high-resolution remote
sensing images remains a challenging problem.

The last decade saw considerable efforts to employ computer vision techniques to classify aerial
or satellite image scenes. The bag-of-visual-words (BOVW) model [1], which is one of the most popular
approaches in image analysis and classification applications, provides an efficient approach to solve
the problem of scene classification. The BOVW model, derived from document classification in text
analysis, represents an image as a histogram of frequencies of a set of visual words by mapping the
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local features to a visual vocabulary. The vocabulary is pre-established by clustering the local features
extracted from a collection of images. The traditional BOVW model ignores spatial and structural
information, which severely limits its descriptive ability. To overcome this issue, a spatial pyramid
matching (SPM) framework was proposed in [2]. This approach partitions an image into sub-regions,
computes a BOVW histogram for each sub-region, and then concatenates the histograms from all
sub-regions to form the SPM representation of an image. However, SPM only considers the absolute
spatial arrangement, and the resulting features are sensitive to rotation variations. Thus, a spatial
co-occurrence kernel, which is general enough to characterize a variety of spatial arrangements,
was proposed in [3] to capture both the absolute and relative spatial layout of an image. In [4],
a multi-resolution representation was incorporated into the bag-of-features model and two modalities
of horizontal and vertical partitions were adopted to partition all resolution images into sub-regions
to improve the SPM framework. In [5], a concentric circle-structured multi-scale BOVW model was
presented to incorporate rotation-invariant spatial layout information into the original BOVW model.

The aforementioned BOVW variants focus on capturing the spatial layout information of scene
images. However, the rich texture and structure information in high-resolution remote sensing images
has not been fully exploited since they merely use the scale-invariant feature transform (SIFT) [6]
descriptors to capture local features. There is also a great effort to evaluate various features and
combinations of features for scene classification. In [7], a local structural texture similarity descriptor
was applied to image blocks to represent structural texture for aerial image classification. In [8],
semantic classifications of aerial images based on Gabor and Gist descriptors [9] were evaluated
individually. In [10], four types of features consisting of raw pixel intensity values, oriented filter
responses, SIFT-based feature descriptors, and self-similarity were used within the framework of
unsupervised feature learning. In [11], global features extracted using the enhanced Gabor texture
descriptor (EGTD) and local features extracted using the SIFT descriptor were fused in a hierarchical
approach to improve the performance of remote sensing image scene classification.

Recently, deep learning has received great attention. Different from the afore-mentioned BOVW
and its variants that are considered mid-level representations, deep learning is an end-to-end
feature learning method (e.g., from an image to semantic label). Among deep learning-based
networks, convolutional neural networks (CNNs) [12,13] may be the most popular for learning visual
features in computer vision applications, such as remote sensing and large-scale visual recognition.
K. Nogueira et al. [14] presented the PatreoNet, which has the capability to learn specific spatial
features from remote sensing images without any pre-processing step or descriptor evaluation.
AlexNet, proposed by Krizhevsky et al. [15], was the first to employ non-saturating neurons, GPU
implementation of the convolution operation and dropout to prevent overfitting. GoogLeNet [16]
deployed the CNN architecture and utilized filters of different sizes at the same layer to reduce
the number of parameters of the network. However, CNNs have an intrinsic limitation, i.e., the
complicated pre-training process to adjust parameters.

In [17], multi-scale completed local binary patterns (MS-CLBP) features were utilized for remote
sensing image classification. The extracted features can be considered global features in an image.
However, the global feature representation may not able to characterize detailed structures and
distinct objects. For example, some land-use and land-cover classes are defined mainly by individual
objects, e.g., baseball fields and storage tanks. In this paper, we propose a local feature representation
method based on patch-based MS-CLBP, which can be used to extract complementary features to
global features. Specifically, the CLBP descriptor is applied to partition dense image patches and
extract a set of local patch descriptors, which characterize the detailed local structure and texture
information in high-resolution remote sensing images. Since the CLBP [18] operator belongs to
a gray-scale and rotation-invariant texture operator, the extracted local descriptors are robust to rotation
image transformations. Then, the Fisher kernel representation [19] is employed to encode the local
descriptors into a discriminative representation (i.e., Fisher vector (FV)). FV describes patch descriptors
by their deviation from a “universal” generative Gaussian mixture model (GMM). To improve the
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discriminative power of the feature representation, multiple sets of parameters for the CLBP operator
(i.e., MS-CLBP) were utilized to generate multiple FVs. The final representation for an image is
achieved by concatenating all the FVs. For classification, the kernel-based extreme learning machine
(KELM) [20] is adopted for its efficient computation and good classification performance.

There are two main contributions from this work. First, a local feature representation method
using patch-based MS-CLBP features and FV is proposed. The MS-CLBP operator is applied to
the partitioned dense regions to extract a set of local patch descriptors, and then the Fisher kernel
representation is used to encode the local descriptors into a discriminative representation of remote
sensing images. Second, the two implementations of MS-CLBP are combined into a unified framework
to build a more powerful feature representation. The proposed local feature representation method is
evaluated using two public benchmark remote sensing image datasets. The experimental results verify
the effectiveness of our proposed method as compared to state-of-the-art algorithms.

The remainder of the paper is organized as follows. Section 2 presents the related works including
CLBP and the Fisher vector. Section 3 describes two implementations of MS-CLBP, patch-based
MS-CLBP feature extraction, and the details of the proposed feature representation method. Section 4
provides the experimental results. Finally, Section 5 concludes the paper.

2. Related Works

2.1. Completed Local Binary Patterns

Local binary patterns (LBP) [21,22] are an effective measure of spatial structure information of
local image texture. Consider a center pixel and its gray value, tc. Its neighboring pixels are equally
spaced on a circle of radius r with the center at location tc. If the coordinates of tc are p0, 0q and m
neighbors ttiu

m´1
i“0 are considered, the coordinates of ti are denoted as p´rsinp2πi{mq, rcosp2πi{mqq.

Then, the LBP is calculated by thresholding the neighbors ttiu
m´1
i“0 with the center pixel tc to generate

an m-bit binary number. The resulting LBP for tc in decimal number can be expressed as follows:

LBPm,r ptcq “

m´1
ÿ

i“0

s pti ´ tcq 2i “

m´1
ÿ

i“0

s pdiq 2i, spxq “

#

1, x ě 0

0, x ă 0
(1)

where di “ pti ´ tcq represents the difference between the center pixel and each neighbor, which
characterizes the spatial local structure at the center location. Further, the resulted di is robust to
illumination changes and they are more efficient than the original image in pattern classification due
to the fact that the central gray level tc is removed. The difference vector di can be further decomposed
into two components: the signs and magnitudes (absolute values of di, i.e., |di|). However, the original
LBP only uses the sign information of di while ignoring the magnitude information. In the improved
CLBP [18], the signs and magnitudes are complementary, from which the difference vector di can
be perfectly reconstructed. Figure 1 illustrates an example of the sign and magnitude components
of the CLBP extracted from a sample block, where Figure 1a–d denote original 3 ˆ 3 local structure,
difference vector, sign vector and magnitude vector, respectively. Note that “0” is coded as “´1” in
CLBP (as seen in Figure 1c). Two operators, CLBP-Sign (CLBP_S) and CLBP-Magnitude (CLBP_M),
are used to encode these two components. CLBP_S is equivalent to the traditional LBP operator while
the CLBP_M operator can be expressed as,

CLBP_Mm,r “

m´1
ÿ

i“0

f p|di| , cq2i, f px, yq “

#

1, x ě y

0, x ă y
(2)

where c is a threshold that is set to the mean value of |di|. Using Equations (1) and (2), two binary
strings can be produced and denoted as CLBP_S and CLBP_M codes, respectively. Two ways to
combine the CLBP_S and CLBP_M codes are presented in [18]. Here, the first way (concatenation) is
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used, in which the histograms of the CLBP_S and CLBP_M codes are calculated separately, and then
the two histograms are concatenated. Note that there is also the CLBP-Center part which codes the
values of the center pixels in the original CLBP. Here, only the CLBP_S and CLBP_M operators are
considered for computational efficiency.
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Figure 1. (a) 3 ˆ 3 sample block; (b) the local differences; (c) the sign component of CLBP; (d) the
absolute value of local differences; (e) the magnitude component of CLBP.

Figure 2 presents an example of the CLBP_S and CLBP_M coded images corresponding to an input
aerial scene (viaduct scene). It can be observed that CLBP_S and CLBP_M operators both can capture
the spatial pattern and the contrast of local image texture, such as edges and corners.
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2.2. Fisher Vector

After local feature extraction (especially for patch-based feature extraction), the popular BOVW
model is usually employed to encode features into histograms. However, the BOVW model has
an intrinsic limitation, namely the computational cost in assignment of local features to visual words,
which scales as the product of the number of visual words, the number of regions and the local feature
dimensionality [23]. Several extensions to the basic BOVW model to build compact vocabularies
have been proposed. The most appealing one is the Fisher kernel image representation [19,24],
which uses high-dimensional gradient representation to represent an image. Due to informative
representations with compact vocabularies, this representation contains more information than a simple
histogram representation.

An FV is a special case of Fisher kernel construction. Let X “ txt, t “ 1 ... Tu be the set of
local patch descriptors extracted from an image. A Gaussian mixture model (GMM) is trained on the
training images using Maximum Likelihood (ML) estimation [25,26]. Let P denote the probability
density function of the GMM with parameters λ “ tωi, µi, Σi, i “ 1...Ku, where K is the number
of components. ωi, µi and Σi are the mixture weight, mean vector, and covariance matrix of the ith

Gaussian component, respectively. The image can be characterized by the gradient of the log-likelihood
of the data on the model:

GX
λ “ ∇λlogP pX|λq (3)

The gradient describes the direction along which parameters are to be adjusted to best fit the
data. Under an independence assumption, the covariance matrices are diagonal, i.e., Σi “ diag

`

σ2
i
˘

.
Then following [27], LpX|λq “ logPpX|λq is written as,
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LpX|λq “
T
ÿ

t“1

logPpxt|λq (4)

The probability density function of xt generated by the GMM is

Ppxt|λq “
k
ÿ

i“1

ωi pipxt|λq (5)

Let γtpiq be the occupancy probability, i.e., the probability of descriptor xt generated by the
i-th Gaussian.

γtpiq “ Pp i| xt, λq “
ωi pipxt|λq

k
ř

j“1
ωj pjpxt

ˇ

ˇλq

(6)

with the Bayes formula mathematical derivations providing the following results,

BLpX|λq
Bωi

“

T
ÿ

t“1

„

γtpiq
ωi

´
γtp1q

ω1



for i ě 2 (7)

BLpX|λq
Bµd

i
“

T
ÿ

t“1

γtpiq

«

xd
t ´ µd

i

pσd
i q

2

ff

(8)

BLpX|λq
Bσd

i
“

T
ÿ

t“1

γtpiq

«

pxd
t ´ µd

i q
2

pσd
i q

3 ´
1

σd
i

ff

(9)

where d denotes the dth dimension of a vector. The diagonal closed-form approximation in [27] is used
to normalize the gradient vector by multiplying the square-root of the inverse of the Fisher information
matrix, i.e., F´1{2

λ . Let fωi , fµd
i
, and fσd

i
denote the diagonal of Fλ corresponding to BLpX|λq {Bωi,

BLpX|λq {Bµd
i , and BLpX|λq {Bσd

i , respectively, and we have the following approximation,

fωi “ Tp
1

ωi
`

1
ω1
q (10)

fµd
i
“

Tωi

pσd
i q

2 (11)

fσd
i
“

2Tωi

pσd
i q

2 (12)

Thus, the normalized partial derivatives are fωi
´1{2BLpX|λq {Bωi, fµd

i

´1{2BLpX|λq {Bµd
i , and

fσd
i

´1{2BLpX|λq {Bσd
i . The final gradient vector (i.e., FV) is just a concatenation of all the partial

derivative vectors. Therefore, the dimensionality of FV is p2D` 1q ˆ K, where D denotes the size of
the local descriptors.

3. Proposed Feature Representation Method

Inspired by the success of CLBP and FV in computer vision applications, we propose an effective
image representation approach for remote sensing image scene classification based on patch-based
MS-CLBP features and FV. The patch-based MS-CLBP is applied as the local patch descriptors and then
the FV is chosen as the encoding strategy to generate a high-dimensional representation of an image.
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3.1. Two Implementations of Multi-Scale Completed Local Binary Patterns

CLBP features computed from a single-scale may not be able to detect the dominant texture
features from an image. A possible solution is to characterize the image texture in multiple resolutions,
i.e., MS-CLBP. There are two implementations for the MS-CLBP descriptor [17].

In the first implementation, the radius of a circle r is altered to change the spatial resolution.
The multi-scale analysis is accomplished by combining the information provided by multiple operators
of varying pm, rq. For simplicity, the number of neighbors is fixed to m and different values of r are
tuned to achieve the optimal combination. An example of a 3-scale (three r values) CLBP operator
is illustrated in Figure 3. The CLBP_S and CLBP_M histogram features extracted from each scale
are concatenated to form an MS-CLBP representation. One disadvantage of this multi-scale analysis
implementation is that the computational complexity increases due to multiple resolutions.
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Figure 3. An example of the first implementation of a 3-scale CLBP operator (m “ 8, r1 “ 1 , r2 “ 2 ,
and r3 “ 3 ).

In the second implementation, the original image is down-sampled using the bicubic interpolation
to obtain multiple images at different scales. The value of scale is between 0 and 1 (here, 1 denotes
the original image). Then, the CLBP_S and CLBP_M operators of fixed radius and the number of
neighbors are applied to the multiple-scale images. The CLBP_S and CLBP_M histogram features
extracted from each scale image are concatenated to form an MS-CLBP representation. An example of
the second implementation of the MS-CLBP descriptor is shown in Figure 4.
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Figure 4. An example of the second implementation of a 3-scale CLBP operator (m “ 8, r “ 2 ).

3.2. Patch-Based MS-CLBP Feature Extraction

Given an image, the CLBP [18] operator with a parameter set pm, rq is applied to generate two
CLBP coded images with one corresponding to the sign component (i.e., CLBP_S coded image) and
the other the magnitude component (i.e., CLBP_M coded image). Two complementary components of
CLBP (CLBP_S and CLBP_M) can capture the spatial patterns and contrast of local image texture, such
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as edges and corners. Then, the CLBP coded images are partitioned into Bˆ B overlapped patches in
an image grid. For simplicity, the overlap between two patches is half of the patch size (i.e., B{2) in
both horizontal and vertical directions. To incorporate spatial structures of an image at different scales
(or sizes) and create more patch descriptors, here the second implementation of MS-CLBP is employed
by resizing the original image to different scales (e.g., 1{2 and 1{3 of the original image). Specifically,
the CLBP operator with the same parameter set is applied to the multi-scale images to generate
patch-based CLBP histogram features. For patch i, two occurrence histograms (i.e., the nonparametric
statistical estimate) are computed from the sign component (CLBP_S) and the magnitude component
(CLBP_M). A histogram feature vector denoted by hi is formed by concatenating the two histograms.
If M patches are extracted from the multi-scale images, a feature matrix denoted by H “ rh1, h2, ..., hMs

is generated to represent the original image. Each column of the matrix H is a histogram feature vector
for a patch. The proposed patch-based CLBP feature extraction method is illustrated in Figure 5.
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As noted in [21], LBP features computed from a single scale may not be able to represent intrinsic
texture features. Therefore, different parameter sets pm, rq are utilized for the CLBP operator to achieve
the first implementation of the MS-CLBP as described in [17]. Specifically, the number of neighbors
(m) is fixed and multiple radii (r) are used in the patch-based CLBP feature extraction as shown in
Figure 5. If q parameter sets (i.e.,

 

pm, r1q, pm, r2q, ..., pm, rqq
(

) are considered, a set of q feature matrices

denoted by
!

Hpm,r1q
, Hpm,r2q

, ..., Hpm,rqq

)

can be obtained for an image. It is worth noting that the
proposed patch-based MS-CLBP feature extraction effectively unifies the two implementations of the
MS-CLBP [17].

3.3. A Fisher Kernel Representation

Fisher kernel representation [19] is an effective patch aggregation mechanism to characterize
a sample of low-level features, and it exhibits superior performance over the BOVW model. Therefore,
the Fisher kernel representation is employed to encode the dense local patch descriptors.

Given NT training images with NT feature matrices,
!

Hr1s, Hr2s, ..., HrNTs
)

representing
the local patch descriptors (i.e., patch-based CLBP features) of each image are obtained
using the feature extraction method illustrated in Figure 5. Since q parameter sets (i.e.,
 

pm, r1q, pm, r2q, ..., pm, rqq
(

) are employed for the CLBP operator, each image yields q feature matrices

denoted by
!

Hrjs
pm,r1q

, Hrjs
pm,r2q

, ..., Hrjs
pm,rqq

)

, where j P r1, 2, ..., NTs. For each CLBP parameter set, the
corresponding feature matrices of the training data are used to estimate the GMM parameters via the
Expectation-Maximization (EM) algorithm. Therefore, for q CLBP parameter sets, q GMMs are created.
After estimating the GMM parameters, q FVs are obtained for an image. Then, the q FVs are simply
concatenated as the final feature representation. Figure 6 shows the detailed procedure for generating
FVs. As illustrated in Figure 6, the stacked FVs (f) from the q CLBP parameter sets serve as the final
feature representation of an image before being fed into a classifier.
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4. Experiments

Two standard public domain datasets are used to demonstrate the effectiveness of the proposed
image representation method for remote sensing land-use scene classification. In the experiments,
KELM with a radial basis function (RBF) kernel is employed for classification due to its generally
excellent classification performance and low computational cost. The classification performance of the
proposed method is compared with the state-of-the-art in the literature.

4.1. Experimental Data and Setup

The first dataset is the well-known UC-Merced land-use dataset [28]. It is the first public ground
truth land-use scene image dataset that consists of 21 land-use classes and each class contains
100 images with a size of 256 ˆ 256 pixels. The images were manually extracted from aerial
orthoimagery downloaded from the United States Geological Survey (USGS) National Map. This is
a challenging dataset due to a variety of spatial patterns in those 21 classes. Sample images of
each land-use class are shown in Figure 7. To facilitate a fair comparison, the same experimental
setting reported in [28] is followed. Five-fold cross-validation is performed, in which the dataset is
randomly partitioned into five equal subsets. There are 20 images from each land-use class in a subset.
Four subsets are used for training and the remaining subset for testing. The classification accuracy is
the average over the five cross-validation evaluations.
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diamond; (4) beach; (5) buildings; (6) chaparral; (7) dense residential; (8) forest; (9) freeway; (10) golf
course; (11) harbor; (12) intersection; (13) medium density residential; (14) mobile home park;
(15) overpass; (16) parking lot; (17) river; (18) runway; (19) sparse residential; (20) storage tanks;
(21) tennis courts.

The second dataset used in our experiments is the 19-class satellite scene dataset [29]. It consists of
19 classes of high-resolution satellite scenes. There are 50 images with sizes of 600 ˆ 600 pixels for each
class. The images are extracted from large satellite images on Google Earth. An example of each class
is shown in Figure 8. The same experimental setup in [30] was used. Here, 30 images are randomly
selected per class as training data and the remaining images as testing data. The experiment is repeated
10 times with different realizations of randomly selected training and testing images. Classification
accuracy is averaged over the 10 trials.
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(4) commercial; (5) desert; (6) farmland; (7) football field; (8) forest; (9) industrial; (10) meadow;
(11) mountain; (12) park; (13) parking; (14) pond; (15) port; (16) railway station; (17) residential;
(18) river; (19) viaduct.
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Note that the original images in these two datasets are color images; the images are converted
from the RGB color space to the YCbCr color space, and the Y component (luminance) is used for
scene classification.

4.2. Parameters Setting

The number of neighbors (m) in the CLBP operator has a direct impact on the dimensionality of
the FV since patch-based CLBP features are used as local patch descriptors. A large value of m will
increase the feature dimensionality and then increase the computational complexity. Based on the
parameter tuning results in [17], m “ 8 is empirically chosen for both the 21-class land-use dataset
and the 19-class satellite scene dataset as it balances the classification performance and computational
complexity. In addition, the parameter settings in [17] are adopted for the MS-CLBP descriptor.
Specifically, 6 radii (i.e., r “ r1 : 6s) are used for the MS-CLBP descriptor, resulting 6 parameters sets
tpm “ 8, r1 “ 1q, ..., pm “ 8, r6 “ 6qu.

Then, the number of scales is studied for the first implementation of the MS-CLBP operator
for generating multi-scale images and the number of Gaussians (K) in the GMM. For the 21-class
land-use dataset, 80 images are randomly selected per class for training and the remaining images for
testing. For the 19-class satellite scene dataset, 30 images per class are randomly selected for training
and the remaining images for testing. Different numbers of Gaussians are examined along with
different choices of multiple scales including t1, 1{r1 : 2s, ..., 1{r1 : 6su. For instance, 1{r1 : 2s indicates
that scale = 1 (original image) and scale = 1/2 (down-sampled image at half of the size of the original
image) are used to generate two images with two scales. Figures 9 and 10 present the classification
results with different numbers of Gaussians in the GMM and different numbers of scales for the two
datasets, respectively.
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Figure 10. Classification accuracy (%) versus varying numbers of Gaussians and scales for our proposed
method for the 19-class satellite scene dataset.

Thus, the optimal number of Gaussians for the 21-class land-use dataset is 35 and the optimal
multiple scales is 1{r1 : 4s simultaneously considering classification accuracy and computational
complexity. Similarly, the optimal number of Gaussians for the 19-class satellite scene dataset is 20 and
the optimal multiple scale is 1{r1 : 4s.

Since the proposed method extracts dense local patches, the size of the patch (Bˆ B) is determined
empirically. The classification accuracies with varying patch sizes are illustrated in Figure 11. It is
obvious that B “ 32 achieves the best classification performance for the 21-class land-use dataset. The
size of the images in the 19-class dataset is 600 ˆ 600 pixels, which is about twice the size of the images
in the 21-class dataset. Therefore, the patch size is set a B “ 64 for the 19-class dataset.

In addition, to gain computational efficiency, principal component analysis (PCA) [31,32] is
employed to reduce the dimensionality of FV features. The PCA projection matrix was calculated
using the features of the training data, and the principal components that accounted for 95% of the
total variation of the training features are considered in our experiments.
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4.3. FV Representation vs. BOVW Model

To verify the advantage of FV as compared to the BOVW model, the MS-CLBP+BOVW is applied
to both the 21-class land-use dataset and the 19-class satellite scene dataset and the performance is
compared with our approach. The same parameters are used for the MS-CLBP feature. In the BOVW
model, 30,000 patches are randomly selected from all patches and K-means clustering is employed to
generate 1024 visual words as a typical setting. The classification performance of the proposed method
and MS-CLBP+BOVW is evaluated over each category of the two datasets as shown in Figures 12
and 13, respectively. As can be seen from Figure 12, the proposed method provides better performance
than MS-CLBP+BOVW in almost all categories except two, medium density residential and parking
lot, and two categories (agricultural and forest) have equal performance. In Figure 13, the proposed
method achieves greater accuracy than all classes except beach and industrial for the 19-class satellite
scene dataset.
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4.4. Comparison to the State-of-the-Art Methods

In this section, the effectiveness of the proposed image representation method is evaluated by
comparing its performance with previously reported performance in the literature. Specifically, the
proposed method is compared with the MS-CLBP descriptor [17] applied to an entire remote sensing
image to obtain a global feature representation. The comparison results are reported in Table 1.
From the comparison results, the proposed method achieves superior classification performance over
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other existing methods, which demonstrates the effectiveness of the proposed image representation
for remote sensing land-use scene classification. The improvement of the proposed method over the
global representation developed in [17] is 2.4%. This improvement is mainly due to the proposed local
feature representation framework which unifies the two implementations of the MS-CLBP descriptor.
Moreover, the proposed approach is an approximately 4.7% improvement over the MS-CLBP + BOVW
method, which verifies the advantage of the Fisher kernel representation as compared to the BOVW
model. Figure 14 shows the confusion matrix of the proposed method for the 21-class land-use dataset.
The diagonal elements of the matrix denote the mean class-specific classification accuracy (%). We find
an interesting phenomenon from Figure 14 that diagonal elements for beach and forest are extremely
large but diagonal elements for storage tank is relatively small. The reasons are that images of beach
and forest present rich texture and structures information; within-class similarity for the beach and
forest categories is high but relatively low for category of storage tank; and some images of storage
tank are similar to other class such as buildings.

Table 1. Comparison of classification accuracy (%) forthe 21-class land-use dataset.

Method Accuracy(Mean ˘ std)

BOVW [28] 76.8
SPM [28] 75.3

BOVW + Spatial Co-occurrence Kernel [28] 77.7
Color Gabor [28] 80.5

Color histogram (HLS) [28] 81.2
Structural texture similarity [7] 86.0

Unsupervised feature learning [33] 81.7 ˘ 1.2
Saliency-Guided unsupervised feature learning [34] 82.7 ˘ 1.2

Concentric circle-structured multiscale BOVW [5] 86.6 ˘ 0.8
Multifeature concatenation [35] 89.5 ˘ 0.8

Pyramid-of-Spatial-Relatons (PSR) [36] 89.1
MCBGP + E-ELM [37] 86.52 ˘ 1.3

ConvNet with specific spatial features [38] 89.39 ˘ 1.10
gradient boosting randomconvolutional network [39] 94.53

GoogLeNet [40] 92.80 ˘ 0.61
OverFeatConvNets [40] 90.91 ˘ 1.19

MS-CLBP [17] 90.6 ˘ 1.4
MS-CLBP + BOVW 89.27 ˘ 2.9

The Proposed 93.00 ˘ 1.2
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When compared with CNNs, it can be found that the classification accuracy of CNNs is close
to that of our method. Even though the performance of some CNNs is better than the proposed
method, they need a pre-training process with a large amount of external data. Thus our method is
still competitive in terms of limited requirement for external data.

The comparison results for the 19-class satellite scene dataset are listed in Table 2. It indicates
that the proposed method outperforms other existing methods and achieves the best performance.
The proposed method provides about 7% improvement over the method in [31] which utilized
a combination of multiple sets of features, indicating the superior discriminative power of the proposed
feature representation. The confusion matrix of the proposed method for the 19-class satellite scene
dataset is shown in Figure 15. From diagonal elements of the matrix, the classification accuracy for
bridges is relatively small because some texture information in the images of bridges is similar to those
in the images of ports.

Table 2. Comparison of classification accuracy (%) for the 19-class satellite scene dataset.

Method Accuracy (Mean ˘ std)

Bag of colors [25] 70.6 ˘ 1.5
Tree of c-shapes [25] 80.4 ˘ 1.8

Bag of SIFT [25] 85.5 ˘ 1.2
Multifeature concatenation [25] 90.8 ˘ 0.7

LTP-HF [23] 77.6
SIFT + LTP-HF + Color histogram [23] 93.6

MS-CLBP [1] 93.4 ˘ 1.1
MS-CLBP + BOVW 89.29 ˘ 1.3

The Proposed 94.32 ˘ 1.2
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5. Conclusions

In this paper, an effective image representation method for remote sensing image scene
classification was introduced. The proposed representation method is based on multi-scale local
binary patterns features and Fisher vectors. The MS-CLBP was applied to the partitioned dense regions
of an image to extract a set of local patch descriptors, which characterize the detailed structure and
texture information in high-resolution remote sensing images. The Fisher vector was employed to
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encode the local descriptors into a high-dimensional gradient representation, which can enhance the
discriminative power of feature representation. Experimental results on two land-use scene datasets
demonstrated that the proposed image representation approach obtained superior performance as
compared to the existing methods for scene classification, with an obvious improvement such as 3%
for the 21-class land-use dataset compared with the state-of-the-art MS-CLBP and 1% for the 19-class
satellite scene dataset. In future work, combining global and local feature representations for remote
sensing image scene classification will be investigated.
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Abbreviations

The following abbreviations are used in this manuscript:

LBP Local binary patterns
CLBP Completed local binary patterns
MS-CLBP Multi-scale completed local binary patterns
FV Fisher vector
ELM Extreme learning machine
KELM Kernel-based extreme learning machine
BOVW Bag-of-visual-words
SPM Spatial pyramid matching
SIFT Scale-invariant feature transform
EGTD Enhanced Gabor texture descriptor
GMM Gaussian mixture model
CLBP_S Completed local binary patterns sign component
CLBP_M Completed local binary patterns magnitude component
RBF Radial basis function
USGS United States Geological Survey
PCA Principal component analysis

References

1. Yang, J.; Jiang, Y.-G.; Hauptmann, A.G.; Ngo, C.-W. Evaluating bag-of-visual-words representations
in scene classification. In Proceedings of the International Workshop on Workshop on Multimedia
Information Retrieval, the 15th ACM International Conference on Multimedia, Augsburg, Bavaria, Germany,
23–28 September 2007; pp. 197–206.

2. Lazebnik, S.; Schmid, C.; Ponce, J. Beyond bags of features: spatial pyramid matching for recognizing natural
scene categories. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
New York, NY, USA, 17–22 June 2006; pp. 2169–2178.

3. Yang, Y.; Newsam, S. Spatial pyramid co-occurrence for image classification. In Proceedings of the
International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 1465–1472.

4. Zhou, L.; Zhou, Z.; Hu, D. Scene classification using a multi-resolution bag-of-features model.
Pattern Recognit. 2013, 46, 424–433. [CrossRef]

5. Zhao, L.-J.; Tang, P.; Huo, L.-Z. Land-use scene classification using a concentric circle-structured multiscale
bag-of-visual-words model. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2014, 7, 4620–4631. [CrossRef]

6. Lowe, D.G. Distinctive image features from scale-invariant key points. Int. J. Comput. Vis. 2004, 60, 91–110.
[CrossRef]

7. Risojevic, V.; Babic, Z. Aerial image classification using structural texture similarity. In Proceedings of the
IEEE International Symposium on Signal Processing and Information Technology (ISSPIT), Bilbao, Spain,
14–17 December 2011; pp. 190–195.

http://dx.doi.org/10.1016/j.patcog.2012.07.017
http://dx.doi.org/10.1109/JSTARS.2014.2339842
http://dx.doi.org/10.1023/B:VISI.0000029664.99615.94


Remote Sens. 2016, 8, 483 16 of 17
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