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Abstract: The classes in fuzzy classification schemes are defined as fuzzy sets, partitioning the feature
space through fuzzy rules, defined by fuzzy membership functions. Applying fuzzy classification
schemes in remote sensing allows each pixel or segment to be an incomplete member of more than
one class simultaneously, i.e., one that does not fully meet all of the classification criteria for any
one of the classes and is member of more than one class simultaneously. This can lead to fuzzy,
ambiguous and uncertain class assignation, which is unacceptable for many applications, indicating
the need for a reliable defuzzification method. Defuzzification in remote sensing has to date, been
performed by “crisp-assigning” each fuzzy-classified pixel or segment to the class for which it best
fulfills the fuzzy classification rules, regardless of its classification fuzziness, uncertainty or ambiguity
(maximum method). The defuzzification of an uncertain or ambiguous fuzzy classification leads to
a more or less reliable crisp classification. In this paper the most common parameters for expressing
classification uncertainty, fuzziness and ambiguity are analysed and discussed in terms of their ability
to express the reliability of a crisp classification. This is done by means of a typical practical example
from Object Based Image Analysis (OBIA).
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1. Introduction

In contrast to crisp classification methods, which assign pixels or segments to disjoint classes
in an exclusive manner, fuzzy classification methods generate gradual memberships of pixels or
segments to one or more classes, which can be overlapping in feature space. This allows (a) the
uncertainty of a particular class assignment to be explicitly expressed as a function of the degree of
fulfilment of the underlying classification rules and (b) pixels or segments to be assigned to more
than one class but with varying degrees of membership. While the former allows the handling
of imprecise, incomplete or vague data for classification, the latter allows pixels or segments to
gain an intermediate or transitional state of classification, such as mixed pixels [1–3]. Fuzziness as
a further criterion to evaluate a classification’s reliability expresses the general clarity of a pixel’s
or segment’s (multiple) fuzzy classification result(s) [4,5]. With the advent of Object Based Image
Analysis (OBIA), fuzzy classification methods have been applied in a variety of remote sensing
applications, whereby hierarchical classification schemas became very popular [6,7] since they
reflect the classes’ ontologies and thus increase the transparency of the classification process and
its results. Fuzzy rule sets—generated explicitly or based on samples of the intended classes—can thus
comprise of individually formulated expert knowledge for each application domain. However when
analysing remote sensing data, users generally expect undoubtable and crisp classification results that
meet pre-defined quality criteria, describing the classification’s correctness and completeness (ISO
19157:2013). In this context defuzzification plays a central role, since further usage of the classification
results can only be applied to crisp assigned segments or pixels. Information concerning the certainty,
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fuzziness and ambiguity of defuzzified classification results is therefore important or at least highly
desirable, since it supports the evaluation of the classifications’ quality by evaluating its reliability. It is
against this background that different methods of evaluating the certainty, fuzziness and ambiguity
of fuzzy classification results are analyzed in the present article, in order to support decision-making
regarding whether or not to defuzzify individual classification results. By means of a rather simple
but easy to comprehend classification example, the article demonstrates the interrelation between
achievable classification reliability and the achievable area coverage of crisp classification results.
Further, it demonstrates the interrelation between achievable reliability and the semantic level of
detail of hierarchical classification schemes. Classification results that are not satisfyingly reliable
or do not provide satisfying spatial comprehensiveness indicate that the intended classes cannot be
satisfyingly detected with the given class descriptions and data. That is, the class definitions need to
be reconsidered or the input data must be changed. The paper suggests strategies for defuzzification
supporting navigation within a stress field that is spanned by: the classification’s reliability, its semantic
richness and its completeness.

2. Materials and Methods

2.1. Fuzzy Classification of Remote Sensing Data

Image analysis of remote sensing data in most cases means to assign pixels or segments, also
known as image objects, to semantically meaningful land cover classes, according to implicitly or
explicitly defined classification rules. In the following, pixels, segments and image objects will be
termed ‘entity’ for simplicity reasons. That is, for every entity to be assigned to a particular class
it must fulfil the criteria of the class definition, which is usually expressed by conditional terms in
the form of: “IF <conditions> THEN <class>”, whereby several conditions can be combined by the
logical operators AND and OR. Conditions combined by AND operators are only fulfilled if all of
them are fulfilled, while those combined with the OR-operator are already fulfilled if at least one of
them is fulfilled. AND and OR can be combined and nested according to the rules of Boolean algebra,
allowing even complex classification rules to be defined. Performing a fuzzy classification means to
define the desired land cover classes as fuzzy sets, using respective fuzzy membership functions for
each classification condition, as outlined in [8]. That is, if the classification conditions for an entity are
fulfilled only gradually, the membership to a particular class is also gradual. The degree of membership
to a particular class A for an individual entity depends on the fuzzy-membership function(s) used and
is expressed by µA, where µA = 0.0 indicates that the required conditions for the entity to be a member
of class A have not been satisfied; µA = 1.0 indicates that these conditions have been fully satisfied.
If the conditions are only partly satisfied µA is ascribed a value between 0.0 and 1.0 [8].

A class A can be described by n fuzzy classification rules, defined as fuzzy-membership functions,
which can be combined using the fuzzy-logical operators. The most popular operators in remote
sensing are “fuzzy-AND” and “fuzzy-OR”. The fuzzy-AND operator yields the minimum of all
membership values: µA = min (µA,1, . . . ,µA,n) or the minimum t-norm, or ⊺min (µA,1, . . . ,µA,n), while
the fuzzy-OR operator yields the maximum value µA = max (µA,1, . . . ,µA,n), or the maximum t-conorm
or, �max (µA,1, . . . ,µA,n). Fuzzy-AND and fuzzy-OR rules can be combined and nested analogous to
Boolean classification rules. A detailed discussion on fuzzy aggregation operators (t-norms and
t-conorms) can be found in Yager [9]. Some of the operators presented there yield further opportunities
for research in the context of remote sensing data analysis.

Fuzzy classified entities can be members of several classes simultaneously but with varying
degrees of membership, that is, they fulfil the classification conditions of several classes with
different grades. Such entities are regarded as being classified ambiguously. In order to calculate
the fuzzy membership of each entity to all the classes of a classification scheme M with m classes,
i.e., M = {A1, A2 . . . Am}, the Degree Of Fulfilment) (DOFAi) of the entity for each class is evaluated.
In order to describe similarities between classes of M it can be organized hierarchically. In such
a scheme M consists of node classes (N-classes) and leaf classes (L-classes). N-classes describe those
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characteristics all subsequent L-classes of an N-class have in common (Figure 1). That is, L-classes
inherit the descriptions of their N-classes [10,11]. Entities can only be a member of a particular L-class
if they fulfil the classification conditions of the L-classes’ N-classes and those of the L-class. That is,
for an entity to be a member of a particular L-Class all DOFN>0.0 and DOFL>0.0 must be given.
An entity’s membership degree to an L-class µL is then the minimum out of all DOFN values (inherited
descriptions) and the DOFL value for that particular L-class. Hence, inheritance operates similar to the
fuzzy-AND operator in a hierarchical fuzzy classification scheme, because an L-class member must
satisfy the minimum requirements for all its N-classes and for the L-class:

µL = min (DOFN1, . . . DOFNn, DOFL) (1)

If M is not hierarchically organized, or A has no N-classes, for each entity its µA = DOFA (Figure 1).
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Since an entity can be a gradual member of all L-classes and fulfil the classification conditions for
all (L- and N-) classes of M, it has two vectors:

→

µ and
ÐÐ⇀
DOF. Each of them contains m elements, which

express the entity’s membership degrees to the L-classes and the DOFs for each class of the scheme [10]:
→

µ = (µ0, . . . , µm) (2)

and ÐÐ⇀
DOF = (DOF0, . . . , DOFm) (3)

An entity can therefore be a gradual member of several L-classes simultaneously but with different
degrees of membership to each of them. An entity can likewise meet the classification conditions for
several different classes simultaneously, allowing it to inherit the DOFs of multiple classes.

2.2. Defuzzification of Fuzzy Classification Results

Several defuzzification methods for non-nominally scaled data have been proposed in published
literature [12,13]. However, in remote sensing, crisp classification results are nominally scaled [14].
Defuzzification in remote sensing therefore means that µA for each entity is converted from [0..1]ε R+
into ηAε{0, 1} with ηA ε N, where ηA = 0 indicates that the entity of concern is not a member of
class A, and ηA = 1 indicates that it is a member of class A. Each entity is therefore usually assigned
to the class for which it has the highest membership degree, that is, where µA = max(→µ). This class
is often referred to as the Best Classification Result (BCR) [11,15], with µBCR = max(→µ). A very
simple but often applied method to defuzzify nominally scaled entities is to set a threshold t for µBCR:
entities with µBCR < t remain unclassified, those with µBCR ≥ t are assigned to BCR [6]. However, it
is obvious that doubtful crisp classification results can be produced with this simple decision rule
for the following reasons: (1) even those entities whose fuzzy memberships indicate little clarity of
their class assignment can be crisp assigned to their BCR, that is, entities with µBCR ≅ 0.0 (uncertainty);
(2) entities whose µBCR is similar to any of the remaining class memberships of

→

µ (ambiguity) might
be defuzzified; (3) entities whose µBCR and all other class memberships indicate a high classification
fuzziness (µBCR ≅ µ1 ≅ . . . ≅ µm ≅ 0.5) might be defuzzified.
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2.2.1. Classification Uncertainty and Ambiguity

For each entity being fuzzy-classified using a classification scheme M, with m (L-)classes, the
elements of its classification vector

→

µ = (µ0,µ1, . . . ,µm) can be sorted following a “≥” relationship,
beginning with µBCR ∶ µBCR ≥ µ2nd ≥ . . . ≥ µmth, where µ2nd holds the membership degree of the
second-best class and so on until the mth-best class. For better readability an index will be used here, to
indicate the membership degree of an entity to its ith-best class with i = 0 . . . m: µ0 ≥ µ1 ≥ . . . ≥ µm.
Since the best possible membership degree an entity can have for an arbitrary class is µi = 1.0, the
entity’s classification uncertainty can be expressed by: 1.0−µ0. An entity’s classification is ambiguous
as soon as it has membership degrees of µi=1..m > 0.0 for any of the other classes in the classification
scheme M [16,17]. Additionally, the ambiguity of an entity is considered higher, the closer all its
µi values are to each other. That is, in a “≥” order of membership degrees per entity, an entity
with µ0 ≫ µ1 ≫ . . . ≫ µm is less ambiguously classified than an entity with µ0 ≅ µ1 ≅ . . . ≅ µm.
Consequently, quantifying and analysing the ambiguity and uncertainty for each fuzzy classified entity
and setting meaningful thresholds to decide whether to defuzzify its fuzzy classification result or not,
can make the crisp classification result as reliable as necessary.

2.2.2. Fuzziness

According to [5], fuzziness can be expressed by the separability of a fuzzy set and its complement.
For fuzzy classifications in remote sensing this means: the clearer an arbitrary class A can be separated
from its complementary class A, the less fuzzy the class is. Siler & Buckley [4] transfer this to evaluate
an entity’s classification fuzziness as follows: an entity is the less fuzzy assigned to a class or its
complement, the closer its membership degree µA to this particular class is either to 1.0 or to 0.0.
That is, an entity is the fuzzier assigned to A, the closer µA = 0.5 and vice versa. When applying a
fuzzy classification scheme M with several classes, as outlined before, this means an entity is the
fuzzier classified, the more class memberships of µi = 0.5 it has and it is fuzziest classified if all of the
m memberships are µi = 0.5. Besides minimizing an entity’s ambiguity and uncertainty, its fuzziness
should be minimized too, in order to define sensible decision rules for the defuzzification of an entity’s
fuzzy classification. Note: an entity with a membership degree of µ0 = 1.0 and µ1 = 0.0 simultaneously
has the highest possible certainty and the lowest possible ambiguity and fuzziness.

2.2.3. Quantifying Classification Uncertainty, Ambiguity and Fuzziness per Entity

When determining the classification ambiguity, it is common in both published literature [6,15,18]
and existing software (for example eCognition), for only the best and second-best class memberships
to be evaluated. This is because for entities with ordinally scaled

→

µ vectors, as soon as µ1 > 0.0 that
entity’s classification is already ambiguous. However, measurement of the classification ambiguity
becomes more precise if all membership degrees are taken into account but in this case, the degree of
ambiguity is dependent on the number of classes m of a given classification scheme and can therefore
be less easily compared with other classification schemes. In general, measures expressing an entity’s
uncertainty, ambiguity and fuzziness should ideally be independent from m and easy to interpret.
Some measures of uncertainty, ambiguity and fuzziness are discussed below. These measures were
implemented using the Cognition Network Language (CNL) [19] and can be applied as a so-called
“Customized Algorithm” in eCognition (see the relevant file, together with a short description of the
“Customized Algorithm” in supplementary materials).

1. Classification Stability Index and Confusion Index

The Classification Stability Index CSI, which is implemented in eCognition software as
“Classification Stability” [11], expresses the difference between µ0 and µ1 for each entity. If

→

µ is
ordinally scaled [15] the CSI quantifies the entity’s ambiguity:

CSI = µ0 −µ1 (4)
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where the value range of CSI is given by 0.0 ≤ CSI ≤ 1.0. The lower the CSI, the more ambiguous
(less firm) an entity’s classification is. It takes into account µ1 only and none of the remaining µi of
a classification. If all m class memberships of a given classification scheme are to be taken into account,
the CSI extends to CSI∗:

CSI∗ = µ0 −∑
m
i=1 µi (5)

The value range of CSI* is given by 1.0 − m ≤ CSI∗ ≤ 1.0, which means that the CSI* can
have negative values. Burrough [18] suggests the Confusion Index (CI) to express the ambiguity
of an entity’s classification result, which is simply the compliment of the CSI. It can be calculated by:

CI = 1.0− (µ0 −µ1) (6)

with the value range of 0.0 ≤ CI ≤ 1.0. That is, an entity is an increasingly distinct member of its BCR
the lower the CI is. Analogous to the CSI, the CI can be extended to a more precise index by taking
into account all m memberships of an entity to the classes of a given scheme:

CI∗ = 1.0− (µ0 − (∑
m
i=1 µi)) (7)

The value range of the CI∗ is then 0.0 ≤ CI∗ ≤ m. Thus, it needs to be interpreted differently: the
closer the CI∗ of an entity’s classification is to m, the less distinctly it is assigned to its BCR.

2. Ambiguity Index

There have been different definitions proposed for the Ambiguity Index (AI). Burrough [18]
defined it as the difference between the best possible classification result µ0 = 1.0 and the best
classification result actually achieved (µ0):

AIB = 1.0−µ0 (8)

where the value range for AIB is given by 0.0 ≤ AIB ≤ 1.0. This means: the less certain it is
that an entity has been assigned to the best class, the more ambiguous its class assignment is.
This parameter therefore measures the classification uncertainty of an entity, rather than its ambiguity.
Siler & Buckley [4] instead suggested adding together all membership degree values achieved by
an entity, divided by its best membership degree:

AISB =∑m
i=0

µi
µ0

(9)

where the value range for AISB is given by 1. ≤ AISB ≤ m. AISB takes into account an entity’s
membership degree for all classes in a given classification scheme. However, as for the CS* and CI*,
under this definition the index is dependent on m, while AIB is independent of m. In contrast to AIB,
AISB truly measures the classification ambiguity: even if µ0 for an entity is low, but the entity has only
one single class assignment AISB = 1.0. That is, the classification result for this particular entity might
be uncertain but not ambiguous. Vice versa, the maximum ambiguity is achieved if all of the entity’s
membership degrees are equal, independent of their grade, that is, if µ0 = µ1 = . . . = µm. In case the
entity of concern remains unclassified µ0 = 0.0 and AISB remains undefined.

3. Fuzziness

Siler & Buckley [4] suggested quantifying the fuzziness of an entity’s classification by evaluating
its number of class assignments with the highest possible fuzziness, that is, with a membership degree
of µi = 0.5. The more class assignments with µi = 0.5 an entity has, the fuzzier its classification is.
Consequently, the more class memberships with µi = 1.0 or µi = 0.0 an entity has, the less fuzzy it is
classified. Membership degrees of 0.0 < µi < 0.5 and 0.5 < µi < 1.0 impact the accumulated fuzziness,
respectively. They suggested two methods: a less precise method, with:

Fuzz1 =∑
m
i=0 1.0− ∣(2µi − 1.0)∣ (10)
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where the value range for Fuzz1 is given by 0.0 ≤ Fuzz1 ≤ m, and a more precise method, which is given
and discussed in Appendix A. The latter is similar to the method suggested by de Luca & Termini [20].
However, although it is more precise, it is more sensitive when applying complex classification
schemes with many classes: for the entity of concern a single membership to one of the scheme’s
classes with µi = 0.0 or µi = 1.0 is already enough for this measure to equal its maximum or minimum
value. In contrast, Fuzz1 behaves continuously: it achieves its maximum if all class memberships
yield µi = 0.5, otherwise it decreases with the number of memberships µi ≠ 0.5 per entity, whereas
the closer the memberships are to 0.0 or 1.0 (µi ≅ 0.0 or µi ≅ 1.0) per entity the more Fuzz1 decreases.
Nevertheless, none of the measures of fuzziness are capable of expressing an entity’s classification
certainty or ambiguity. A detailed overview of fuzzy uncertainty and related discussions, has been
provided by Pal & Bezdek [21].

2.2.4. Decision Rules for Defuzzification

Defuzzifying a fuzzy classification result of a given entity means to crisply assign it to its BCR.
However, as already stated above, fuzzy classification results should only be defuzzified if the entity
of concern is undoubtedly assignable to its BCR. In this context “undoubtedly” translates to: least
uncertain, least ambiguous and least fuzzy. Since uncertainty, ambiguity and fuzziness can be measured
as outlined before, these measurements can support the user in deciding when a particular fuzzy
classification result counts as being defuzzified. That is, when “doubts” about an entity’s BCR are
low enough for it to be crisply assigned to that class. Consequently, the user needs to set thresholds
for the measured classification uncertainty, ambiguity and fuzziness per entity, above which he or
she allows the fuzzy classification result to be defuzzified. Since entities below the set thresholds
remain unclassified after defuzzification, the user also needs to consider the amount of classified and
unclassified entities. In remote sensing this means the amount of area being classified or unclassified.
Combining all (or some) of the presented measures means that several conditions need to be fulfilled
simultaneously before an entity is allowed to be crisply assigned to its BCR. The latter means setting
a threshold for each measure.

1. Uncertainty

The uncertainty of a fuzzy classification result is expressed either by µ0 (the closer µ0 is to 1.0, the
more certain the classification result, and vice versa), or inversely by Burrough’s Ambiguity Index AIB
(the closer AIB to 0.0, the more certain the classification result and vice versa). Both measures indicate
to what degree an entity fulfils the classification criteria for its BCR. For simplicity reasons, only µ0 is
regarded in this manuscript. As stated earlier, setting an arbitrary threshold for µ0 is common practice,
and the simplest decision rule for defuzzification. However, according to Siler & Buckley [4], entities
with µ0 < 0.5 must be regarded as a member of the BCR’s complementary class BCR. Consequently,
defuzzifying such entities would be a contradiction in terms. Additionally, only defuzzifying entities
with µ0 > 0.5 avoids the defuzzification of entities with maximum fuzziness. Consequently, a
defuzzification threshold of 0.5 < µ0 ≤ 1.0 is sensible. The closer the threshold for µ0 is set to 1.0, the
more certain and—to a certain degree—the less fuzzy the classification can be regarded.

2. Fuzziness

A classified entity with a membership of µ0 = 0.5 to its BCR must be considered as fuzzy and
uncertain. According to Section 2.2.2 it is classified with the highest possible fuzziness if all of its
µi=0...m = 0.5, that is, if Fuzz1 = m. Thus, if fuzziness measured with Fuzz1 is applied as a defuzzification
criterion, the decision rule should be Fuzz1 < m. The latter is achieved already if µ0 > 0.5. However,
even then, and even if an entity’s classification is certain (µ0 ≈ 1.0), it still might be highly fuzzy if
all remaining µi=1...m ≈ 0.5. Consequently, if only entities classified with the least possible fuzziness
should be defuzzified, a threshold for fuzziness with Fuzz1 ≪ m should be selected.
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3. Ambiguity

Ambiguity describes how distinctly an entity is assigned to its BCR. As outlined in Section 2.2.1,
an entity’s fuzzy classification ambiguity increases the more of its class memberships µi are equal, and
it can be measured as depicted in Equations (4)–(7) and (9), whereby CI, CI*, CSI and CSI* can be below
1.0 if µ0 < 1.0 and all remaining µ1..m = 0.0. In contrast, AISB equals its maximum only if all µi have
exactly the same value. Since its value range is: 1.0 ≤ AISB ≤ m, a fuzzy classification result is the less
ambiguous, the closer the threshold for AISB is set to 1.0 and the more ambiguous, the closer it is set to m.

4. Compound decision rule for defuzzification

A fuzzy classified entity is the less doubtfully a member of its BCR the more certain, the less fuzzy
and the less ambiguous its classification is simultaneously. Consequently, an entity’s defuzzification
should be based on a compound decision rule, which simultaneously demands all the defuzzification
criteria be fulfilled, which roughly means.

0.5 < µ0 ≤ 1.0∧ 0.0 ≤ Fuzz1 ≪ m ∧ 1.0 ≤ AISB ≪ m (11)

In this configuration a least doubtfully classified entity is given if its µ0 = 1.0, its Fuzz1 = 0.0,
and its AISB = 1.0, which is given if µ0 = 1.0 and µ1 = 0.0. Vice versa, if an entity’s µ0 ≈ 0.5, its
Fuzz1 = m and its AISB = m, “doubts” about its class assignment to its BCR are at a maximum (see
Section 2.2.3). Nevertheless, the precise thresholds should be determined by the user’s requirements
concerning the classification’s reliability after defuzzification. Applying a defuzzification rule as
described here means that entities fulfilling these criteria are crisp-assigned to their BCR, while the rest
remain crisp-unclassified.

2.3. Defuzzification in Hierarchical Classification Schemes

In hierarchically organized classification schemes, fuzzy classified entities of L-classes may not
fulfil the defuzzification criteria. Consequently they cannot be assigned to their BCR without any
doubts, which means they cannot be defuzzified and therefore remain crisp-unclassified. Nevertheless,
such entities could be doubtlessly assigned to one of their N-classes, especially if the class hierarchy
describes the N-classes as physical commonalities of their L-classes. In such cases it is rather sensible to
assign the entities of concern to that N-class whose DOF shows the maximum value: µN = max(ÐÐ⇀DOF)
and fulfils the defuzzification criteria described above. For example the classes “Oak” and “Beech”
may be possible subclasses of “Deciduous”. A fuzzy classified entity which neither fulfils the
defuzzification criteria for “Oak” nor those for “Beech” but fully those for “Deciduous” can be
doubtlessly crisp-assigned to “Deciduous”, instead of remaining unclassified. This process can be
continued upwards in the hierarchy tree until the root-class of an entity is evaluated for defuzzification.
In the example given, this could mean that if a clear decision is neither possible between “Oak”
and “Beech” nor between “Deciduous” and “Coniferous”, the entity may still be classified as “Tree”,
if “Tree” is the N-class of “Deciduous” and “Coniferous”. Otherwise it remains crisp-unclassified.
The example demonstrates that the classification reliability can be increased at the cost of losing
semantic details and vice versa.

2.4. Example: Vegetation Map of Munich

This section demonstrates how the above mentioned defuzzification methods can be applied to
achieve a least doubtable crisp classification result (defuzzification strategies), using an OBIA fuzzy
classification result of urban green areas in Munich (Germany). The applied classification scheme is
similar to that applied in [15]. It contains “Vegetation” and “Non-Vegetation” as N-classes. “Vegetation”
is further sub-divided into three L-classes: “Wooden vegetation”, “Meadow-like vegetation” and
“Mixed vegetation”. The class “No Vegetation” acts as the counterpart (the inverse) of “Vegetation”
and is an L-class in the hierarchy (Figures 1 and 2).
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Figure 2. Class hierarchy of an Urban Green classification in a WorldView-2 scene of Munich.

The scheme was applied on a subset of the WorldView-2 scene over Munich [22], captured on
10 July 2012 (coordinates: Left X = 688693; Right X = 694068.5; Upper Y = 5340051.5; Lower Y =
5337520.5, UTM Zone 32, Northern Hemisphere, Transverse Mercator, WGS 84), with the dimensions
of 10,761 pixels × 5062 pixels. The scene was pan-sharpened using the principle components
method proposed by Chavez [23], implemented in ERDAS Imagine 2013 software, using only those
multi-spectral bands that cover the spectral range of the pan-channel, i.e., bands 2, 3, 4, 5, 6, and
7. The image was segmented using eCognition 9.1., in the manner described in Hofmann et al. [15].
The same software was used for the classification of the image and for developing the class hierarchy
and fuzzy class descriptions. The brightness of each segment was calculated as the average DN value
per object in bands 2, 3, 5, and 6. The segments generated were hierarchically classified according
to the classification scheme described above (Table 1, Figures 2 and 3). The “Vegetation” and “No
Vegetation” classifications were based on the NDVI, calculated on a ‘per pixel’ basis and assigned to
each segment as the mean of all pixel-values per segment. The N-class “Vegetation” is described by
the mean NDVI per segment, as shown in Table 1. The L-classes “Wooded Vegetation”, “Meadow-like
Vegetation” and “Mixed Vegetation” inherit this description, but are distinguished from each other by
their relative brightness in band 6 (the so-called “red-edge” band [22]) when compared to the overall
brightness of a segment (ratio red-edge) [15] and by the standard deviations of band-6-pixels within the
segment of interest [15,24]. Figure 3 shows the initial results obtained by applying the rule set to the
segmented image, together with the simplest defuzzification rule, (µ0 > 0.0). Segments fulfilling this
condition are assigned to their BCR, regardless of their classification certainty, fuzziness or ambiguity.
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3 + WV-2 band 6)/2; B = WV-2 band 2. Bottom: Initial classification result for L-classes (μ > 0.0) 
superimposed over top image with 33% transparency. 

 

Figure 3. Top: Original image, standard deviation stretched (3.0%) R = WV-2 band 5; G = (WV-2 band
3 + WV-2 band 6)/2; B = WV-2 band 2. Bottom: Initial classification result for L-classes (µ0 > 0.0)
superimposed over top image with 33% transparency.

3. Results

After classification, initially only L-classes are applied. The majority of the 46,534 segments
(46,521 or 99.99%) had membership values of µ0 > 0.0 to their BCR and 32,573 (70.02%) were assigned
to their best and second-best class simultaneously, that is, with µ1 > 0.0. Only three objects could
not be classified at all, meaning they had no membership to any of the scheme’s classes (µ0 = 0.0).
38,277 objects had a membership to their BCR of µ0 ≥ 0.5. The mean membership to the BCR was
µ0 = 0.78, and µ1 = 0.12 for the second-best class (see Figure 4). The figure additionally shows that
831 objects are a member of all four classes, which is indicated by their µ3 > 0.0. However, for the third-
and fourth-best class (µ2 and µ3) no object could achieve a membership of µ2,3 > 0.5.
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Figure 4. Descriptive statistics of µ0, µ1, µ2 and µ3 of “urban green” for the OBIA fuzzy classification
result (L-classes) of the WV-2 scene of Munich.

Table 2 depicts the descriptive statistics of the measures outlined in Section 2.2.3, which support
the decision for the fuzzy classification’s defuzzification. Note: the maximum values for CI∗, Fuzz1

and AISB are below the possible maximum of m = 4.

Table 2. Descriptive statistics of measures of uncertainty, fuzziness and ambiguity for the OBIA fuzzy
classification result of the WV-2 scene of Munich.

CSI CSI* CI CI* AIB AISB Fuzz1

Max 1.0000 1.0000 1.0000 1.4956 0.9931 3.7696 2.9912
Mean 0.6612 0.6542 0.3387 0.3457 0.2230 1.1917 0.4498
Min 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 0.0000

Standard Dev. 0.3294 0.3370 0.3293 0.3370 0.2636 0.3096 0.4264

Both Figure 4 and Table 2 indicate that a variety of the fuzzy classified objects are not crisply
assignable to their BCR without any doubts. Therefore, before defuzzification of these objects, their
classification uncertainty, fuzziness and ambiguity should be evaluated. In case an object cannot be
doubtlessly assigned to its BCR, a re-classification should be considered. Figure 5 and Appendix B
depict the spatial distribution of the classification’s measures for uncertainty, fuzziness and ambiguity,
calculated per object as described in Section 2.2.3.

3.1. Defuzzification of Absolutely Doubtlessly Classified Objects

In the scene, 8247 objects (17.73%) have a membership degree of µ0 ≤ 0.5 to their best L-class.
This result is considered as too uncertain for the respective objects to be assigned to their BCR (see
Section 2.2.4). Vice versa, 3280 objects (7.05%) have a membership degree of µ0 = 1.0 to their best
L-class, and 2653 objects (5.70%), which cover 8.02% of the scene’s area, have a membership degree of
µ0 = 1.0 to their best L-class and of µ1 = 0.0 to their second-best L-class. Accordingly, their fuzziness
and ambiguity equals Fuzz1 = 0.0 and AISB = 1.0. Therefore these objects can be assigned to their BCR
with absolutely no doubts (Figure 6).
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Figure 6. Defuzzification of objects being a doubtless member of their BCR (µ0 = 1.0 and µ1 = 0.0). of
WV-2 scene of Munich.

3.2. Defuzzification Based on Uncertainty, Fuzziness and Ambiguity

To defuzzify objects according to the measures outlined in Section 2.2.4, thresholds need to be set
for each of them in order to define a defuzzification rule. However, the decision for defuzzification of
a fuzzy classified object can be based either on a single criterion (uncertainty, fuzziness or ambiguity),
or based on all of them simultaneously. The following consideration demonstrates what happens to
the classification result if uncertainty, fuzziness and ambiguity are each regarded separately. That
is, objects are defuzzified if they only fulfil a single defuzzification criterion. For example applying
a threshold of µ0 = 1.0 only, means objects which have a membership for their second-best class of
µ1 ≥ 0.0 are defuzzified. In the example, this yields 43,244 unclassified objects (92.95%), covering 89.58%
of the scene’s area. Similarly, defuzzifying objects with Fuzz1 = 0.0 leads to 43,868 unclassified objects
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(94.29%), yielding an area ratio of 91.98%. And if ambiguity is the only defuzzification criterion for all
objects with AISB = 1.0, 32,576 objects (70.02%) yielding 65.41% of the scene’s area are unclassified (see
Figure 7).
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Figure 7. Crisp classification results after defuzzifying fuzzy classified objects of a WV-2 scene of
Munich and their respective area coverage when applying the following single defuzzification rules:
µ0 = 1.0, Fuzz1 = 0.0 and AISB = 1.0.

However, applying defuzzification rules as demonstrated above leads to numerous crisp
unclassified objects. Therefore some degree of uncertainty, fuzziness and ambiguity must be allowed
in order to increase the ratio of classified area in the scene. To what extent this is acceptable must be
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decided on by the user. In any case, the thresholds should be set within the value ranges described in
Section 2.2.4. Analysing quantiles for each measure helps to estimate the amount of crisp classified
objects in a given scene resulting in thresholds for µ0, Fuzz1 and AISB (see Table 3 and Figure 8).

Table 3. Percentiles of Fuzz1, AISB and µ0 of fuzzy classified objects of the WV-2 scene of Munich.

Percentile Fuzz1 n with Fuzz1 ≤ AIB n with AIB ≤ µ0 n with µ0 ≤

10 0.034 4653 1.000 13,951 0.036 4653
20 0.080 13,957 1.000 13,951 0.543 9304
30 0.144 13,958 1.000 13,958 0.725 13,958
40 0.217 18,610 1.013 18,610 0.862 18,610
50 0.303 23,262 1.028 23,262 0.901 23,262
60 0.443 27,915 1.063 27,915 0.936 27,915
70 0.616 32,567 1.148 32,567 0.964 32,567
80 0.813 37,219 1.370 37,219 0.977 37,220
90 1.012 41,872 1.747 41,872 0.991 41,872Remote Sens. 2016, 8, x 2 of 2 
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Table 3 depicts the percentiles for the fuzzy classification result and the associated measures for
uncertainty, fuzziness and ambiguity. As can be seen from Table 3 at least half of the number of all
objects are crisp assigned to their BCR if the thresholds for their fuzzy classification measures are set to:
µ0 ≥ 0.91, Fuzz1 ≤ 0.30 and AISB ≤ 1.03 (Figure 9) and vice versa. Similarly to crisp assign for example,
the best 80% of all objects, the parameters of µ0 > 0.54, Fuzz1 ≤ 0.81 and AISB ≤ 1.37 must be fulfilled
for each object; the remaining 20% of all objects are set to unclassified (Figure 10). In terms of assessing
a classification’s quality, the percentiles can be interpreted as follows: in order to crisp assign a given
percentage of objects to their BCR, according uncertainties, fuzziness and ambiguities (as displayed in
Table 3) must be accepted by the user. Vice versa: the given classifier is only capable of classifying the



Remote Sens. 2016, 8, 467 14 of 23

number of objects as displayed in Table 3 if uncertainty, fuzziness and ambiguity per object are below
the thresholds for each percentile.
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Figure 9. Crisp classification results after defuzzifying fuzzy classified objects of a WV-2 scene of
Munich by applying the median for each measure as defuzzification rules (µ0 ≥ 0.90, Fuzz1 ≤ 0.30 and
AISB ≤ 1.03) and their respective area coverage.
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Figure 10. Crisp classification results after defuzzifying fuzzy classified objects of a WV-2 scene of
Munich by applying the 80%-quantile defuzzification rules (µ0 ≥ 0.54, Fuzz1 ≤ 0.80 and AISB ≤ 1.34)
and their respective area coverage.
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Since each object in OBIA is in principle of individual size, the number of crisp assigned objects
does not allow any conclusions about the covered area per percentile. However in the example
given, all objects are of comparable size due to the unchanged initially applied Multi-Resolution
Segmentation. Additionally, as can be seen in Figures 9 and 10, although the quantity of classified
objects is similar for each quantile-threshold, the quality of objects affected by the defuzzification rule
is different, depending on the applied measurement criterion (certainty, fuzziness or ambiguity).

3.3. Defuzzification Based on Compound Criteria

Ideally, in order to defuzzify only the least doubtfully classified objects, each object should
fulfil the criteria for all three measurements simultaneously, see Section 2.2.4 and Equation (11).
When combining the three criteria, thresholds for each of the measures can be set differently depending
on the user’s demands. Similar to the examples presented in the sub-section before, analysing the
quantiles of a given scene for each measure is supportive in estimating the number of objects being
defuzzified. However, results are different when thresholds for defuzzification are reduced and
combined to a compound defuzzification rule with thresholds given by the percentiles for example,
to: µ0 ≥ 0.90 ∧ Fuzz1 ≤ 0.30 ∧ AISB ≤ 1.03 (median rule) and µ0 ≥ 0.54 ∧ Fuzz1 ≤ 0.80 ∧ AISB ≤ 1.34
(80%-quantile rule).

Therefore, L-class objects must now fulfil the conditions for uncertainty (µ0), fuzziness (Fuzz1)
and ambiguity (AISB) simultaneously (∧-operator) to be defuzzified. A comparison of the results of
the compound percentile rules with those of the single percentile rules (Figures 9–11) reveals that the
number of classified objects and area has clearly decreased (from approx. 53% to approx. 40% of the
area for the median rules and from approx. 80% to approx. 65% of the area for the 80%-quantile rules).
However, they now fulfil all the three criteria for uncertainty, fuzziness and ambiguity simultaneously
(see Figure 11).

3.4. Re-Classification of Rejected L-Class Objects

When applying a hierarchical classification scheme, as is the case here, entities, also known as
objects which cannot be defuzzified due to their uncertainty and/or fuzziness and/or ambiguity
(rejected L-class objects being defuzzified as “unclassified”), might nevertheless sufficiently fulfil the
classification criteria of one of their N-classes. For a crisp assignment to an entity’s N-class, the same
defuzzification mechanisms can be applied as for its L-classes. In the present example “vegetation”
acts as the N-class for “wooden vegetation”, “mixed vegetation” and “meadow-like vegetation”.
Therefore, objects which cannot be clearly assigned to “wooden vegetation”, “mixed vegetation”,
“meadow-like vegetation” or “non-vegetation”, could still be doubtless members of “vegetation” (or
“non-vegetation”) instead of remaining unclassified. Accordingly, these objects can be re-classified,
yielding a new membership value for the classes “non-vegetation” and “vegetation”. For the latter,
new defuzzification thresholds can be determined and applied. In the example given, the measures of
uncertainty, fuzziness and ambiguity did not change before re-classifying unclassified objects. After the
re-classification of previously rejected objects, the percentiles for uncertainty, fuzziness and ambiguity
changed, as displayed in Table 4. Naturally, the thresholds for the no-doubt rule did not change, but
those for the median rule and the 80%-quantile rule changed to: µ0 ≥ 0.95∧ Fuzz1 ≤ 0.18∧ AISB ≤ 1.05
(median rule) and µ0 ≥ 0.83∧ Fuzz1 ≤ 0.68∧ AISB ≤ 1.20 (80%-quantile rule).

After re-classifying and defuzzifying unclassified objects according to the compound
defuzzification rules, the class “vegetation” could be assigned and the number of unclassified
objects reduced, as depicted in Figure 12. When applying the no-doubt defuzzification rule
(µ0 = 1.0 ∧ Fuzz1 = 0.0 ∧ AISB = 1.0) the area ratio covered by unclassified objects reduced from
almost 92% to approx. 65%, meaning that 35% of the area could now be doubtlessly assigned either to
“vegetation”, “meadow-like vegetation”, “mixed vegetation”, “wooden vegetation” or “no vegetation”.
Similarly, when applying the median-defuzzification rule the amount of unclassified area reduced from
approx. 67% to approx. 34% when re-classified. Applying the 80%-quantile rule on the re-classified
image objects reduced the amount of crisp unclassified objects to 9304 covering approx. 14% of the



Remote Sens. 2016, 8, 467 17 of 23

scene’s area. Only 1.29% of the scene’s area was re-classified as “vegetation”. The remaining objects
are either a member of “no vegetation” or one of “vegetation’s” sub-classes (Figure 12).

Remote Sens. 2016, 8, 467 17 of 23 

 

area. Only 1.29% of the scene’s area was re-classified as “vegetation”. The remaining objects are either 
a member of “no vegetation” or one of “vegetation’s” sub-classes (Figure 12). 

 
Figure 11. Crisp classification results after defuzzifying fuzzy classified objects of a WV-2 scene of 
Munich and their respective area coverage by applying different compound thresholds as 
defuzzification rules. 

Table 4. Percentiles for μ , Fuzz  and AI  measures after fuzzy re-classifying unclassified L-class 
objects to their according N-class. 

Percentile Fuzz1 AIB µ0

10 0.000 1.000 0.669 
20 0.000 1.000 0.830 
30 0.048 1.012 0.888 
40 0.101 1.026 0.923 
50 0.178 1.047 0.955 
60 0.306 1.083 0.975 
70 0.446 1.126 0.988 
80 0.680 1.205 1.000 
90 1.323 1.494 1.000 

Figure 11. Crisp classification results after defuzzifying fuzzy classified objects of a WV-2 scene
of Munich and their respective area coverage by applying different compound thresholds as
defuzzification rules.

Table 4. Percentiles for µ0, Fuzz1 and AISB measures after fuzzy re-classifying unclassified L-class
objects to their according N-class.

Percentile Fuzz1 AIB µ0

10 0.000 1.000 0.669
20 0.000 1.000 0.830
30 0.048 1.012 0.888
40 0.101 1.026 0.923
50 0.178 1.047 0.955
60 0.306 1.083 0.975
70 0.446 1.126 0.988
80 0.680 1.205 1.000
90 1.323 1.494 1.000
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4. Discussion

As was demonstrated in the present article, paying more attention to the classification’s
uncertainty, fuzziness and ambiguity before starting the defuzzification of fuzzy classification results
can increase the reliability of the final crisp classification result. As outlined in Section 2.2 and
demonstrated in Section 3, classification uncertainty, fuzziness and ambiguity per entity can be
measured in different ways by different measures. Some of these measures presented here and
suggested in literature (see Section 2.2) are redundant. But as has been demonstrated, uncertainty (here
measured by µ0), fuzziness (here measured by Fuzz1) and ambiguity (here measured by AISB) are the
three major and independent aspects for evaluating a fuzzy classification’s reliability. However, as
has been shown in Section 3 (see Figures 9–12), evaluating only uncertainty, fuzziness or ambiguity
alone is not enough to decide on a suitable defuzzification rule. Rather, it has been demonstrated
that combining all three criteria to according defuzzification rules can maximize the reliability
of the resulting crisp classification. Measuring a fuzzy classification’s uncertainty, fuzziness and
ambiguity also supports the user in balancing between the area covered by crisp classified entities and
their classification reliability, that is, between the crisp classification’s completeness and correctness.
Section 3 demonstrated the relationship between achievable and intended reliability and achievable
and intended area coverage. That is, for a given fuzzy classification rule set the user can a) evaluate
its ability to assign entities to the desired classes in a reliable and spatially comprehensive way and
b) to balance between area coverage (completeness) and the classification’s reliability (correctness).
If the classes of a given scheme are organized hierarchically (fuzzy decision tree), completeness can
be increased by reliably re-assigning doubtfully classified entities to their according parent classes
(see Sections 2.3 and 3.4). Therefore, objects that cannot be clearly assigned to one of the scheme’s
leaf classes (L-classes), can be doubtlessly assigned to one of their node classes (N-classes) if the
defuzzification criteria for this class are fulfilled. This way the classification coverage and reliability
increase simultaneously, although the semantic level of detail decreases.

The results depicted in Figure 12, bottom show that if even a few objects could be doubtlessly
re-assigned to their parent class (1.29% of the scene’s area were re-assigned to “vegetation”) the scene’s
classification reliability increased: after re-assignment all crisp classified objects had a membership
degree of at least µ0 ≥ 0.83 instead of µ0 ≥ 0.54 to their BCR, a fuzziness of Fuzz1 ≤ 0.68 instead of
Fuzz1 ≤ 0.80 and an ambiguity of AISB ≤ 1.20 instead of AISB ≤ 1.34 (see Figures 11 and 12).

When maximum reliability was implemented (no-doubt rule), the majority of non-vegetated areas
remained unclassified, although almost all vegetation areas could be either assigned to one of the
detailed vegetation sub-classes or to the general “vegetation“ class. This indicates that “non-vegetation”
areas could not be absolutely doubtlessly identified in the image data using the developed class
hierarchy and class descriptions. Therefore, in order to doubtlessly identify “non-vegetation” areas,
the class definition should be revised.

Aside from the need for crisp final classification results, intermediate results may also need
to be crisp for rather complex image analysis tasks, in order to stop or proceed processing, or to
decide for a particular branch of further processing. For such complex tasks, adjusting the necessary
reliability of the intermediate results can be performed through analysing their uncertainty, fuzziness
and ambiguity, as presented herein. However, this has not been investigated yet.

In the context of Agent Based Image Analysis (ABIA), maximising the reliability of individual
entities (aka image object agents), or the overall reliability of a fuzzy classification result could be
defined as a goal for software agents, and therefore contribute to optimizing autonomously adapted
rule sets or image objects [25].

5. Conclusions

Fuzzy classification rules for remote sensing data are designed by domain experts. They semantically
describe the desired classes and their physical properties measureable by remote sensing sensors in
a prototypical manner [26]. Thereby, the ideal representative of a given class fulfils all its criteria to
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100% satisfaction. Measurements deviating from the ideal case lead to an explicit decrease of class
membership, allowing experts to explicitly express their certainty or uncertainty about an entity’s
membership to a particular class. For a particular entity (pixel or image segment) this means that if the
measured values for its properties (DN values, shape properties, texture values etc.) do not fulfil the
prototypical descriptions of a class to 100% satisfaction, the entity can still be a gradual member of this
class. This allows entities to be a gradual member of several classes simultaneously, indicating that
their class assignments are not 100% clear, that is, for a certain degree they are ambiguous and therefore
unreliable. The latter can support rule set developers to rework the rule set design, for example to add
or change rules for particular classes.

The advantages of fuzzy classification techniques in the context of remote sensing image analysis
have been previously discussed in published literature [27,28]. The advantages for OBIA in particular
have been outlined by Benz et al. [6] and Blaschke [29]. However, from a user’s perspective, fuzzy
classification results are unwanted, since they are not or barely manageable [13]. Users actually expect
crisp classification results that are as reliable as possible; whereas the individual user can decide to
what degree he or she can accept uncertainty, fuzziness and ambiguity of the crisp classification results.
As the example given demonstrates, the presented methods support the user in balancing between the
crisp classification’s reliability and the amount of classified entities, that is, the area covered by (crisp
and reliably) classified pixels or segments.

For hierarchical classification schemes with inheritance mechanisms as applied here, the
classification’s reliability can be increased, when formerly unclassified entities are re-classified and
fuzzy assigned to parent classes (N-classes) in the hierarchy. This way, although semantic precision
decreases for these entities, the amount of classified entities can increase, while simultaneously the
classification’s reliability is kept on a desired level. If unclassified entities cannot be assigned to one of
their N-classes, adding sibling classes could be a solution.

Future investigations on defuzzification should also comprise defuzzification of intermediate
fuzzy classification results and their reliability within rather complex analysis processes such as
ABIA [25]. Especially in ABIA, quantified reliability, that is, a degree of reliability expressed by
uncertainty, fuzziness and ambiguity, could be defined as a goal for agents to achieve in order to control
autonomous adaptation processes. Analysis methods such as the Receiver-Operating-Characteristics
(ROC) curve, as has been applied for segmentation optimisation by Drǎguţ et al. [30], should be further
investigated in the context of fuzzy classification methods of remote sensing data.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/6/467/s1,
Figure S1: Use of customized algorithm “Defuzzification Indices” in the eCognition process tree, Figure S2:
Rule set loaded and applied in eCognition Trial 9.1.3. before defuzzification.
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Appendix A

Siler & Buckley [4] suggest a more precise method for determining an entity’s classification
fuzziness by:

Fuzz2 = exp (−∑m
i=0 (µiln (µi)− (1.0−µi)− ln (1.0−µi))) (A1)

Although this method is more precise, its values are less easily interpreted: In Fuzz2 the summand
of the exponent equals to ∞ if µi = 1.0 which means Fuzz2 = e−∞ = 0.0 if an entity has at least one class
membership with µi = 1.0. Vice versa the summand equals −1 if µi = 0.0. For the case that an entity
remains unclassified, that is, all µi = 0.0 the exponent of Fuzz2 equals to m and Fuzz2 = em. Thus, the
value range for Fuzz2 is given by 0.0 < Fuzz2 < em. However, taking into account that an entity’s
fuzziness of a single classification should have its maximum for µi = 0.5 and its minimum for µi = 1.0
or µi = 0.0, Fuzz2 increases continuously but non-monotonic for µi ≅ 0.0 (see Figure A1). Additionally,
Fuzz2 increases for µi < 0.5 although it should decrease. Alternatively, the fuzziness of an entity’s
classification can be expressed similar to Equation (10) by:

Fuzz3 = exp (−∑m
i=0 ∣µi + ln (µi)− (1.0−µi)− ln (1.0−µi)∣) (A2)

The summand of the exponent in Fuzz3 equals 0.0 if µi = 0.5. Vice versa it equals ∞ for µi = 0.0
and µi = 1.0. That is, if an entity has a class membership of µi = 0.0 or µi = 1.0 for at least one class
Fuzz3 = e−∞ = 0.0. Vice versa Fuzz3 = 1.0 if all µi = 0.5. The more µi are close to 0.5 the closer Fuzz3

gets to 1.0. Fuzz3 is m-independent, thus, the value range of Fuzz3 is 0.0 ≤ Fuzz3 ≤ 1.0 (Figure A1).
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Fuzz2 and Fuzz3 are similar to the method suggested by de Luca & Termini [20] as mentioned in
the text. For the initial classification example demonstrated in Section 3 their descriptive statistics are
displayed in Table A1.

Table A1. Descriptive statistics of Fuzz2 and Fuzz3 for initial classification (Section 3).

Fuzz2 Fuzz3

Max 53.0706 0.0023
Mean 1.2510 0.0000
Min 0.0000 0.0000

Standard Dev. 2.3368 0.0000
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(centre left), CI* (centre right) and AIB (bottom) after segmentation and initial fuzzy classification (L-
Classes) of WV-2 scene of Munich as depicted in Figure 3. 
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