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Abstract: The data saturation problem in Landsat imagery is well recognized and is regarded
as animportant factor resulting in inaccurate forest aboveground biomass (AGB) estimation.
However, no study has examined the saturation values for different vegetation types such as
coniferous and broadleaf forests. The objective of this study is to estimate the saturation values in
Landsat imagery for different vegetation types in a subtropical region and to explore approaches
to improving forest AGB estimation. Landsat Thematic Mapper imagery, digital elevation model
data, and field measurements in Zhejiang province of Eastern China were used. Correlation analysis
and scatterplots were first used to examine specific spectral bands and their relationships with AGB.
A spherical model was then used to quantitatively estimate the saturation value of AGB for each
vegetation type. A stratification of vegetation types and/or slope aspects was used to determine the
potential to improve AGB estimation performance by developing a specific AGB estimation model
for each category. Stepwise regression analysis based on Landsat spectral signatures and textures
using grey-level co-occurrence matrix (GLCM) was used to develop AGB estimation models for
different scenarios: non-stratification, stratification based on either vegetation types, slope aspects,
or the combination of vegetation types and slope aspects. The results indicate that pine forest and
mixed forest have the highest AGB saturation values (159 and 152 Mg/ha, respectively), Chinese fir
and broadleaf forest have lower saturation values (143 and 123 Mg/ha, respectively), and bamboo
forest and shrub have the lowest saturation values (75 and 55 Mg/ha, respectively). The stratification
based on either vegetation types or slope aspects provided smaller root mean squared errors (RMSEs)
than non-stratification. The AGB estimation models based on stratification of both vegetation types
and slope aspects provided the most accurate estimation with the smallest RMSE of 24.5 Mg/ha.
Relatively low AGB (e.g., less than 40 Mg/ha) sites resulted in overestimation and higher AGB
(e.g., greater than 140 Mg/ha) sites resulted in underestimation. The smallest RMSE was obtained
when AGB was 80-120 Mg/ha. This research indicates the importance of stratification in mitigating
the data saturation problem, thus improving AGB estimation.
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1. Introduction

Forests taking carbon dioxide from the atmosphere and accumulating biomass through
photosynthesis are an important carbon sink of terrestrial ecosystems. Estimating and mapping
forest biomass/carbon stocks become essential for greenhouse gas inventories, global carbon cycle,
and climate change modeling [1-3]. Various methods such as process models and remote sensing-based
approaches have been developed and used [4-7]. The process models-based methods do not generate
spatially explicit predictions and often lead to a large amount of uncertainty for specific sites,
partly because too many variables and input parameters are required to run the models and partly
because different source data such as climate and soil data have very coarse spatial resolutions [8-10].
In contrast, remote sensing-based approaches have become popular due to their unique characteristics
in data collection and presentation; that is, multitemporal remote sensing images not only reveal spatial
variability, spatial distributions, and patterns of forests but also provide the potential to estimate their
changes over time [4-7]. A large number of research papers on biomass estimation using remote
sensing data have been published in the past three decades, as summarized in previous literature
review papers (e.g., [4,6,11-17]).

Various remotely sensed images from optical sensors and radar and lidar systems have
been utilized to estimate and map forest biomass/carbon by combining with ground sample plot
data [5,6,11-15]. The optical imagery-based technologies are commonly used for biomass estimation
due to high correlations between spectral bands and biomass [4,6,17-28]. In particular, Landsat
images have been the most widely used for forest aboveground biomass (AGB) estimation in the
past three decades [5,6,20,24,26,28-36], mainly because they are freely downloadable, have a long
history, and have medium spatial resolution. The studies deal with different climate zones and forest
ecosystems, from tropical to subtropical, temperate, and boreal forests [4-7,12-15,20,28,32,37—43].
However, one common problem is the data saturation in Landsat imagery; that is, spectral reflectance
values are not sensitive to the change in biomass of dense and multilayer canopy forests, which
results in low accuracy of AGB estimation, especially when AGB is high, such as greater than
130 Mg/ha [5,6,29]. Although this problem has been recognized for a long time, studies have rarely
investigated the saturation values of forest AGB for various forest types. A major challenge is the
difficulty in collecting sufficient numbers of sample plots for different vegetation types.

Many factors influence the data saturation of Landsat imagery [5,6,44—48]. The limitation of
remote sensing data themselves in spectral, spatial, and radiometric resolutions may result in different
saturation values of AGB. Data saturation varies depending on vegetation types because of the
various capabilities of their surface reflectance in distinguishing vegetation characteristics, including
tree species and forest stand structures [6,30]. Moreover, topographic features also affect the data
saturation values of forest AGB due to the fact that elevation, slope, and aspect may affect the
distribution and composition of tree species, as well as vegetation growth rates and, thus, spectral
reflectance. Various methods have been explored to reduce the impacts of data saturation in Landsat
imagery on AGB estimation accuracy (see the review paper by Lu et al. [6]). Vegetation indices
and textures are often used [21,25-27,49-53]. In the moist tropical region of the Brazilian Amazon,
Lu et al. [51] compared different vegetation indices—e.g., normalized difference vegetation index
(NDVI), perpendicular vegetation index (PVI), soil adjusted vegetation index (SAVI)—from Landsat
Thematic Mapper (TM) imagery and found that the vegetation indices including shortwave infrared
spectral bands (SWIR) have higher correlation with AGB than others when the forest stand structure is
complex, but the vegetation indices including near-infrared wavelength (NIR) improved correlations
with AGB in relatively simple forest stand structures. However, high correlation between vegetation
indices or spectral bands makes these variables less important in AGB modeling [6,31]. Time series of
Landsat imagery is another method to increase AGB estimation accuracy and reduce saturation effects
compared to use of a single NDVI [20,34,48].

The heterogeneity of forest stand structures may be the major reason for data saturation. Lu and
Batistella [52] examined the relationships between AGB and grey-level co-occurrence matrix-based
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(GLCM) textural images from Landsat TM imagery in the Brazilian Amazon and found that textural
images were especially useful for primary forest AGB estimation due to its complex forest stand
structures. Incorporation of textures into spectral responses has proven useful in improving AGB
estimation performance because textures can reduce the impacts of heterogeneity [30]. Nichol and
Sarker [49] combined spectral variables from the images of two sensors (i.e., advanced visible and NIR
radiometer types—AVNIR-2 and SPOT-5) and ratios of texture parameters from the image bands to
explore methods for reducing the impacts of data saturation of optical imagery on AGB estimation
accuracy. Their study area was located in the Hong Kong Special Administrative Region that lies on
the southeast coast of China, just south of the Tropic of Cancer. Their results showed that using the
ratios of texture parameters of both sensors together produced higher agreement between observed
and estimated forest AGB values than utilizing the texture parameters or ratios of image bands from
one sensor alone. They also suggested that the obtained maximum estimate was 500 t/ha, much higher
than the saturation levels in other studies using optical sensors [6,31,44]. Other studies also indicated
the importance of combining spectral responses and textures from optical or radar data in improving
AGB estimation [21,25-27,53].

The existing and limited studies on mitigating the impacts of data saturation from optical
images on AGB estimation focus mainly on how to extract and use vegetation indices and texture
parameters [6,21,26,27,30]. There have been no published reports on how to model the relationships
of forest biomass/carbon with spectral variables from remotely sensed images under different
classification scenarios by taking into account the heterogeneity of forest stand structures due to
tree species composition, tree ages, and topographic features (e.g., slope and aspect). An exception is
that a study by Sanga-Ngoie et al. [54] in forest biomass/carbon estimation in Japan using NDVI from
Landsat imagery showed that, in addition to forest types, taking tree ages into account could result
in considerable improvement of the estimation. This study implied that the combinations of spatial
modeling and forest classification by tree species composition, age, and topographic features may allow
for a reduction of the data saturation. Therefore, this research aims at estimating the data saturation
values in Landsat imagery for different vegetation types and exploring approaches to improving forest
AGB estimation by conducting stratification of vegetation types or/and slope aspects in a subtropical
region of Zhejiang Province, China.

2. Study Area and Materials

2.1. Description of the Study Area

The study area is located in Zhejiang province of Eastern China, neighboring Fujian, Anhui
Jiangxi, and Jiangsu provinces, and Shanghai (Figure 1). Zhejiang has an area of 101,800 km? and
a population of 55 million [55]. This province has a subtropical moist monsoon climate, with annual
temperature of 15~18 °C and the highest temperature in July or August, and annual precipitation
of 980~2000 mm. Zhejiang has a varying topography, with montane regions in the west and south,
hilly areas in the central part, and flat terrain in the northeast. Montane and hilly regions account for
approximately 70% of the total area in this province, plains and basins cover 23%, and rivers and lakes
occupy approximately 6% [56].

Zhejiang is characterized by rich vegetation types with typical subtropical evergreen broadleaf
forests. The dominant vegetation types include coniferous forests (e.g., pine plantations, Chinese fir
plantations), evergreen broadleaf forests, mixed needle and broadleaf forests, and bamboo forests.
The forests occupy an area of 5,844,200 ha with a bamboo forest area of 782,900 ha. Forest canopy
cover was 60.8% [57]. Young and middle-age forests dominate the forested lands. Zhejiang is one of
the provinces that have the highest forest canopy cover percentages in China and, therefore, accurately
estimating its forest biomass/carbon is necessary. This study area occupies most of the province,
covering different terrains from mountainous regions in the south and west to flat terrains in the
northeast (Figure 1).
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Figure 1. Location of study area—partial Zhejiang Province, eastern China (Note: (a) the study area is
located in Eastern China; (b) the study area occupies most part of Zhejiang province; and (c) a false
color composite of Landsat Thematic Mapper (TM) band 4 in red, band 3 in green, and band 2 in blue,
highlighting vegetated areas in red color).

2.2. Collection of Sample Plot Data and Calculation of Forest Aboveground Biomass

A total of 802 sample plots in the study area were inventoried in 2010 and 2011. These plots were
systematically allocated on a previous spatial distribution map of forest types. The plots had a size of
20 m x 20 m. Within each plot, the diameter at breast height (DBH) of greater than 5 cm for each tree
was measured. Three subplots of 2 m x 2 m were nested within each plot for measuring seedling and
grass biomass [58]. A detailed description of forest inventory and AGB calculation through allometric
equations by tree species or species group is provided in Yuan ef al. [59]. The sample plots were
allocated in different vegetation types, including pine, Chinese fir (hereafter fir), broadleaf forest,
mixed forest, bamboo, and shrub. Table 1 summarizes the statistical features of the sample plots for
the vegetation types. The sample plots had a mean AGB of 89.61 Mg/ha with a standard deviation of
38.39 Mg/ha and a coefficient of variation of 42.84%. The mixed forests had the highest mean AGB but
the smallest coefficient of variation. Fir plantations had the largest standard deviation and pine forests
had the largest maximum AGB values. Shrubs had the smallest mean AGB and standard deviation
values but had the highest coefficient of variation.

The plot AGB values were divided into five groups with an interval of 40 Mg/ha, and the
numbers of sample plots for the AGB groups are summarized in Table 2. Most sample plots fell
in the three middle groups, that is, within the range of 40-160 Mg/ha. Of the 802 sample plots,
589 (approximately 75% of all plots) were randomly selected and used for developing AGB estimation
models and the remaining 213 plots (25%) were utilized for evaluating AGB estimates. The sample plots
are summarized in Table 3 according to different vegetation types and slope aspects. The slope aspects
were divided into four groups: semi-sunny (45-135 degree), sunny (135-225 degree), semi-shady
(225-315 degree), and shady (31545 degree) based on the ASTER GDEM data. The number of sample
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plots for each vegetation type and for each slope aspect is also summarized in Table 3, according to
modeling and evaluation purposes.

Table 1. A statistical summary of aboveground biomass for the sample plots.

Vegetation Types  No. of Sample Plots Mean Standard Minimum Maximum Coef. of
(Mg/ha) Deviation (Mg/ha) (Mg/ha) Variation
Pine 246 100.05 36.71 27.00 204.83 36.69
Fir 123 95.79 37.73 2215 190.76 39.39
BLF 192 86.98 35.05 20.51 175.71 40.29
MDEF 124 104.58 34.30 31.92 180.70 32.80
Bamboo 87 54.08 20.06 10.47 108.04 37.08
Shrub 30 36.68 16.71 15.12 72.60 45.55
All samples 802 89.61 38.39 10.47 204.83 42.84

Note: BLF, broadleaf forest; MDF, mixed forest.

Table 2. A summary of sample plots for different aboveground biomass groups.

Number of Number of Sample Plots for Each AGB Group (Mg/ha)

Sample Plots <40 40-80 80-120  120-160  >160
Number of sample plots 802 76 280 255 165 26
Sample plots for modeling 589 59 210 181 118 21
Sample plots for evaluation 213 17 70 74 47 5

Table 3. A summary of sample plots at different vegetation types and slope aspects for development
and evaluation of aboveground biomass models.

Vegetation Types Sample Pl.ots for Sample Plots for Modeling at Different Aspects Sample Pl?ts
Modeling Shady  Semi-Shady  Sunny Semi-Sunny for Evaluation

Pine 185 44 54 40 47 61

Fir 91 20 28 32 11 32

BLF 138 36 40 30 32 54

MDF 92 20 26 30 16 32

Bamboo 62 22 18 6 16 25

Shrub 21 4 5 9 3 9
All sample plots 589 146 171 147 125 213

Note: BLF, broadleaf forest; MDF, mixed forest.

2.3. Collection of Remote Sensing and DEM Data and Preprocessing

Two Landsat 5 TM images (path/rows: 119/39 and 119/40) with L1T (systematic precision and
terrain corrected) products, acquired on 24 May 2010, were used in this research. The images have
six spectral bands consisting of three visible bands, one NIR band, and two SWIR bands. Both images
have a Universal Transverse Mercator coordinate system with zone 50 north and were mosaicked into
one image. The dark object subtraction approach [45] was used to conduct atmospheric calibration so
that the surface reflectance values ranged from 0 to 1. The ASTER GDEM data with spatial resolution
of 30 m x 30 m at the same coordinate system as the TM image were used to conduct topographic
correction for the Landsat 5 TM image using the C-correction approach [46,60].

2.4. Preparation of Vegetation Classification Data

Table 4 provides the definitions of each vegetation type based in the forest inventory data. In order
to conduct supervised classification, selection of sufficient numbers of representative sample plots is
critical. In this research, three datasets—field survey data collected in 2014, forest inventory plot data
collected in 2010 and 2011, and RapidEye images acquired in 2011—were used to select sample plots for
this classification. Separability analysis of the vegetation classes was conducted using the transformed
divergence algorithm [47]. Refinement of training sample plots for each class was conducted based on
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the analysis of spectral curves of sample plots for each vegetation type. Approximately 50% of the
sample plots were used as training samples and the remaining sample plots were used for accuracy
assessment of classification. Figure 2 illustrates the framework of mapping vegetation distribution
using Landsat 5 TM imagery in this study area, including (1) preparation of training and test sample
plots; (2) image preprocessing and extraction of non-vegetation classes (e.g., impervious surface area
(ISA) and water bodies); (3) extraction of spectral signatures for vegetation types; (4) vegetation
classification using maximum likelihood classifier (MLC); (5) evaluation of classification result.

Table 4. Descriptions of vegetation types and their forest parameters.

Average Average Average

Vegetation Type Description DBH (cm) Height (m)  Age (Year)

Pine Pure or Pinus Massoniana dominant forests with a small 106 75 o4
mixture of broadleaf trees and shrubs ’ :

Pure or Cunnigjamia lanceolate (Lamb.) Hook dominant
Fir forests with very small mixture of Pinus Massoniana and 11.2 7.5 23
shrubs

Dominant species including Schima superba Gardn. et
Mixed forests Cham, Pinus Massoniana, Cunnigjamia lanceolate (Lamb.) 10.2 7.1 26
Hook, Cyclobalanopsis glauca and shrubs

Tree species including Schima superba Gardn. et Cham,
Broadleaf forests  Castanopsis sclerophylla (Lindl.) Schott, Cyclobalanopsis 9.0 6.4 26
glauca, Acer, Cinnamomum camphora

Dominant Phyllostachys heterocycla (Carr.) Mitford co.

Bamboo Pubescens forests 93 106 4
Shrub shrubs 8.9 43 12
Note: DBH, diameter at breast height.
Field survey in 2014, forest Landsat Thematic || Digital elevation
inventory in 2010 and 2011, Mapper imagery model data
RapidEye images in 2011

Extraction of impervious surface
using the LSMA-based approach and
extraction of water bodies using the

threshold-based approach

Image preprocessing

Selection and refinement (atmospheric calibration,
of sample plots topographic correction)

lands after masking out impervious surface and water bodies

l

—)[ Classification of vegetation types using maximum likelihood classifier ]

l

’[ Postprocessing and evaluation of the classified image ]

Test sample Training ¥
plots sample plots [ Extraction of spectral signatures for vegetation and agricultural }

Figure 2. Strategy of vegetation classification from Landsat 5 Thematic Mapper (TM) image (Note:
LSMA, linear spectral mixture analysis).

Previous research has indicated that MLC is one of the best classification approaches, especially
when a sufficient number of representative sample plots are available and spectral signatures are
used [47,61]. Therefore, this research used MLC for vegetation classification after ISA and water bodies
were masked out. Since ISA has a wide variation in spectral signatures, resulting in spectral confusion
between ISA and other land covers such as bare soils in agricultural lands, water and wetlands, and
shadows [62], ISA is first extracted from Landsat multispectral imagery using a hybrid approach
consisting of linear spectral mixture analysis (LSMA), decision tree classifier, and unsupervised
classifier (see details in Li et al. [63]). Water was extracted using the threshold-based approach from the
modified normalized difference water index (MNDWI) [64]. The spectral imagery after masking out
ISA and water classes was used to conduct vegetation classification using MLC.



Remote Sens. 2016, 8, 469 7 of 26

Figure 3 illustrates the classification result. Broadleaf forests dominated the western part of the
study area and were scattered in the central, southern, and southeastern parts. Pine, fir, and mixed
forests were mainly distributed in the southern and southeastern parts. Farmlands and built-up areas
were mainly distributed in the northern and northeastern flat area and the belt from the central to the
southwestern parts called Jin-Ju basin. This vegetation classification result was used in the mapping
of AGB distribution through the established AGB estimation models based on the stratification of
vegetation types.
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Figure 3. Classified map (left) of land use and land cover types for the whole study area using Landsat
5 Thematic Mapper imagery, and the selected portions (a) and (b) at a large scale to highlight the
complexity and spatial distribution of vegetation types.

Based on test sample plots, the accuracy assessment result using the error matrix approach is
summarized in Table 5, in which overall classification accuracy, kappa coefficient, producer’s accuracy
(PA) and user’s accuracy (UA) were also calculated [65]. An overall accuracy of 78.4% and kappa
coefficient value of 0.74 were obtained. Bamboo forest had high UA and PA and shrub had low
accuracies. Mixed forest is a complex type that can be confused with pine, fir, and broadleaf forests,
resulting in low PA.
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Table 5. Accuracy assessment results of a vegetation classification.

Classification Data

Vegetation Types Total UA%
Pine Fir BLF MDF Bamboo Shrub Farmland
Pine 172 7 3 14 4 5 7 212 81.13
Fir 14 77 1 9 3 5 0 109 70.64
BLF 3 5 150 25 0 12 0 195 76.92
MDF 13 7 7 158 0 7 0 192 82.29
Reference g1 hoo 6 0 0 3 85 3 1 98 86.73
data Shrub 3 4 10 6 3 63 1 90 70.00
Farmland 5 1 1 3 3 3 47 63 74.60
Total 216 101 172 218 98 98 56

PA% 79.63 7624 8721 7248 86.73 64.29 83.93

Note: overall classification accuracy = 78.42%; kappa coefficient = 0.74. PA, Producer’s accuracy; UA, user’s
accuracy; BLF, broadleaf forest; MDF, mixed forest.

3. Methods

3.1. Estimation of AGB Saturation Values

In Landsat TM imagery, different vegetation types show their own AGB saturation values due
to their different forest stand structures and species compositions. The spectral surface reflectance
values of sample plots were extracted from each Landsat spectral band. Pearson product-moment
correlation coefficient between plot AGB and each spectral band was analyzed. The image band with
the highest correlation coefficient was selected to examine the data saturation value of AGB for each
vegetation type. This analysis was initially conducted through analysis of scatterplots; that is, the
values of spectral reflectance (Y axis) with the highest correlation coefficient were graphed against the
values of AGB at plot level (X axis). A semi-variogram-based approach that is used to model spatial
autocorrelation of a variable of interest in geostatistics was utilized to fit the relationship between
vegetation AGB and the selected spectral band. Here, the change in values of selected spectral bands
was attributed to spatial autocorrelation, and vegetation AGB was regarded as the spatial distance
in geostatistics. To determine the saturation value of vegetation AGB, the range parameter of spatial
distance was established, that is, the maximum distance of spatial autocorrelation or variability. In this
study, a spherical model was used to fit the relationship between AGB and the selected band for each
vegetation type

3 3
y(x) = co+c{s— | 0<x<BS "
co+c x > BS

where y is the selected spectral band; x is the AGB; BS is the value of AGB saturation; Cy is the nugget
parameter indicating the spectral reflectance value at x = 0; ¢ is the change rate in spectral reflectance of
the selected band as the AGB, i.e., x, increases. Cy + C is the maximum or minimum spectral reflectance
when the AGB reaches its saturation value, BS. Let by = Cy, by = 3C/2BS, b, = C3/2BS?, x; = x, and
x; = x3, the spherical model is linearized and its coefficients of linear regression can be obtained using
the least square regression:

Yy = bo + b1x1 + byxy (2)

3.2. Selection of Textural Images

The remote sensing variables for AGB modeling can be spectral responses (spectral bands,
vegetation indices, and transformed images using such algorithms as principal component analysis),
spatial features such as textures, and subpixel features such as fractional images which have been
decomposed from multispectral imagery using unmixing algorithms, as summarized in the review
paper by Lu et al. [6]. For the AGB estimation, reduction of spatial heterogeneity of forest stand
structures is regarded as an effective way to improve the AGB estimation accuracy [30]. Image texture
measures are often used for this purpose, especially when forest sites have complex forest stand
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structures [31,52]. GLCM-based texture measures are the most common approach to producing
textural images [6,21,25,26,31,52]. In this research, we examined mean, angular second moment,
contrast, correlation, dissimilarity, entropy, homogeneity, and variance with different window sizes
(e.g.,3x3,5x5,...,15 x 15 pixels) based on Landsat 5 TM spectral bands. Pearson product-moment
correlation coefficients between these textural images and AGB were calculated and the textural
images having significant correlation coefficients were selected as independent variables in stepwise
regression modeling.

3.3. Development and Comparison of AGB Estimation Models Based on Stratification

Data saturation values of AGB in Landsat imagery vary depending on forest stand structures,
species compositions, and topographic features (slope and slope aspect). Given a study area, the
heterogeneity of forest stand structures and species compositions gives to differences in spectral
reflectance. Given a vegetation type, slope aspect may be the major factor that affects the data
saturation value of AGB. Therefore, six vegetation types including pine, fir, broadleaf forest, mixed
forest, bamboo forest, and shrub were used (see Table 4). A slope aspect map was derived from a GDEM
image with 30-m spatial resolution. Four slope aspects, including east (semi-sunny: 45-135 degree),
south (sunny: 135-225), west (semi-shady: 225-315), and north (shady: 315-45), were determined.

Spectral bands and selected textural images were used as independent variables, stepwise
regression analysis was used to develop AGB estimation models based on different scenarios by
considering the potential impacts of forest types and topographic features on AGB saturation values:

(1) one population without stratification of sample plots;

(2) stratification of sample plots based on vegetation types;

(3) stratification of sample plots based on slope aspects;

(4) stratification of sample plots based on the combination of vegetation types and slope aspects.

The adjusted coefficient of determination (Radjz) takes into account the impacts of extra
explanatory variables added to the model and is regarded as a better coefficient to compare the
performances among different regression models. Therefore, the Radj2 values for these scenarios were
summarized and compared in order to identify the best AGB estimation model for each scenario.
The selected AGB estimation models were then used to predict AGB for the entire study area.

3.4. Evaluation of AGB Models and Estimates

The evaluation of the obtained AGB models and corresponding estimates is an important part
in the AGB modeling procedure [6]. In this research, root mean square error (RMSE) between the
estimated and observed values of AGB (see Equation (3)) and relative RMSE (RMSE;) [4,6] (see
Equation (4)) were employed to compare the accuracies of the models and their estimates based on the
test plots in Table 2 and Table 3, which were based on different scenarios.

®)

RMSE
— X

RMSE, = 100 @)

The relationships between AGB estimates and reference data and residuals were used to evaluate
the model performances. Meanwhile, the RMSEs for different AGB groups were also calculated in
order to understand which AGB ranges have high errors. In this study, the obtained maps were utilized
as intermediate products to conduct the comparison of estimation accuracies from these scenarios.
The maps were also used as stand-alone products that demonstrate the spatial distribution of forest
AGB. Therefore, for the final applications of the maps, we examined the accuracy of spatial prediction
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of AGB by calculating the AGB map means (see Equation (5)) and their variances (see Equation (6)) for
the scenarios using the model-assisted regression estimators [66].

T ©
u= Nz’:lyl n & Yi—VYi

. 1 n )

Var(ﬁ)= 7’1(1/171), (?l_yl) (6)

1

4. Results

4.1. Estimation of AGB Saturation Values of Six Vegetation Types

The correlation analysis in Table 6 revealed that the SWIR2 (i.e., spectral band 7 in Landsat 5 TM
imagery) had the strongest negative correlation coefficient with AGB for the All-vegetation category
and for specific vegetation types except mixed forest. Thus, band 7 was used to analyze AGB saturation
values for the vegetation types. The scatterplots in Figure 4 show that vegetation types except bamboo
forest have similar trends; that is, the surface reflectance values of band 7 decreased and eventually
became stable as AGB increased. The shrub has a relatively weak trend and bamboo forest lacks
this trend. The value of AGB at which the value of band 7 became stable can be regarded as the
saturation value.

Table 6. Correlation coefficients between aboveground biomass and spectral bands.

X Specific Vegetation Types
Landsat TM Spectral Bands All-Vegetation

Pine Fir BLF MDF Bamboo Shrub

Green (b2) —0.43 ** —-0.39**  —0.38* —0.33* —027* —0.03 —0.32

Red (b3) —0.35 ** —0.33*  —0.34* —0.27 ** -0.07 —0.16 —0.19

Near infrared (NIR) (b4) —0.35 ** —0.27*  —046* —0.37* —0.41** 0.09 -0.07
Shortwave infrared (SWIR1) (b5) —0.54 ** —047*  —-059** —0.61* —0.50** —0.02 —0.24
Shortwave infrared (SWIR2) (b7) —0.62 ** —-0.51* —0.63* —0.65* —048* —0.18 —0.40*

Note: TM, Thematic Mapper; BLE, broadleaf forest; MDF, mixed forest. ** indicates significant at 0.01 and *
indicates significant at 0.05.

In order to quantitatively estimate AGB saturation values for different vegetation types, we
used the spherical models of spectral band 7 against AGB (Figure 5). Based on the characteristics of
the range parameter for the spherical models, the saturation values of AGB were obtained and are
summarized in Table 7. Overall, when all vegetation types were pooled together, the AGB saturation
was 156 Mg/ha. Pine forests had the largest AGB saturation value, then mixed forests and fir; bamboo
forest and shrubs have the lowest AGB saturation values. Because of limited space, the nugget and
change rate parameters of the models were omitted.



11 0f 26

.
Y
. .
* .o
.
.o .
.o
. .
F3 . .
.
LRI .
ve? LR AR
pe - .
.
PR
. 2%
o FTeed -
° LB T
* o 3%
. ® e
. . e *
.t
oo««ooo
. ol
Lo B
.
. . .
.
L ..
. YRR .
= .
Ke] *
o~ o 0 o < o~
— — S S =) o
o o (=) o o o

90UB1ID|JRI 36YNS £ pueq AL Jespuer

(a)

0.10
.0
0
0.

o
S
[S) [S) S} [}
9JUe1I9|jal 9deNnsS / pueq |A L lespuer

Remote Sens. 2016, 8, 469
0.12

0.00

0.00

150 200
AGB (Mg/ha) for Chinese fir

100

50

100 150 200
AGB (Mg/ha) for pine forest

50

0.12

0.12

(d)

o] o < o~

> 3 =} =
o o o o
90UB)I3|J24 20kLINS £ pueq |A [ Jespuen

0.10
0
0

. .
e o
* * .0
.
LN 4 oot
. .
A
. see® o0
AR
* 00 b4
. 4
‘ ;
‘o ?
LI 3t TX IR
B
. RIS
RYTAR I .
D
o detest o o
IR I
R IPRRI A
o
o A
el .
$s e
R O R A
oloooo .
LSRN S SR
. o 0 *
"
* *
. . 7
.
o o] o < o~
= S IS} S Q
o o o o o

20UB}I3|J24 AJBYINS £ pueq AL Jespue]

0.00

0.00

250

200

150
AGB (Mg/ha) for mixed forest

100

50

150 200

100
AGB (Mg/ha) for boradleaf forest

(¢)

50

(f)

0.12

0.12

Rad . .
.
. .
.
B
B
LN
. ?. *
000 .
* * M
B
.
o 0 © < I
o o = = =
(=} =) [S) o o

90UE}I3|421 32kYINS / pueq JespueT

. .
.
- % o
A
* .
T
(O P 4 b4
® Lad .
. * e
* 00000000 .
M N
40000
¢« * 2 0” M
¢ 9% .
. .
.
$ %, 5
.
. . .
.
o oo} (o < o
= < < < =
o o o o o

90BU3D3|§34 BJUBLINS / pueq AL 3BSpuEeT

0.00

0.00

60 80
AGB (Mg/ha) for shrub

40

20

60 90 120
AGB (Mg/ha) for bamboo forest

30

Figure 4. The relationships between aboveground biomass (AGB) and Landsat 5 Thematic Mapper
(TM) spectral band 7 surface reflectance for different vegetation types: (a) pine forest; (b) Chinese fir;

(c) broadleaf forest; (d) mixed forest; (e) bamboo forest; and (f) shrub.
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Figure 5. The modeled relationships of Landsat 5 Thematic Mapper (TM) spectral band 7 surface
reflectance against forest aboveground biomass using spherical model for estimation of the data
saturation value for each vegetation type (indicated using different symbols).

Table 7. A summary of aboveground biomass saturation values for different vegetation types.

Different Vegetation Types
Pine Fir BLF MDF Bamboo Shrub

All vegetation

Saturation

value (Mg /ha) 156 159 143 123 152 75 55

Note: BLF, broadleaf forest; MDF, mixed forest.

4.2. Regression Models from Different Scenarios

The Rad]-2 values that explain the variances of the AGB models are summarized in Table 8. For the
vegetation group with non-stratification, the Radjz for the AGB model was 0.39. If the stratification was
based on vegetation types, the Radjz values decreased for all vegetation types except fir, which did not
change, and broadleaf forest, which had a slight increase of 0.04. The Radjz values for bamboo forest
and shrub were very small, indicating that these two models explained very little variance in the plot
AGB observations. When the stratification was conducted based on slope aspects, the Radjz values for
the models of shady slope and semi-sunny slope increased by 0.06 and 0.14, respectively, implying
slope aspect slightly increased the percentages of explained variances. If the stratification was made
based on both vegetation types and slope aspects, the shady slope and semi-sunny slope had improved
Radjz values for fir, mixed forest, and broadleaf forest. In the semi-shady category, the Radj2 value
improved only in the mixed forest, and in the sunny-slope category, the Radj2 values increased only
in the pine and broadleaf forests. This implies that stratification of both vegetation types and slope
aspects will increase the percentages of explained variances for some vegetation types in certain
aspects, but not always for other vegetation types. Because of limited sample plots of shrub and the
very weak relationship between AGB and remote sensing variables for bamboo forest, no Radjz were
obtained. The Radj2 values in Table 8 imply that stratification based on slope aspects or vegetation
types or a combination of both have the potential to increase the percentages of the explained variances
in some cases, but may not in other cases, depending on the complexity of forest stand structures and
species composition caused by topography and vegetation types.
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Table 8. Comparison of the adjusted coefficient of determination (Rad]-Z) among the aboveground
biomass regression models based on different scenarios.

No stratification Stratification Based on Slope Aspects

Based on Aspects Shady  Semi-Shady  Sunny Semi-Sunny

No stratification based on

. 0.39 0.45 0.34 0.39 0.53
vegetation types
Pine 0.34 0.26 0.34 0.49 0.36
Fir 0.39 0.49 0.35 0.32 0.69
Stratification based MDF 0.34 0.55 0.56 0.17 0.45
on vegetation types BLF 0.43 0.51 0.35 0.46 0.61
Bamboo * 0.06
Shrub * 0.17

Note: The * behind Bamboo and Shrub indicate that the Radjz values based on stratification of slope aspects for
bamboo forest and shrub are not listed in this table because no variables can be used in the regression models for
bamboo forest and not enough sample plots were available for shrub. BLF, broadleaf forest; MDF, mixed forest.

The AGB estimation models with non-stratification and with stratification based on vegetation
types using stepwise regression analysis are summarized in Table 9, and models with stratification
based on the combination of vegetation types and slope aspects are in Table 10. When all-vegetation
is used as one population with non-stratification, the best variables for AGB estimation model
are spectral band 7 and its two textural images. The standard coefficients indicate that spectral
signature is more important than textures, similar to conclusions in tropical forests [30]. For the
AGB estimation model corresponding to each vegetation type (i.e., based on the stratification of
vegetation types), a combination of spectral signature and textural image is needed for pine, fir, mixed
forest, and broadleaf forest, but not for bamboo forest and shrub. This result confirmed previous
conclusions [30,31] that textures play an important role in improving AGB estimation, especially for
the forest sites with complex forest stand structures, such as mixed forest in this research.

For the AGB estimation models based on stratification of slope aspects, the combination of spectral
variables and texture measures is also needed, except for the shady-slope aspect. Spectral signature is
more important than textures except in sunny-slope regions. If the AGB estimation models are based
on the stratification of both vegetation types and slope aspects, their forest stand structures become
more homogeneous; thus, only spectral bands are needed, for example, pine and fir forests in shady
and semi-shady aspect regions. For mixed forest or broadleaf forest where forest stand structures are
relatively complex, texture measures are still needed in AGB estimation models. This result implies
that stratification of both vegetation and slope aspects can reduce the heterogeneity, thus reducing
the data saturation problem. On the other hand, Table 10 also indicates that the regression models in
pine and fir in shade and semi-shady slopes look similar, which used the same spectral band (i.e., the
band 7 in Landsat TM imagery) with similar intercept and slope values, implying that one regression
model may be used to represent both pine and fir forest types in shady and semi-shady slopes, instead
of four regression models as used in this table.

According to the AGB estimation models summarized in Table 9 and Table 10, four AGB
distributions were developed (Figure 6) based on four scenarios: non-stratification (Figure 6a),
stratification based on vegetation types (Figure 6b), stratification based on slope aspects (Figure 6¢), and
stratification based on the combination of vegetation types and slope aspects (Figure 6d). These maps
have similar spatial patterns of AGB distributions. The large AGB values (>90 Mg/ha) were mainly
distributed in the southern and southeastern areas where fir, pine, and mixed forests were dominant.
The middle AGB values were found in the northwestern and western areas where broadleaf forests
existed. The small AGB values were scattered everywhere. In the northern flat area and the belt from
the central to the southwestern areas, AGB estimates were close to zero because of farm land and
built-up areas.
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Table 9. Summary of aboveground biomass estimation models with stratification of vegetation types.

14 of 26

Regression Model Radjz Standard Coefficient
Non-stratification y =200.657 — 1107.3Sp; — 13.195TyzwsmEe + 19.801Th7wocc + € 0.39 —0.398; —0.248; 0.105
Pine  y =213.120 — 1465.878Sy; — 172.253Tpswosm — 18.857Toswonts + 27.674Tppwocc + € 034  —0.457; —0.197; —0.226; 0.152
Fir  y=214532 — 1771.1355y; — 16.290TpascC + € 0.39 —0.668; —0.217
MDF  y = 246916 — 376.1795p5 — 10.721TysomE + € 0.34 —0.242; —0.403
Stratification based on vegetation types g1 £ 95 707 _ 23004875, + 1798.5785y + ¢ 0.43 —0.788; 0.241
Bamboo v = 115.334 — 6.289Tpswome + € 0.06 ~0.276
Shrub  y=75.827 — 542.561Sy; + € 0.17 —0.465

Note: Spi, spectral band i of Landsat 5 TM imagery; Tpiwjxx, textural image developed from spectral band i with a window size of jxj pixels using texture measures mean (ME),
correlation (CC), or second moment (SM); ¢, the residual. BLF, broadleaf forest; MDF, mixed forest.

Table 10. Summary of aboveground biomass estimation models with stratification of the combined vegetation types and slope aspects.

Shady Slope Semi-Shady Slope
Regression Model Radjz Std. coef. Regression Model Radjz Std. coef.
Non-stratification y =232.486 — 2161.441S,; + ¢ 045  —0.673 y =205.790 — 1222.626Sy7 — 12.269Tpseom + € 034  —0.410; —0.240
Pine y =229.333 — 2121.672S;,; + ¢ 0.26 —0.523 y = 185.550 — 1733.399S,,; + ¢ 0.34 —0.594
Stratification Fir y =243.811 — 2380.771Sy,; + ¢ 0.49 —-0.716 y =208.571 — 1766.397S,,7 + ¢ 0.35 —0.612
based on —0.604; _
vegetation type MDF y=250.259 — 826.914Sp5 — 55.726Tppuosm + ¢ 055 "0 y =235.731 — 42.403TyywomE + € 056  —0.763
BLF  y=349.489-927.201Sp5 — 30.386Tppusme + ¢ 0.51 :8'33(1); y =236.037 — 2305.834S,,; + ¢ 035  —0.601
Sunny slope Semi—sunny slope
e y = 209.005-428.519S,5 — 17.648Ty7wsmE + —0.319; y =217.710 — 1660.3655y; + 1539.191S5,5 — —0.717; 0.263; —0.212;
Non- stratification 24.818Tpywocc + € 039 _03340.143  32.588Tpsmscc — 26.282Tpawome — 27517 Toowssn + € 00 —0.306; —0.183;
Pine  y=189.670 — 1355.797S,; + ¢ 049  —0.708 y =207.651 — 1016.638Sy5 + 41.957Ty7yocc + € 036  —0.571;0.241
Stratification Fir  y=206.696 — 712.373Sp5 — 35.088Tpppscc + € 0.32 *g'ggg" y =177.688 — 1482.6585,; + ¢ 069  —0.846
based on -
vegetation type MDF  y=195.701 — 26.585Tp5mE + € 017  —0445 y=226.899 — 14.984Tp5wsME + € 045  —0.699
BLF  y=203.738 — 1845.973S; + ¢ 046  —0.693 y = 188.577 — 1294.233S,; — 37.938Tpss50C + € 061  —0.681; —0.281

Note: Sy;, ith band of Landsat 5 TM image; Tpiwjxx, textural image from the ith band with a window size of j by j pixels using texture measures mean (ME), correlation (CC), or second
moment (SM); ¢, the residual. BLF, broadleaf forest; MDF, mixed forest.
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Figure 6. A comparison of spatial distributions of forest aboveground biomass estimates among the
models using four stratification scenarios: (a) non-stratification; (b) stratification based on vegetation
types; (c) stratification based on slope aspects; and (d) stratification based on the combination of
vegetation types and slope aspects.

4.3. Assessment and Comparison of AGB Estimates from Regression Models

The AGB estimates from four kinds of models were assessed and compared using RMSE and
RMSEr based on test sample plots (Table 11). If the AGB estimation results based on non-stratification
were used as a baseline, the stratification based on either vegetation types or slope aspects reduced
the estimation errors; in particular, the stratification based on the combination of vegetation types
and slope aspects provided the smallest estimation errors. The RMSE decreased from 29.3 Mg/ha
for the model with non-stratification to 24.5 Mg/ha for the model with stratification based on the
combination of vegetation types and slope aspects, and the RMSEr decreased from 32.0% to 26.8%.
Considering the RMSEr values from the models of different vegetation types without stratification of
slope aspects, bamboo forest and shrub had the greatest values (37.4% and 40.4%, respectively), and
were larger with non-stratification (Table 11). The models of pine, fir, mixed, and broadleaf forests
had RMSEr values of 26.0%-31.6%, and smaller with non-stratification (32%). The RMSEr values were
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further decreased to values between 23.8% and 28.1% by stratifying both vegetation types and slope
aspects (Table 11). This result points to the value of using the stratification approach to improve AGB
estimation performance.

Table 11. Summary of accuracy assessment results based on different stratification scenarios.

Non-Aspects Stratification Stratification Based on Slope Aspects

RMSE RMSEr RMSE RMSEr
Non-vegetation stratification 29.3 32.0 28.2 30.8
Stratificati.on based on 4 30.0 045 2.8
vegetation types

Pine 29.5 29.0 28.6 28.1

Fir 327 31.6 28.5 27.5

Vegetation tvpes MDF 28.7 26.0 26.3 23.8

& P BLF 248 286 234 27.0
Bamboo 20.4 37.4
Shrub 15.4 40.4

Note: RMSE, root mean squared errors between estimated and observed values; RMSEr, relative RMSE value in
percentage. BLF, broadleaf forest; MDF, mixed forest.

Figure 7 provides a comparison of the relationships between the AGB estimates and corresponding
AGB reference data, and their residuals of four AGB maps derived using the models from four scenarios:
non-stratification, stratification based on vegetation types, stratification based on slope aspects and
stratification based on the combination of vegetation types and slope aspects. Overall, the linear
relationship between estimates and reference data for each scenario is obvious, implying the capability
of using Landsat TM images in AGB estimation. However, overestimations and underestimations
occurred for the smaller and greater AGB observations, respectively, especially when AGB was less
than approximately 40 Mg/ha and greater than approximately 150 Mg/ha. This over/underestimation
problem was slightly improved by stratification approaches, especially the stratification based on both
vegetation types and slope aspects (d1 and d2 in Figure 7), implying the important role of stratification
in reducing AGB estimation errors.

Overall, the sites with the smallest AGB values (less than 40 Mg/ha) have the greatest values
of RMSEr; the RMSEr values then decline in the sites with AGB values of 40-80 Mg/ha (Table 12).
The sites with AGB values of 80-120 Mg/ha have the smallest RMSEr. Specifically, when AGB is less
than 40 Mg/ha and stratification is not used, RMSEr is as large as 137% and the stratification of slope
aspects only slightly reduce the RMSETr; but the stratification of vegetation types and the stratification
of both vegetation types and slope aspects greatly reduce the RMSEr. In this case of AGB values less
than 40 Mg/ha, the canopy density might not be dense enough; thus, soil and moisture conditions
under the canopy would have a significant impact on surface reflectance and considerably influence
AGB estimation. Similar reductions of RMSEr due to the stratifications took place when AGB was
larger than 160 Mg/ha. This implies that when AGB reaches a certain value, optical sensor data are
not able to estimate AGB properly, thus resulting in large estimation errors. In fact, when a model
performs badly in the high-AGB domain, it also performs badly in the low-AGB domain. When AGB is
in the range of 80-120 Mg/ha, both RMSE and RMSEr are the smallest and the effects of stratifications
for reducing RMSE and RMSEr are not significant (Table 12). This implies that when AGB values fall
within this interval, a Landsat TM image performs well in AGB estimation. This finding is similar to
those in tropical forests; that is, TM performs well for secondary forests, but very poorly in estimating
primary forests in the Brazilian Amazon basin [30,31]. Because of these complementary features,
stratification based on vegetation type can reduce the estimation errors for sites with low amounts of
AGSB, stratification based on slope aspects can do the same for the sites with high amounts of AGB,
and stratification based on the combination of vegetation types and slope aspects can further improve
AGB estimation for the sites with either small or high amounts of AGB (Table 12).
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Figure 7. The relationships between forest aboveground biomass (AGB) estimates and reference
data (al-d1); and residuals of AGB estimates against reference data (a2—-d2) using four stratification
scenarios: (al,a2) non-stratification; (b1,b2) stratification based on vegetation types; (c1,c2) stratification
based on slope aspects; and (d1,d2) stratification based on the combination of vegetation types and
slope aspects.
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Table 12. Summary of root mean squared error (RMSE) and relative root mean squared error (RMSEr)
results at different aboveground biomass (AGB) ranges among stratification scenarios.

Stratification Based on the Following

Non-Stratification . Vegetation Type
AGB R Mg/h,
ange (Mg/ha) Vegetation Type Slope Aspects & Slope Aspect

RMSE RMSEr RMSE RMSEr RMSE RMSEr RMSE RMSEr

<40 421 137.0 28.3 91.9 41.6 135.4 23.1 75.2
40-80 25.5 44.0 26.0 449 25.3 43.7 25.1 43.2
80-120 16.8 16.7 16.8 16.8 18.1 18.1 17.4 17.3
120-160 39.1 28.0 37.1 26.6 36.8 26.3 33.9 24.3
>160 54.6 31.3 45.6 26.2 38.7 22.2 39.0 22.4

Table 13 indicates that the stratifications based on both vegetation types and slope aspects indeed
improved AGB estimation performance according to the values of R?, RMSE, and RMSEr from the test
sample plots. All the map means ji fell within the confidence intervals at a significance level of 0.05.
The relatively small means ji from the results of stratification based on vegetation types or on both
vegetation types and slope aspects point to an improvement in the overestimation problem when AGB
is small, in addition to underestimation when AGB is very high (greater than 160 Mg/ha), as shown in
Table 12. Also, the relatively small variances in the map means further confirm the effectiveness of
these stratifications in reducing estimation uncertainty.

Table 13. A summary of accuracy assessment results and the evaluation of map applications
by estimating the map means of aboveground biomass and their variances using model-assisted
regression estimators.

Statification Methods Mean R? RMSE RMSEr i Var(fi)  Confidence Interval
Non-stratification 9048 042 29.3 32.0 86.11 4.09 82.07-90.15
Stratification based on vegetation =~ 90.11  0.49 274 30.0 82.49 3.59 78.70-86.28
Stratification based on aspects 9150 0.46 28.2 30.8 86.87 3.78 82.98-90.76
Stratification based on both 89.87  0.60 24.5 26.8 81.49 2.82 78.13-84.85

Note: RZ, coefficient of determination; RMSE, root mean squared error; RMSEr, relative root mean squared error.

5. Discussion

5.1. Data Saturation Problem in Landsat Imagery and Potential Solution in Reducing the Saturation

In this study, we estimated the data saturation values of Landsat 5 TM imagery for six vegetation
types using a spherical model in geostatistics. We obtained and compared the values of asymptote
for spherical, exponential and Gaussian models, and then derived the threshold values of the X axis,
that is, saturation values of forest AGB. The idea behind these models is that as forest AGB increases,
the spectral reflectance changes quickly at the beginning and then slowly and eventually becomes
stable. When the spectral reflectance becomes stable, the corresponding AGB value can be regarded
as the saturation value. In geostatistics, these models are used to model the spatial autocorrelation
of a random variable and find the maximum distance of spatial autocorrelation. In this study, these
models are considered as general models that are characterized by asymptote of the Y axis in which,
by seeking the values of asymptote for the Y axis (that is, spectral reflectance of Landsat TM band 7),
the range parameter values of the X axis (that is, forest AGB) are estimated. The results showed
that the spherical model led to the smallest residuals and the exponential and Gaussian models
resulted in much larger and unreasonable saturation values (78 Mg/ha—423 Mg/ha) than the spherical
model (55 Mg/ha-159 Mg/ha). The reason is mainly because the exponential and Gaussian models
theoretically have smaller change rates of the Y axis and much larger values of asymptote than the
spherical model. This implies that when the spectral reflectance of Landsat band 7 becomes insensitive
to the increase of forest AGB, the asymptote values of the exponential and Gaussian models are
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not obtained and, thus, the data saturation values are enlarged. Our results for the spherical model
show that pine forests had the greatest saturation value, then mixed forests, fir, and broadleaf forests.
The shrubs had the smallest saturation value. The findings are consistent with the forest status of
this study area. This is a novel examination of data saturation in a subtropical region and further
studies are needed in other forest ecosystems such as in tropical and temperate regions. A better
understanding of the data saturation problem in different vegetation types provides a foundation to
find ways to reduce saturation.

As data saturation may be caused by different factors such as remote sensing data themselves
(e.g., spatial, spectral, radiometric, and temporal resolutions in optical sensor data), vegetation (e.g.,
species composition, stand structure, growth stages), and topography (e.g., aspects, elevation, slope),
many potential solutions may be used to reduce the data saturation problem. Saturation occurs when
the spectral values remain insensitive to increases in AGB beyond a certain value. An optical sensor
is not able to penetrate a dense tree canopy. When all canopy gaps have been closed by leaves and
branches, trees may continuously grow and their biomass continuously increases in volume without
changing the spectral signature of the canopy. The AGB saturation level varies with sensor types.
C-band (6 cm wavelength) synthetic aperture radar (SAR) sensors may capture canopy roughness but
they are not able to penetrate beyond the top layer of leaves and thin branches. L-band (24 cm) SAR is
better at penetrating the canopy, and P-band (70 cm) is even better and may capture the entire tree
structure. As a rule of thumb, SAR signals may be able to penetrate structures that are narrower than
the wavelength. The integration of Landsat TM and SAR data may lead to the mitigation of the data
saturation problem and, thus, improve AGB estimation [21]. Further research is needed in the future
to explore approaches to integrating multisensor data [67,68], especially the fusion of optical and radar
or lidar data [6,21].

Lu’s study [30] has shown the importance of incorporating textures into spectral responses in
improving AGB estimation performance and this research also proved the necessity of image textures.
Other research using textures from the optical or SAR data provided similar conclusions [20,25-27,53].
The critical point is to identify specific textures for given vegetation types. This is because a good
texture image for a given vegetation type depends on different factors such as spatial resolution
of the remote sensing data, the complexity of forest stand structure, species composition, and the
window size used for extraction of a textural image [6,30,52]. The difficulty in identifying the best
textural images was encountered in this research as different textural images were used for specific
vegetation types, depending on the combination of texture measures, window size, and spectral
bands. Another potential approach to reducing the data saturation problem is to use different seasonal
Landsat images or time series [20,34,48]. This is important because vegetation types such as pine forest,
broadleaf forest, and bamboo forest have their own phenology, thus incorporation of different features
inherent in vegetation phenology may be beneficial to AGB estimation.

This research indicates the important role of stratification of vegetation types and slope aspects
in reducing the data saturation problem. More research is needed to identify suitable stratification
approaches such as the optimal number of vegetation types and topographic factors. The key is
to obtain a sufficient number of sample plots for each stratum. More strata require more sample
plots, which is often a challenge because of the difficulty, time-consumption, and cost of collecting
sample plots for AGB calculation. Also, a number of strata may be unnecessary, as shown in Table 10
whereby the regression models look similar for pine and fir in shady and semi-shady slopes. This raises
a new question of how many strata are optimal considering the required number of sample plots for
each stratum, the accuracy of AGB estimates, vegetation types, and the time and labor involved in
developing AGB estimation models. To date, no studies have identified the optimal strata based on
availability of sample plots, vegetation data, and ancillary data. Since vegetation types are required
for stratification, accurate classification is needed, and 85% is regarded as a standard [69]. In this
research, six vegetation types—pine, fir, broadleaf, mixed forest, bamboo, and shrub—were classified
using MLC with an overall classification accuracy of 78%. Because the vegetation types were used as
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stratification for developing AGB estimation models for each vegetation type, higher classification
accuracy of these vegetation types is needed; but in reality, it is a challenge to produce highly accurate
classification results based on Landsat TM spectral signatures due to the spectral confusion between
the vegetation types and the impacts of topographic factors. In the near future, we will incorporate
other data sources such as DEM, Landsat, and SAR to improve classification accuracy.

The findings about the data saturation values in different vegetation types and potential solutions
to reduce the saturation problem may provide new insights into the selection of remote sensing data
or design of spectral wavelengths in the future. This research indicated that shortwave infrared bands
such as Landsat 5 TM bands 5 and 7 have strong relationships with AGB. More research is needed to
relate this research to hyperspectral data to identify more sensitive spectral bands corresponding to
different vegetation types.

5.2. Selection of Suitable Algorithms to Establish the Relationship between AGB and Remote Sensing Variables

Linear regression analysis is often used to develop AGB estimation models [4,6]. In this study,
most of the determination coefficients R? varied from 0.35 to 0.5 for all the forest AGB models and,
as expected, the results are similar to those in other studies [70]. However, the relationship between
residuals and AGB reference data has linear features, that is, overestimations and underestimations
for the smaller and larger observations, respectively (see Figure 7), pointing to the problem of using
linear-based regression models. The overestimations and underestimations were mainly caused
by global regression modeling. Moreover, the data saturation of Landsat spectral reflectance may
have greatly contributed to the underestimations of AGB for the larger observations. Appropriate
algorithms should be further studied to reduce the overestimations and underestimations. There are
several potential alternatives in algorithms. First, different source data such as optical images and their
textural variables, radar, lidar, topographic variables (slope and aspect) from DEM, soil properties, and
vegetation types can be combined to model their relationships with AGB and improve the accuracy of
predictions [6,32]. Second, the relationships between AGB and independent variables can be modeled
after stratification of a study area [71].

In this study, compared to non-stratification, the stratification of vegetation types and slope
aspects led to the decrease of RMSEr based on the validation dataset. However, the obvious
overestimations and underestimations for the smaller and larger observations, respectively, were still
noticed. One purpose of stratification is to reduce the errors due to the global regression modeling by
minimizing the within-strata variability and maximizing the between-strata variance [71]. In this study,
the stratification of vegetation types and slope aspects did, to some extent, increase the accuracy of AGB
estimates. However, because of the large area and complicated landscapes, the within-strata variability
of AGB for each of the vegetation types was still large and this was especially true for the young and
mature forests, resulting in high overestimations in young forests and underestimations in mature
forests. Therefore, the third set of alternative algorithms may be the use of local modeling methods such
as geographically weighted regression, co-kriging, and spatial co-simulation in geostatistics. In these
local modeling algorithms, models are developed using the nearest sample plots within a neighborhood
of a given radius. The neighborhood can be determined using the range of spatial autocorrelation.
For the geographically weighted regression, the parameters of obtaining regression models will vary
from place to place. Similarly, the co-kriging and spatial co-simulation will lead to variable weights of
sample data. That is, the local modeling algorithms can capture the spatial variability of local areas
and, thus, have great potential to reduce the overestimations and underestimations [7,71-74]. There is
also a simple way to reduce the linear bias of AGB estimates in which the sample plots that are at
saturation can be excluded and a simple linear regression of the data that are not saturated in Landsat
imagery can be then developed for each vegetation type. With this approach, the saturated data in
Landsat imagery could be flagged as saturated. This research indicated that overestimation is obvious
when AGB is less than 40 Mg/ha. When AGB is small, the sites are mainly shrub, bamboo forest, new
plantations, and young broadleaf forests, where vegetation canopy is not sufficiently dense, thus soil
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will influence surface reflectance. Previous research has indicated that a forest site can be assumed as
a combination of green vegetation, shade, soil, and nonphotosynthetic vegetation (e.g., stem, braches),
and these components can be decomposed using spectral mixture analysis [22,31].

Stratification led to a decrease of sample plots for each stratum, and decreasing the number
of sample plots generally improves the performance of the model. Thus, the improvement of the
models based on the stratifications is related to not only the relationships between forest AGB and
spectral variables, but also the sample size effect. To map AGB of African forests using a sample size
of 26 plots, for example, Bastin et al. [75] tested the effect of sample size on performance of the models.
However, the effect of sample size may be obvious when a small sample size (such as <30 plots) is
utilized. As the sample size increases, the effect of sample size should gradually disappear. In this
study, 589 sample plots and 213 sample plots were respectively used for developing and validating the
models (Table 3). When modeling was carried out based on stratification of vegetation types, large
sample sizes were employed for all vegetation types except shrub. When modeling was conducted
based on stratification of both vegetation types and slope aspects, most sample sizes were larger
than 30 except bamboo and shrub relevant strata (Table 3). Thus, in this study, we discarded the
development of the models based on the stratification of slope aspects for bamboo and shrub, and
the effects of sample sizes on performance of the models for other strata were ignored. In this study,
pixel level predictions were conducted partly because spatially explicit estimates are needed for
advanced and digital forest inventory, monitoring, and management, and partly because the detailed
spatial distributions of forest AGB estimates can provide the opportunity to identify the areas with
smaller and larger values of biomass and corresponding uncertainties of potential overestimations
and underestimation. Especially, the areas of greater estimates indicate a higher possibility of data
saturation. If only the estimates of large or small areas are of interest, and not pixel level predictions,
combining post-stratification and spatial modeling or other synthetic or small area estimation methods
may constitute more feasible approaches. Data saturation analyses may be less important. On the
other hand, the estimates obtained with the approach used in this study may be improved using some
kind of calibration technique.

In addition, the stepwise regression approach used in this study tends to increase the risk of
overfitting, that is, a model accounts for random error or noise instead of the underlying relationship.
When too many independent variables relative to the number of used observations are involved,
overfitting will very likely take place and the resulting model will perform poorly in making
predictions. In this study, in the case of non-stratification, a large number of observations was used
and overfitting would not have occurred. However, in the case of stratification of vegetation types and
slope aspects, the number of observations for some strata such as bamboo and shrub were relatively
small and the overfitting probably would have happened, which might have led to uncertainties of
the estimates. Algorithms that can be used to avoid overfitting include the use of cross-validation,
regularization, pruning, and model comparison. This issue should be examined in future research.

5.3. Uncertainties Due to Sample Plots

In this study, field observations of AGB were collected from 20 m x 20 m sample plots, which were
smaller than the 30 m x 30 m spatial resolution of the Landsat TM images. The small plot size tends
to increase the coefficient of variation of AGB, consequently leading to potential underestimations or
overestimations of forest AGB at the plot level and potential non-normal distribution of AGB at the
landscape level [76]. Unfortunately, the number of uncertainties due to the small plots in this study
could not be quantified. However, the analysis of histograms based on plot-level observations and
landscape level estimates of forest AGB showed that the distributions of AGB were close to normal.
Moreover, although in this study the central coordinates of the sample plots were utilized to extract
the values of image pixels, the small plot size and its inconsistency with the spatial resolution of
Landsat TM images have probably induced errors in plot geolocalization and match with image pixels,
and, thus, uncertainties of forest AGB estimates [77]. This could become more serious as the texture
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measures from the windows of 3 x 3 pixels, 5 x 5 pixels, efc., are employed. Wang and Zhang [78,79]
studied the uncertainty due to error of plot geolocalization and mismatch of sample plots with image
pixels and found that, as the distance of the mismatch increased, the estimation accuracy of forest AGB
or carbon density obviously decreased.

In reality, the plot size of 20 m x 20 m is commonly used in forest inventory considering the work
load required during fieldwork and its representativeness in a forest site. In order to reduce the errors
between geolocalization of sample plots and Landsat imagery, a window size of 3 x 3 pixels was often
used [6,30] to extract the remotely sensed mean values [30]. In this research, each sample plot was first
examined to make sure each plot was located within the forest sites and had good representation of
the surveyed forest stand. In addition to the plot size and geolocation error, another critical factor
is the use of allometric models for AGB calculation for each plot based on field measurement [80].
Improper selection of the allometric models for specific tree species may produce high uncertainty of
AGB calculation at the plot level, thus affecting the AGB estimation performance using the remote
sensing data.

6. Conclusions

Data saturation in Landsat imagery is well recognized as a major problem resulting in poor AGB
estimation, but the exact saturation value has not been fully examined mainly due to the unavailability
of sufficient groundtruth data. This research examined the Landsat 5 TM data saturation problem in
a subtropical region in Zhejiang province of Eastern China using sample plots for six vegetation types.
Results indicate that vegetation in this study area had AGB saturation of 156 Mg/ha, pointing to the
difficulty of AGB estimation using Landsat imagery when the AGB is higher than this saturation value.
Meanwhile, different vegetation types have various AGB saturation values, for example, pine has the
highest value of 159 Mg/ha, followed by mixed forest with an AGB saturation value of 152 Mg/ha.
The bamboo forest and shrub have the lowest AGB saturation values of 75 and 55 Mg/ha, respectively.
This research implies the importance of addressing the data saturation problem to improve AGB
estimation when Landsat imagery is used.

Because different vegetation types have various forest stand structures and tree species
compositions, they have various AGB saturation values. Meanwhile, topography produces different
moisture and soil conditions, as well as solar illumination conditions, thus resulting in different
growth rates and forest stand structures. This research explored the AGB estimation models using the
stratification of vegetation types and slope aspects, and has shown that this kind of stratification is
useful in improving AGB estimation performance. The RMSE can be reduced from 29.3 to 24.5 Mg/ha
by stratification of vegetation type and slope aspect compared with the results of non-stratification.
The stratification of vegetation types is especially valuable for improving AGB estimation for the
forest sites with small AGB values, and the stratification of slope aspects is valuable for improving
AGB estimation when AGB is greater than 160 Mg/ha, that is, when AGB reaches saturation in
Landsat TM imagery. This research implies that stratification based on vegetation types and/or
slope aspects can reduce the AGB saturation problem in Landsat TM imagery, thus, improving AGB
estimation performance. More research is needed to address the data saturation problem by integrating
multisensor/resolution remotely sensed data and ancillary data such as from DEM.

Acknowledgments: This study was financially supported by the National Natural Science Foundation of China
(grant #41571411), Zhejiang Agriculture and Forestry University’s Research and Development Fund for the talent
startup project (grant #2013FR052). Chuping Wu and Yujie Huang acknowledge the financial support from the
Zhejiang Provincial Forestry Department (grant #2014SY01) and Shuquan Yu acknowledges the financial support
from the Zhejiang Provincial Center for Forestry Ecosystem and Engineering Management for the collection of
sample plots.

Author Contributions: Panpan Zhao performed the experiments and analyzed the data; Dengsheng Lu and
Guangxing Wang conceived and designed the experiments, analyzed the data, and wrote the paper; Chuping Wu,
Yujie Huang, and Shuquan Yu conducted sample plot collection and calculation of aboveground biomass at the
plot level.



Remote Sens. 2016, 8, 469 23 of 26

Conflicts of Interest: The authors declare no conflicts of interest. The funding sponsors had no role in the design
of the study; the collection, analyses, or interpretation of data; the writing of the manuscript; or the decision to
publish the results.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

IPCC (Intergovernmental Panel on Climate Change). Land Use, Land-Use Change and Forestry; Cambridge Univ.
Press: Cambridge, UK, 2000.

Smith, J.E.; Heath, L.S. Carbon Stocks and Stock Changes in U.S. Forests and appendix C. In U.S. Agriculture
and Forestry Greenhouse Gas Inventory: 1990-2005; Technical Bulletin No. 1921; Global Change Program Office,
Office of the Chief Economist: Washington, DC, USA, 2008. Available online: http:/ /www.usda.gov/oce/
global_change/AFGGInventory1990_2005.htm (accessed on 28 August 2015).

US Climate Change Science Program. The North American Carbon Budget and Implications for the Global
Carbon Cycle. 2007. Available online: http:/ /www.cfr.org/climate-change/north-american-carbon-budget-
implications-global-carbon-cycle/p14868 (accessed on 28 August 2015).

Lu, D. The potential and challenge of remote sensing-based biomass estimation. Int. J. Remote Sens. 2006, 27,
1297-1328. [CrossRef]

Lu, D.; Chen, Q.; Wang, G.; Moran, E.; Batistella, M.; Zhang, M.; Laurin, G.V.; Saah, D. Aboveground forest
biomass estimation with Landsat and LiDAR data and uncertainty analysis of the estimates. Int. |. For. Res.
2012, 1-16. [CrossRef]

Lu, D,; Chen, Q.; Wang, G.; Liu, L.; Moran, E. A survey of remote sensing-based aboveground biomass
estimation methods. Int. ]. Digit. Earth 2016, 9, 63-105. [CrossRef]

Wang, G.; Oyana, T.; Zhang, M.; Adu-Prah, S.; Zeng, S.; Lin, H.; Se, ]. Mapping and spatial uncertainty
analysis of forest vegetation carbon by combining national forest inventory data and satellite images.
For. Ecol. Manag. 2009, 258, 1275-1283. [CrossRef]

Landsberg, J.J.; Waring, RH. A generalized model of forest productivity using simplified concepts of
radiation-use efficiency, carbon balance, and partitioning. For. Ecol. Manag. 1997, 95, 209-228. [CrossRef]
Running, S.W.; Coughlan, J.C. A general model of forest ecosystem processes for regional applications I.
hydrologic balance, canopy gas exchange and primary production processes. Ecol. Model. 1988, 42, 125-154.
[CrossRef]

Kimball, J.S.; Keyser, A.R.; Running, S.W.; Saatch, S.S. Regional assessment of boreal forest productivity
using an ecological process model and remote sensing parameter maps. Tree Physiol. 2000, 20, 761-775.
[CrossRef] [PubMed]

Kumar, L.; Sinha, P,; Taylor, S.; Alqurashi, A.F. Review of the use of remote sensing for biomass estimation to
support renewable energy generation. J. Appl. Remote Sens. 2015, 9, 29. [CrossRef]

Barbosa, J.M.; Broadbent, E.N.; Bitencourt, M.D. Remote sensing of aboveground biomass in tropical
secondary forests: A review. Int. J. For. Res. 2014, 14. [CrossRef]

Timothy, D.; Onisimo, M.; Cletah, S.; Adelabu, S.; Tsitsi, B. Remote sensing of aboveground forest biomass:
A review. Trop. Ecol. 2016, 57, 125-132.

Timothy, D.; Onisimo, M.; Riyad, I. Quantifying aboveground biomass in African environments: A review of
the trade-offs between sensor estimation accuracy and costs. Trop. Ecol. 2016, 57, 393—405.

Vashum, K.T.; Jayakumar, S. Methods to estimate aboveground biomass and carbon stock in natural
forests—A review. J. Ecosyst. Ecogr. 2012, 2, 116. [CrossRef]

Goetz, S.J.; Baccini, A.; Laporte, N.T.; Johns, T, Walker, W.; Kellndorfer, J.; Houghton, R.A,;
Sun, M. Mapping and monitoring carbon stocks with satellite observations: A comparison of methods.
Carbon Balance Manag. 2009, 4, 2. [CrossRef] [PubMed]

Song, C. Optical remote sensing of forest leaf area index and biomass. Prog. Phys. Geogr. 2012, 37, 98-113.
[CrossRef]

Muukkonen, P.; Heiskanen, J. Estimating biomass for boreal forests using ASTER satellite data combined
with standwise forest inventory data. Remote Sens. Environ. 2005, 99, 434—447. [CrossRef]

Muukkonen, P.; Heiskanen, J. Biomass estimation over a large area based on standwise forest inventory data
and ASTER and MODIS satellite data: A possibility to verify carbon inventories. Remote Sens. Environ. 2007,
107, 617-624. [CrossRef]


http://www.usda.gov/oce/global_change/ AFGGInventory1990_2005.htm
http://www.usda.gov/oce/global_change/ AFGGInventory1990_2005.htm
http://www.cfr.org/climate-change/north-american-carbon-budget-implications-global-carbon-cycle/p14868
http://www.cfr.org/climate-change/north-american-carbon-budget-implications-global-carbon-cycle/p14868
http://dx.doi.org/10.1080/01431160500486732
http://dx.doi.org/10.1155/2012/436537
http://dx.doi.org/10.1080/17538947.2014.990526
http://dx.doi.org/10.1016/j.foreco.2009.06.056
http://dx.doi.org/10.1016/S0378-1127(97)00026-1
http://dx.doi.org/10.1016/0304-3800(88)90112-3
http://dx.doi.org/10.1093/treephys/20.11.761
http://www.ncbi.nlm.nih.gov/pubmed/12651512
http://dx.doi.org/10.1117/1.JRS.9.097696
http://dx.doi.org/10.1155/2014/715796
http://dx.doi.org/10.4172/2157-7625.1000116
http://dx.doi.org/10.1186/1750-0680-4-2
http://www.ncbi.nlm.nih.gov/pubmed/19320965
http://dx.doi.org/10.1177/0309133312471367
http://dx.doi.org/10.1016/j.rse.2005.09.011
http://dx.doi.org/10.1016/j.rse.2006.10.011

Remote Sens. 2016, 8, 469 24 of 26

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Gasparri, N.I; Parmuchi, M.G.; Bono, J.; Karszenbaum, H.; Montenegro, C.L. Assessing multitemporal
Landsat 7 ETM+ images for estimating aboveground biomass in subtropical dry forests of Argentina.
J. Arid Environ. 2010, 74, 1262-1270. [CrossRef]

Cutler, M.EJ.; Boyd, D.S.; Foody, G.M.; Vetrivel, A. Estimating tropical forest biomass with a combination
of SAR image texture and Landsat TM data: An assessment of predictions between regions. ISPRS J.
Photogramm. Remote Sens. 2012, 70, 66-77. [CrossRef]

Ferndndez-Manso, O.; Fernandez-Manso, A.; Quintano, C. Estimation of aboveground biomass in
Mediterranean forests by statistical modelling of ASTER fraction images. Int. |. Appl. Earth Observ. Geoinf.
2014, 31, 45-56. [CrossRef]

Gtineralp, I; Filippi, A.M.; Randall, J. Estimation of floodplain aboveground biomass using multispectral
remote sensing and nonparametric modeling. Int. ]. Appl. Earth Observ. Geoinf. 2014, 33, 119-126. [CrossRef]
Gomez, C.; White, J.C.; Wulder, M.A.; Alejandro, P. Historical forest biomass dynamics modelled with
Landsat spectral trajectories. ISPRS ]. Photogramm. Remote Sens. 2014, 93, 14-28. [CrossRef]

Sarker, L.R.; Nichol, ].E. Improved forest biomass using ALOS AVNIR-2 texture indices. Remote Sens. Environ.
2011, 115, 968-977. [CrossRef]

Dube, T.; Mutanga, O. Investigating the robustness of the new Landsat-8 Operational Land Imager derived
texture metrics in estimating plantation forest aboveground biomass in resource constrained areas. ISPRS J.
Photogramm. Remote Sens. 2015, 108, 12-32. [CrossRef]

Kelsey, K.C.; Neff, ].C. Estimates of aboveground biomass from texture analysis of Landsat imagery.
Remote Sens. 2014, 6, 6407-6422. [CrossRef]

Dube, T.; Mutanga, O. Evaluating the utility of the medium-spatial resolution Landsat 8 multispectral sensor
in quantifying aboveground biomass in uMgeni catchment, South Africa. ISPRS ]. Photogramm. Remote Sens.
2015, 101, 36-46. [CrossRef]

Foody, G.M.; Boyd, D.S.; Cutler, M.E. Predictive relations of tropical forest biomass from Landsat TM data
and their transferability between regions. Remote Sens. Environ. 2003, 85, 463—474. [CrossRef]

Lu, D. Aboveground biomass estimation using Landsat TM data in the Brazilian Amazon. Int. . Remote Sens.
2005, 26, 2509-2525. [CrossRef]

Lu, D.; Batistella, M.; Moran, E. Satellite estimation of aboveground biomass and impacts of forest stand
structure. Photogramm. Eng. Remote Sens. 2005, 71, 967-974. [CrossRef]

Avitabile, V.; Baccini, A.; Friedl, M.A.; Schmullius, C. Capabilities and limitations of Landsat and land cover
data for aboveground woody biomass estimation of Uganda. Remote Sens. Environ. 2012, 117, 366-380.
[CrossRef]

Ji, L.; Wylie, B.K.; Nossov, D.R.; Peterson, B.; Waldrop, M.P.; McFarland, ].W.; Rover, J.; Hollingsworth, T.N.
Estimating aboveground biomass in interior Alaska with Landsat data and field measurements. Int. |. Appl.
Earth Observ. Geoinf. 2012, 18, 451-461. [CrossRef]

Powell, S.L.; Cohen, WB.; Healey, S.P.; Kennedy, RE.; Moisen, G.G.; Pierce, K.B.; Ohmann, J.L.
Quantification of live aboveground forest biomass dynamics with Landsat time-series and field inventory
data: A comparison of empirical modeling approaches. Remote Sens. Environ. 2010, 114, 1053-1068.
[CrossRef]

Hall, RJ.; Skakun, R.S.; Arsenault, E.J.; Case, B.S. Modeling forest stand structure attributes using Landsat
ETM+ data: Application to mapping of aboveground biomass and stand volume. For. Ecol. Manag. 2006,
225, 378-390. [CrossRef]

Labrecque, S.; Fournier, R.A.; Luther, ].E.; Piercey, D. A comparison of four methods to map biomass from
Landsat-TM and inventory data in western Newfoundland. For. Ecol. Manag. 2006, 226, 129-144. [CrossRef]
Duncanson, L.I.; Niemann, K.O.; Wulder, M.A. Integration of GLAS and Landsat TM data for aboveground
biomass estimation. Can. J. Remote Sens. 2010, 36, 129-141. [CrossRef]

Baccini, A.; Laporte, N.; Goetz, S.J.; Sun, M.; Dong, H. A first map of tropical Africa’s above-ground biomass
derived from satellite imagery. Environ. Res. Lett. 2008, 3, 045011. [CrossRef]

Blackard, J.A.; Finco, M.V.; Helmer, E.H.; Holden, G.R.; Hoppus, M.L.; Jacobs, D.M,; Lister, A.J.; Moisen, G.G.;
Nelson, M.D.; Riemann, R.; et al. Mapping U.S. forest biomass using nationwide forest inventory data and
moderate resolution information. Remote Sens. Environ. 2008, 112, 1658-1677. [CrossRef]


http://dx.doi.org/10.1016/j.jaridenv.2010.04.007
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.011
http://dx.doi.org/10.1016/j.jag.2014.03.005
http://dx.doi.org/10.1016/j.jag.2014.05.004
http://dx.doi.org/10.1016/j.isprsjprs.2014.03.008
http://dx.doi.org/10.1016/j.rse.2010.11.010
http://dx.doi.org/10.1016/j.isprsjprs.2015.06.002
http://dx.doi.org/10.3390/rs6076407
http://dx.doi.org/10.1016/j.isprsjprs.2014.11.001
http://dx.doi.org/10.1016/S0034-4257(03)00039-7
http://dx.doi.org/10.1080/01431160500142145
http://dx.doi.org/10.14358/PERS.71.8.967
http://dx.doi.org/10.1016/j.rse.2011.10.012
http://dx.doi.org/10.1016/j.jag.2012.03.019
http://dx.doi.org/10.1016/j.rse.2009.12.018
http://dx.doi.org/10.1016/j.foreco.2006.01.014
http://dx.doi.org/10.1016/j.foreco.2006.01.030
http://dx.doi.org/10.5589/m10-037
http://dx.doi.org/10.1088/1748-9326/3/4/045011
http://dx.doi.org/10.1016/j.rse.2007.08.021

Remote Sens. 2016, 8, 469 25 of 26

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

Boyd, D.S.; Foody, G.M.; Curran, PJ. The relationship between the biomass of Cameroonian tropical forests
and radiation reflected in middle infrared wavelengths (3.0-5.0 mu m). Int. |. Remote Sens. 1999, 20, 1017-1023.
[CrossRef]

Tian, X.; Su, Z.; Chen, E.; Li, Z.; van der Tol, C.; Guo, J.; He, Q. Estimation of forest aboveground biomass
using multi-parameter remote sensing data over a cold and arid area. Int. J. Appl. Earth Observ. Geoinf. 2012,
14, 160-168. [CrossRef]

Zheng, D.; Rademacher, J.; Chen, ].; Crow, T.; Bresee, M.; le Moine, ].; Ryu, S. Estimating aboveground biomass
using Landsat 7 ETM+ data across a managed landscape in northern Wisconsin, USA. Remote Sens. Environ.
2004, 93, 402-411. [CrossRef]

Xie, Y,; Sha, Z.; Yu, M,; Bai, Y,; Zhang, L. A comparison of two models with Landsat data for estimating
above ground grassland biomass in Inner Mongolia, China. Ecol. Model. 2009, 220, 1810-1818. [CrossRef]
Foody, G.M.; Cutler, M.E.; McMorrow, J.; Pelz, D.; Tangki, H.; Boyd, D.S.; Douglas, I. Mapping the biomass
of Bornean tropical rain forest from remotely sensed data. Glob. Ecol. Biogeogr. 2001, 10, 379-387. [CrossRef]
Chander, G.; Markham, B.L.; Helder, D.L. Summary of current radiometric calibration coefficients for Landsat
MSS, TM, ETM+, and EO-1 ALI sensors. Remote Sens. Environ. 2009, 113, 893-903. [CrossRef]

Reese, H.; Olsson, H. C-correction of optical satellite data over alpine vegetation areas: A comparison of
sampling strategies for determining the empirical c-parameter. Remote Sens. Environ. 2011, 115, 1387-1400.
[CrossRef]

Lu, D.; Weng, Q. A survey of image classification methods and techniques for improving classification
performance. Int. J. Remote Sens. 2007, 28, 823-870. [CrossRef]

Zhu, X.; Liu, D. Improving forest aboveground biomass estimation using seasonal Landsat NDVI time-series.
ISPRS ]. Photogramm. Remote Sens. 2015, 102, 222-231. [CrossRef]

Nichol, ].E.; Sarker, M.L.R. Improved biomass estimation using the texture parameters of two high-resolution
optical sensors. IEEE Trans. Geosci. Remote Sens. 2011, 49, 930-948. [CrossRef]

Sarker, M.L.R.; Nichol, J.; Ahmad, B.; Busu, I.; Rahman, A.A. Potential of texture measurements of two-date
dual polarization PALSAR data for the improvement of forest biomass estimation. ISPRS J. Photogram.
Remote Sens. 2012, 69, 146-166. [CrossRef]

Lu, D.; Mausel, P; Brondizio, E.; Moran, E. Relationships between forest stand parameters and Landsat
Thematic Mapper spectral responses in the Brazilian Amazon basin. For. Ecol. Manag. 2004, 198, 149-167.
[CrossRef]

Lu, D.; Batistella, M. Exploring TM image texture and its relationships with biomass estimation in Rondonia,
Brazilian Amazon. Acta Amazoén. 2005, 35, 249-257. [CrossRef]

Kuplich, T.M.; Curran, PJ.; Atkinson, PM. Relating SAR image texture to the biomass of regenerating tropical
forests. Int. . Remote Sens. 2005, 26, 4829-4854. [CrossRef]

Sanga-Ngoie, K.; lizuka, K.; Kobayashi, S. Estimating CO, sequestration by forests in Oita prefecture, Japan,
by combining Landsat ETM plus and ALOS Satellite remote sensing data. Remote Sens. 2012, 4, 3544-3570.
[CrossRef]

Zhejiang. Available online: https:/ /en.wikipedia.org/wiki/Zhejiang/ (accessed on 26 February 2016).
Zhu, T,; Shen, C.; Ji, B,; Lin, Y,; Wang, X.; Zhang, G.; Yuan, W. Biomass conversion coefficients of Chinese fir
forests of Zhejiang Province based on LULUCF greenhouse gas emission. Acta Ecol. Sin. 2013, 33, 3925-3932.
(In Chinese)

Forestry Department of Zhejiang Province: Introduction of Forestry. Available online: http:/ /baike.baidu.
com/view /4532835.htm#5 (accessed on 26 February 2016).

Qia, Y.; Yi, L.; Zhang, C.; Yu, S.; Shen, L.; Pan, D.; Deng, C. Bioass and carbon stocks of commonwealth
forests for Central Zhejiang. For. Sci. 2013, 49, 17-23. (In Chinese)

Yuan, W,; Jiang, B.; Ge, Y.; Zhu, J.; Shen, A. Study on biomass models of important commonwealth forests
for Zhejiang Province. ]. Zhejiang For. Technol. 2009, 29, 1-5. (In Chinese)

Li, C,; Fan, ].; Fu, X,; Fan, H. Analysis and comparison test on C-correction strategies and their scale effects
with TM images in rugged mountainous terrain. J. Geo-Inf. Sci. 2014, 16, 134-141.

Li, G.; Lu, D.; Moran, E.; Sant’Anna, S.J.5. A comparative analysis of classification algorithms and multiple
sensor data for land use/land cover classification in the Brazilian Amazon. J. Appl. Remote Sens. 2012, 6,
061706. [CrossRef]


http://dx.doi.org/10.1080/014311699213055
http://dx.doi.org/10.1016/j.jag.2011.09.010
http://dx.doi.org/10.1016/j.rse.2004.08.008
http://dx.doi.org/10.1016/j.ecolmodel.2009.04.025
http://dx.doi.org/10.1046/j.1466-822X.2001.00248.x
http://dx.doi.org/10.1016/j.rse.2009.01.007
http://dx.doi.org/10.1016/j.rse.2011.01.019
http://dx.doi.org/10.1080/01431160600746456
http://dx.doi.org/10.1016/j.isprsjprs.2014.08.014
http://dx.doi.org/10.1109/TGRS.2010.2068574
http://dx.doi.org/10.1016/j.isprsjprs.2012.03.002
http://dx.doi.org/10.1016/j.foreco.2004.03.048
http://dx.doi.org/10.1590/S0044-59672005000200015
http://dx.doi.org/10.1080/01431160500239107
http://dx.doi.org/10.3390/rs4113544
https://en.wikipedia.org/wiki/Zhejiang/
http://baike.baidu.com/view/4532835.htm#5
http://baike.baidu.com/view/4532835.htm#5
http://dx.doi.org/10.1117/1.JRS.6.061706

Remote Sens. 2016, 8, 469 26 of 26

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

Lu, D.; Li, G.; Kuang, W.; Moran, E. Methods to extract impervious surface areas from satellite images. Int. J.
Digit. Earth 2014, 7, 93-112. [CrossRef]

Li, L.; Lu, D.; Kuang, W. Examining urban impervious surface distribution and its dynamic change in
Hangzhou metropolis. Remote Sens. 2016, 8, 265. [CrossRef]

Xu, H. A study on information extraction of water body with the modified normalized difference water
index (MNDWI). J. Remote Sens. 2005, 5, 589-595.

Congalton, R.G.; Green, K. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices, 2nd ed.;
CRC Press: Boca Raton, FL, USA, 2008.

McRoberts, R.E.; Neesset, E.; Gobakken, T. Inference for lidar-assisted estimation of forest growing stock
volume. Remote Sens. Environ. 2013, 128, 268-275. [CrossRef]

Zhang, J. Multi-source remote sensing data fusion: Status and trends. Int. J. Image Data Fusion 2010, 1, 5-24.
[CrossRef]

Khaleghi, B.; Khamis, A.; Karray, F.O.; Razavi, S.N. Multisensor data fusion: A review of the state-of-the-art.
Inf. Fusion 2013, 14, 28-44. [CrossRef]

Andersen, J.R.; Hardy, E.E.; Roach, ].T.; Witmer, R.E. A Land Use and Land Cover Classification System for Use
with Remote Sensor Data; U.S. Geological Survey Professional Paper 964; United States Government Printing
Office: Washington, DC, USA, 1976. Available online: http:/ /www.pbcgis.com/data_basics/anderson.pdf
(accessed on 7 April 2016).

Fleming, A.; Wang, G.; McRoberts, R. Comparison of methods toward multi-scale forest carbon mapping
and spatial uncertainty analysis: Combining national forest inventory plot data and Landsat TM images.
Eur. J. For. Res. 2015, 134, 125-137. [CrossRef]

Wang, G.; Wente, S.; Gertner, G.; Anderson, A.B. Improvement in mapping vegetation cover factor for
universal soil loss equation by geo-statistical methods with Landsat TM images. Int. ]. Remote Sens. 2002, 23,
3649-3667. [CrossRef]

Fotheringham, A.S.; Brunsdon, C.; Charlton, M. Geographically Weighted Regression: The Analysis of Spatially
Varying Relationships; John Wiley & Sons Ltd.: West Sussex, UK, 2002.

Gao, X.; Asami, Y.; Chung, C.F. An empirical evaluation of spatial regression models. Comput. Geosci. 2006,
32, 1040-1051. [CrossRef]

Zhang, L.; Gove, ]. H.; Health, L.S. Spatial residual analysis of six modeling techniques. Ecol. Model. 2005,
186, 154-177. [CrossRef]

Bastin, ].E,; Barbier, N.; Couteron, P.; Adams, B.; Shapiro, A.; Bogaert, J.; de Canniere, C. Aboveground biomass
mapping of African forest mosaics using canopy texture analysis: Toward a regional approach. Ecol. Appl.
2014, 24, 1984-2001. [CrossRef]

Clark, D.B.; Clark, D.A. Landscape-scale variation in forest structure and biomass in a tropical rain forest.
For. Ecol. Manag. 2000, 137, 185-198. [CrossRef]

Réjou-Méchain, M.; Muller-Landau, H.C.; Detto, M.; Thomas, S.C.; le Toan, T.; Saatchi, S.S.; Barreto-Silva, J.S.;
Bourg, N.A.; Bunyavejchewin, S.; Butt, N.; ef al. Local spatial structure of forest biomass and its consequences
for remote sensing of carbon stocks. Biogeosciences 2014, 11, 6827-6840. [CrossRef]

Wang, G.; Zhang, M.; Gertner, G.Z.; Oyana, T.; McRoberts, R.E.; Ge, H. Uncertainties of mapping forest
carbon due to plot locations using national forest inventory plot and remotely sensed data. Scand. J. For. Res.
2011, 26, 360-373. [CrossRef]

Zhang, M,; Lin, H.; Zeng, S.; Li, J.; She, J.; Wang, G. Impacts of plot location errors on accuracy of mapping
and up-scaling aboveground forest carbon using sample plot and Landsat TM data. IEEE Geosci. Remote
Sens. Lett. 2013, 10, 1483-1487. [CrossRef]

Chen, Q.; Vaglio Laurin, G.; Valentini, R. Uncertainty of remotely sensed aboveground biomass over
an African tropical forest: Propagating errors from trees to plots to pixels. Remote Sens. Environ. 2015, 160,
134-143. [CrossRef]

® © 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access
@ article distributed under the terms and conditions of the Creative Commons Attribution

(CC-BY) license (http:/ /creativecommons.org/licenses/by/4.0/).


http://dx.doi.org/10.1080/17538947.2013.866173
http://dx.doi.org/10.3390/rs8030265
http://dx.doi.org/10.1016/j.rse.2012.10.007
http://dx.doi.org/10.1080/19479830903561035
http://dx.doi.org/10.1016/j.inffus.2011.08.001
http://www.pbcgis.com/data_basics/anderson.pdf
http://dx.doi.org/10.1007/s10342-014-0838-y
http://dx.doi.org/10.1080/01431160110114538
http://dx.doi.org/10.1016/j.cageo.2006.02.010
http://dx.doi.org/10.1016/j.ecolmodel.2005.01.007
http://dx.doi.org/10.1890/13-1574.1
http://dx.doi.org/10.1016/S0378-1127(99)00327-8
http://dx.doi.org/10.5194/bg-11-6827-2014
http://dx.doi.org/10.1080/02827581.2011.564204
http://dx.doi.org/10.1109/LGRS.2013.2260719
http://dx.doi.org/10.1016/j.rse.2015.01.009
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/

	Introduction
	Study Area and Materials
	Description of the Study Area
	Collection of Sample Plot Data and Calculation of Forest Aboveground Biomass
	Collection of Remote Sensing and DEM Data and Preprocessing
	Preparation of Vegetation Classification Data

	Methods
	Estimation of AGB Saturation Values
	Selection of Textural Images
	Development and Comparison of AGB Estimation Models Based on Stratification
	Evaluation of AGB Models and Estimates

	Results
	Estimation of AGB Saturation Values of Six Vegetation Types
	Regression Models from Different Scenarios
	Assessment and Comparison of AGB Estimates from Regression Models

	Discussion
	Data Saturation Problem in Landsat Imagery and Potential Solution in Reducing the Saturation
	Selection of Suitable Algorithms to Establish the Relationship between AGB and Remote Sensing Variables
	Uncertainties Due to Sample Plots

	Conclusions

