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Abstract: The Tibetan Plateau (TP) has been observed by satellite optical remote sensing, altimetry,
and gravimetry for a variety of geophysical parameters, including water storage change. However,
each of these sensors has its respective limitation in the parameters observed, accuracy and
spatial-temporal resolution. Here, we utilized an integrated approach to combine remote sensing
imagery, digital elevation model, and satellite radar and laser altimetry data, to quantify freshwater
storage change in a twin lake system named Chibuzhang Co and Dorsoidong Co in the central TP, and
compared that with independent observations including mass changes from the Gravity Recovery
and Climate Experiment (GRACE) data. Our results show that this twin lake, located within the
Tanggula glacier system, remained almost steady during 1973–2000. However, Dorsoidong Co has
experienced a significant lake level rise since 2000, especially during 2000–2005, that resulted in the
plausible connection between the two lakes. The contemporary increasing lake level signal at a rate of
0.89 ˘ 0.05 cm¨ yr´1, in a 2˝ by 2˝ grid equivalent water height since 2002, is higher than the GRACE
observed trend at 0.41 ˘ 0.17 cm¨yr´1 during the same time span. Finally, a down-turning trend or
inter-annual variability shown in the GRACE signal is observed after 2012, while the lake level is still
rising at a consistent rate.

Keywords: Tibetan Plateau; water mass balance; remote sensing

1. Introduction

The Tibetan Plateau (TP), serves as the “water tower” of Asian countries, accommodating 1055
alpine lakes with a total lake area equals to 41,831.7 km2 [1]. It also hosts approximately 36,000 glaciers
spread across the northern (Tianshan ranges), central (Tanggula mountain), and southern (Himalaya
ranges) parts of the region. The TP serves as the origin of several major river systems in East and South
Asia, such as the Yangtze, Yellow, Mekong (also called Lancang in the upper section), Brahmaputra
(Yaluzangbu), and Ganges River. The TP is a focal point of a wide range of research interests, covering
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atmosphere, cryosphere, hydrosphere, and lithosphere. The reason it is so engaged in geoscience is not
only because of its unique geographical formation, with an average altitude over 4000 m formed by
geological processes, but also its sensitivity to the anthropogenic activities and climate change [2].

The freshwater storage in glaciers apparently experienced an accelerated loss arguably due to the
contemporary climate-warming episode in recent years. From remote sensing and in situ records, the
rising rate of temperature over the entire TP is estimated at 0.01–0.05 ˝C¨yr´1 [3–5] during the past
2–3 decades. Rapid glacier depletion, along with permafrost degradation also caused by temperature
changes, indicates that the water in a frozen state changes tremendously over the TP. This warming
procedure has caused many glacier-fed lakes to increase, especially over the last two decades. Thus,
monitoring of lake dynamics is important and can be used as a proxy to study the amount of melting
ice from thinning glaciers and/or due to changing or recently increased patterns of precipitation [6].
However, most of studies [7] conducted so far either focused on lake extent change, or short-term
water level change using limited sensors. These limitations, either spatial or temporal, have made
the exact quantification of water storage changes difficult. Hence, other supplemental observation is
desirable to study long-term lake volume changes.

The observation of freshwater storage change has been realized by satellite radar altimetry, laser
altimetry, optical remote sensing, and gravimetry approaches. However, each spaceborne sensor has its
own advantages and limitations in spatial-temporal resolution. For example, radar altimetry satellites,
such as Jason-2 (Envisat), has a 10 (35) day repeat cycle and weather-free capability to measure surface
elevation, but its large footprint (3–5 km in radius), customized for open ocean study, hinders the
retrieval of surface heights within steep and rugged terrain. The radar waveform, contaminated by a
mixture of surface types, is still a challenge for current waveform retracking technologies. Another
major limitation in radar altimetry are the large spatial gaps between ground tracks. The interval
of parallel ground tracks is about 60 km for Envisat and 250 km for Jason-2 at the latitude of the
TP. Hence, A large number of lakes within the TP cannot be monitored. The advantage of laser
altimetry missions, such as the Ice, Cloud, and land Elevation Satellite (ICESat), a mission dedicated to
cryosphere studies, is the usage of laser photons to detect the height within small footprints (~70 m in
radius). Unfortunately, the mission had just been operated in campaign mode with a short time span in
2003–2009. The next opportunity would be the ICESat-2 mission scheduled for launch in 2018. Finally,
The Gravity Recovery and Climate Experiment (GRACE) [8] provides measurements of time-variable
gravity that can be converted to mass redistribution. However, GRACE has a coarse resolution of a
few hundred kilometers that makes lake studies difficult [9].

A potential solution to fill spatial-temporal gaps left by the instruments mentioned above is an
integration of multiple sensors and products, such as combining altimetry and synthetic aperture
radar (SAR) images [10], or relating water level with extent/volume by coincident altimetry and
high-resolution satellites images [11]. Optical satellite remote sensing can effectively assist the
monitoring of water storage changes. For a relative large lake such as Chibuzhang Co and Dorsoidong
Co, mid-resolution remote sensing images may by sufficient to detect lake surface variations. For
example, since the 1970s, Landsat series provide 16-day revisit cycle with 30 m medium resolution
raster file with multispectral information. It could further compose false-color images to analyze land
use/land cover (LULC). The Thematic Imagery-Altimetry System (TIAS) proposed in [12] intended to
estimate water level change using historical Landsat imageries in Lake Mead, NV, USA. They exploited
historical Landsat imageries to extend the time series of water level towards multi-decadal coverage,
longer than a connection of operated and existing altimetry satellites. They applied the concept of
hypsometry (reconstruction of contour from instant outline of a waterbody) to compute the elevation
of the water level by overlapping water outline with a digital elevation model. The application of TIAS
at Lake Mead, with relatively steep terrain, has accuracy at 0.85 ˘ 0.63 m as compared with gauge
data. Based on their simulation of error budget, the accuracy at a terrain slope of <20˝ and a number
of shoreline pixels around 7000, similar to the geographical setup in Chibuzhang-Dorsoidong Co, the
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accuracy could reach the <0.5 m level. Hence, this study intends to examine the applicability of the
TIAS at these alpine lakes for investigation of water storage changes in the last 40 years.

This study utilizes historical archives of Landsat images, including multiple sensors onboard
Landsat-1/-2/-5/-7/-8. The images are intersected with the Shuttle Radar Topography Mission (SRTM)
digital elevation model (DEM) to collect height information along the shoreline of each studied lake.
The lake level is then estimated by locating the most probable value of height samples through the
Generalized Extreme Value (GEV) fitting procedure. The lake level change since 1970s is unveiled
by using this TIAS approach. As further combined with SRTM, the water volume is calculated by
integrating column water in each SRTM grid. The result is finally compared with GRACE gravity
anomaly, with a purpose to infer a broader scale mass change within a few hundreds of kilometers.
Other factors such as precipitation that potentially disturb water budget is also inspected, referring to
the Tropical Rainfall Measuring Mission (TRMM) data.

An introduction of study area, the central TP covering this twin lake and Tanggula glacier system
is given in Section 2. The data utilized in this study, including satellite altimetry (Envisat, Jason-2, and
ICESat), optical remote sensing (Landsat), radar/microwave radiometry (TRMM), and gravimetry
(GRACE) are described in Section 3. Sections 4 and 5 include a validation of TIAS water level estimates,
and discuss an integrated observation of water mass change estimated by TIAS and GRACE data.
Finally, the conclusion of the study is reported in Section 6.

2. Study Area

The twin lakes, named Chibuzhang Co (Co means lake in Tibetic) and Dorsoidong Co, are located
in the central TP (Figure 1). Each lake varied independently in earlier years and became interlinked in
the mid-2000s [13]. Chibuzhang Co is a glacier-fed lake with water sources from glaciers surrounding
Gêladaindong Mountain, located 50 km eastward. Dorsoidong Co is also a glacier-fed lake that is
a bit smaller than Chibuzhang [13]. Water sources filling into Dorsoidong Co are mainly from the
Purog Kangri Mountain, considered to be the third largest glacier in the world, after the polar regions,
located northwest of the lake in ~50 km (Figure 1). There are several other adjacent lakes near the
Tanggula Mountains, including Yagen, Laorite, Botao, and many other lakes with smaller areas. Here
we focus on this twin lake with a combined surface area greater than 1000 km2. According to [7], it is
suggested that 53% of the total lake area is in charge of about 61% of mass change over the entire inner
TP (ITP). Hence, we assume that this twin lake is large enough to represent a considerable part of mass
contribution in GRACE signal.

The TP is divided into the North and South Tibetan blocks by the Tanggula Mountains, which is a
fold belt representing a late Jurassic–early Cretaceous suture belt. The belt is no longer active according
to recent GPS measurements [14]. Tanggula Mountains also served as geographical boundary between
the continental climate and the summer Indian monsoon over the plateau [15]. The northern part
of the range is subject to continental air masses and the southern part is affected by Indian summer
monsoon. The tallest peak, Gêladaindong Mountain, with an elevation of 6621 m above sea level, is
also the headwater of Yangtze River. The average temperature of the Tanggula Mountains is about
´5 ˝C during the year. In summer, the temperature reaches over 20 ˝C, while in winter it drops below
´15 ˝C but, in the area over 5000 m, it remains cold year round [16]. The snow and hailstones in alpine
areas indicate conditions favorable for glacier development. However, due to the climate change that
caused a global warming pattern, temperature over the plateau exhibits an increasing trend at about
0.016 ˝C¨yr´1 [17]. Most glaciers in Tanggula Mountains started to retreat since the 1960s. Previous
study showed that a general retreat rate in glaciers near Gêladaindong is about 1.29 km2¨ yr´1 during
1969–2002 [18]. Hence, several adjacent lakes had been observed clear increasing in water volume.
Therefore, it is quite a critical issue to accurately monitor and quantify glacier depletion and lake level
rise in this area.
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Figure 1. (a) Locations of Chibuzhang Co, Dorsoidong Co, and Tanggula glacier system in the central 
TP. The boundary of TP and relative location of study site is displayed in the overview map. Yellow 
and red lines in the main figure are Envisat and Jason-2 ground tracks, respectively. White square 
near 33.5°N and 90°E is the center of GRACE 2° × 2° grid. Blue outline of glaciers is from the 
Randolph Glacier Inventory (RGI) [19]; and (b) a blow up view of this twin lake, with ICESat actual 
ground tracks color-coded by year of data, 2003–2009. The passes are mainly centered in western 
basin of each lake. 

3. Satellite Data and Processing Method 

3.1. Radar and Laser Altimetry 

In this study, both radar and laser altimetry data products are used to estimate lake level 
change in this twin lake system. Satellite radar altimetry is classically used to observe surface height 
from active remote sensing approach, especially for open ocean. It is basically to estimate surface 
heights by timing the transmission of electromagnetic pulses generated by an onboard altimeter. The 
duration of transmission is the two-way travel time between emission and reception of the signal 
reflected from the nadir surface. After appropriate corrections for medium terms (GPS ionosphere 
and dry/wet troposphere delay models), geophysical terms (solid Earth tide, pole tide), and 
hardware (e.g., ultra stable oscillator, USO), surface height with respect to a reference ellipsoid is 
approximated by subtracting the measured range from the orbital altitude. After that, an extra step 
called radar waveform retracking is executed to fine-tune the measured ranges (its impact is at least 

Figure 1. (a) Locations of Chibuzhang Co, Dorsoidong Co, and Tanggula glacier system in the central
TP. The boundary of TP and relative location of study site is displayed in the overview map. Yellow
and red lines in the main figure are Envisat and Jason-2 ground tracks, respectively. White square near
33.5˝N and 90˝E is the center of GRACE 2˝ ˆ 2˝ grid. Blue outline of glaciers is from the Randolph
Glacier Inventory (RGI) [19]; and (b) a blow up view of this twin lake, with ICESat actual ground tracks
color-coded by year of data, 2003–2009. The passes are mainly centered in western basin of each lake.

3. Satellite Data and Processing Method

3.1. Radar and Laser Altimetry

In this study, both radar and laser altimetry data products are used to estimate lake level
change in this twin lake system. Satellite radar altimetry is classically used to observe surface height
from active remote sensing approach, especially for open ocean. It is basically to estimate surface
heights by timing the transmission of electromagnetic pulses generated by an onboard altimeter. The
duration of transmission is the two-way travel time between emission and reception of the signal
reflected from the nadir surface. After appropriate corrections for medium terms (GPS ionosphere and
dry/wet troposphere delay models), geophysical terms (solid Earth tide, pole tide), and hardware (e.g.,
ultra stable oscillator, USO), surface height with respect to a reference ellipsoid is approximated by
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subtracting the measured range from the orbital altitude. After that, an extra step called radar
waveform retracking is executed to fine-tune the measured ranges (its impact is at least a few
centimeters) by tracing the midpoint of the leading edge in waveforms coming from a variety of
surface types. Waveform retracking is replaced the classic Brown model [20], which is more suited to
process the waveforms returned from open ocean with statistical parameters. Empirical waveform
retrackers were also invented to analyze radar echoes from ice sheet [21,22], ice floes [23] and, more
recently, coastal areas [24], inland waters [25–28], and even for bare land [29]. The accuracy of satellite
radar altimetry is generally ranging from the 5 cm level for open ocean [30], to the 10–40 cm level for
coastal and large inland waters [24,31], and the 30–90 cm level for narrow rivers [32,33].

Envisat was launched by European Space Agency in March 2002 and terminated in April 2012.
It worked in a sun-synchronous orbit with a 35-day revisit period. It carried a dual-frequency
radar altimeter operating in Ku and S band with an intention to measure satellite-Earth distance
and to mitigate ionosphere disturbance at the same time [34]. However, the ionospheric effect,
quantified as the total electron content (TEC) that caused transmission delay, is better mapped by
worldwide GNSS ground stations. Hence the Global Ionosphere Map (GIM) released by NASA/JPL
has been extensively used as a reference to correct time delay and ultimately the lengthened distance.
Similarly, the tropospheric correction has adopted global model provided by the European Centre for
Medium-Range Weather Forecasts (ECMWF) instead of onboard radiometer. The altimeter data used in
this study is the Geophysical Data Record (GDR, version 2.1) released by CNES Archiving, Validation,
and Interpretation of Satellite Oceanographic data (AVISO) service. We utilized ICE-1 retracking
algorithm provided by AVISO with a time span covering regular operation mode, 2002–2012 (cycle
6–93). ICE-1/ICE-2 algorithms developed for analyzing specular shape of waveform over ice sheet
are applicable for lake observations with similar waveform patterns [35–38]. As shown in Figure 1,
Envisat had two passes, #83 and #305, with crossovers in study site. However, because of an USO issue
not recoverable by post processing, pass #83 had only three usable cycles at this location during entire
mission span. Hence we chose only pass #305 and compared with other data sources.

The Ocean Surface Topography Mission (OSTM)/Jason-2 is a follow-on mission of two successful
predecessors, TOPEX/Poseidon and Jason-1 [39]. It was launched in June 2008 and still in a normal
condition to present. It works in a non-sun-synchronous orbit with approximate 10-day revisit period
to better solve short-term ocean surface changes. It carries a solid-state Poseidon-3 dual-frequency
altimeter working in Ku and C bands. We utilized GDR version T (JA2_GPS_2PTP) provided by
AVISO with the time span covering cycle 1 in July 2008 to cycle 270 in November 2015. Similar ICE
retracking algorithm was used to extract water surface height at pass #242 specified in Figure 1. For
both altimeters we first created a water mask ~1 km away from the shoreline to prevent potential land
contamination. A threshold of backscattering coefficient at 15 dB, indicating a returned signal from a
smoother surface in the radar perspective, was selected to collect water measurements. This threshold
was chosen based on an examination of points falling within the water mask.

Laser altimetry used here is the ICESat mission operated from 2003 to 2009. Principally similar to
radar altimetry, one calculates the timing between transmissions of three lasers, in wavelengths of 1064
nm and 532 nm, to profile vertical distribution all the way from cloud top to the Earth’s surface [40].
By applying the “photon counting” technique [41] for surface detection, the elevation of nadir surface
is estimated. However, due to a pump diode failure soon after launch, ICESat could not be operated
continuously; thus, a campaigned mode was switched to alternatively extend the mission life. It only
worked in a 33-day to 56-day campaigns mostly in February–March/May–June/October–November
during 2003–2009. The measurement at timing of season transitions is still valid to study gradual
changes in cryosphere and other phenology with inter-annual cycle. The ICESat data used here is
released by the NASA’s earth observing system clearing house (ECHO) online portal [42]. Altimetry
land product number 14 (GLA14, release-33) was used to extract the high-rate (40 Hz) elevation data.
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3.2. Optical Remote Sensing and Water Detection

Optical remote sensing satellites have been used extensively to retrieve surface reflectance and
radiative information for quantification of geophysical parameters. For optical satellite images, we
used Landsat-1/-2/-5/-7/-8 to extract water area by using multispectral analysis. Landsat-1 launched
by NASA in 1972 was originally named ERTS-1 (Earth Resources Technology Satellite). It carried a
multispectral scanner (MSS) operating in green, red, and two near-infrared bands. It worked in the
Worldwide Reference System-1 (WRS-1) path/row system with an 18-day repeat cycle. Landsat-2
launched in 1975 carried a similar MSS instrument ranging from 500 to 1100 nm. The original resolution
of MSS pixel was 79 ˆ 57 m, but it was later resampled to 60 m. Although the number of bands in
MSS was less than the following Thematic Mapper (TM) and Enhanced Thematic Mapper Plus (ETM+)
flying onboard Landsat successors, it contained two essential bands, green and near-infrared, for
classification of water bodies. Landsat-5 covered from 1984 to 2013. It carried the TM operated in seven
bands ranging between 450 nm and 2350 nm. In 1999, Landsat-7 was launched with the ETM+ similar
to TM except for an extra panchromatic band at 15 m resolution. Finally, Landsat-8 was launched
lately in 2013 with an onboard Operational Land Imager (OLI), sensing wavelengths between 430 nm
and 2290 nm. While combined with the thermal infrared sensor (TIRS), the spectral coverage is up to
12,510 nm.

The combined time span of a suite of Landsat imageries allows us to observe the twin lake from
1973 to present. With a median spatial resolution at 60 m for Landsat-1/-2 and 30 m for the rest, they
have a nominal revisit cycle at 16–18 days. For spectral resolution, Landsat imagery covering from
visible light to infrared band is sufficient to detect water existence. All the images are in GeoTiff format
and are available at no cost from the U.S Geological Survey (USGS) EarthExplorer website [43] The
WRS path/row at this twin lake is frame 139/37.

In this study, all the available raw images (level 1) were first gathered and then appropriate
images with less cloud cover along shoreline were selected to extract water surface information. In
the end, a total of 325 images for Chibuzhang Co and 329 images for Dorsoidong Co were used in the
following TIAS computation. All the radiometric information stored as digital numbers (DN) in each
pixel was first converted into the top-of-atmosphere reflectance (ToA) for all the images collected. The
conversion addresses effects caused by varying sunlight angle and distance, as shown in Equations (1)
and (2) [44]:

Lλ “ gainˆDN ` bias (1)

ρλ “ πˆ LλˆESUNλˆ cosθs (2)

where Lλ is the cell value as radiance; DN is the cell value digital number; gain is the gain value for a
specific band; bias is the bias value for a specific band; ρλ is the unitless planetary reflectance; d is the
Earth-Sun distance, in astronomical units; ESUNλ is the mean solar exoatmospheric irradiances; and
θs is the solar zenith angle.

For Landsat-8 images, the conversion follows equations shown below [45]:

ρλ
’ “ MρQcal ` Aρ (3)

where ρλ
’ is the ToA planetary reflectance (without correction for solar angle); Mρ is the band-specific

multiplicative rescaling factor; Aρ is the band-specific additive rescaling factor; and Qcal is the quantized
and calibrated standard product pixel values (DN). The next step to correct ToA reflectance for the sun
angle is expressed as:

ρλ “ ρλ
’{sinpθSEq (4)

where ρλ is the ToA planetary reflectance and θSE is the local sun elevation angle.
Since the cloud and hazy images were removed during the first step of data collection, the

atmospheric correction was not applied further to the ToA in this study, for simplification. It is noted
that the procedure without considering atmosphere and aerosol condition may cause an error of 5%,
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for example, using similar method for glacier detection [46]. There are several approaches developed
to classify water surface from remote sensing images [47]. These methods can be divided into two
types: supervised and unsupervised. Supervised classification requires a setup of training points
based on a priori information, and the algorithm depends highly on the accuracy of training input.
It usually requires trial-and-error iteration to improve the classification accuracy, while the training
sample could not be used across images most of the time. For unsupervised methods, they can be
further categorized as statistical algorithms and threshold methods. Statistical approaches consider
the degree of uniqueness for each pixel and classified them into different clusters. Threshold methods
set up a boundary in band combinations to distinguish the target from original images. In this study,
the Modified Normalized Difference Water Index (MNDWI) [48] utilizing an unsupervised threshold
approach was used. MNDWI is a modification of Normalized Difference Water Index (NDWI) [49] to
improve the distinguishing result between water and built-up land. The equation of MNDWI is given
in Equation (5), which is derived from a combination of the green and mid-infrared bands.

MNDWI “ pG ´ MIRq{pG ` MIRq (5)

where G represents green band in visible light and MIR is the mid-infrared band.
Since the bandwidth and band center has a bit shift across Landsat optical sensors, a selection

of band and customized threshold setup was used, as given in Table 1. Once the MNDWI of each
image composed, a thresholding procedure was applied to divide each pixel into water or non-water
group. The threshold was determined by visual inspection of the water outline and comparison with
nature/false color images.

Table 1. Band selection for Landsat series to compute MNDWI and threshold used to distinguish water
while index value > threshold.

Landsat # (Sensor) 1 (MSS) 2 (MSS) 5 (TM) 7 (TM) 8 (OLI)

Green Band 4 4 2 2 3
MIR Band 7 7 5 5 6

Index Threshold 0.4 0.4 0.2 0.2 0.4

3.3. From Water Area to Water Level Estimate

The TIAS system proposed in [12] is to approximate lake level by collecting elevation information
at the intersection of remote sensing imageries and a DEM. It picks pixels along the shoreline of the
extracted water body and obtains elevation information from the co-registered DEM. The maximum
likelihood estimate of water level can be found from a cluster of height “samples”. The workflow of
TIAS has been elaborated in [12] and will be briefly described in this section.

As illustrated in Figure 2, we first obtained the Shuttle Radar Topography Mission version 3
(SRTM C-band V3 at 1 arcsec) DEM at the study site. However, the raw DEM cannot be directly
used since the elevation over the water area is null. This is because radar signal could not penetrate
liquid water while composing the DEM. Therefore, we applied an empirical method to replace water
mask by extending lakeside terrain towards the lake center, assuming the land remained at a constant
slope below the water surface. As shown in Figure 2a, the raw DEM has a constant elevation over
lake, thus, we cannot attain the height while lake extent shrinks into the water mask. By utilizing
a bilinear extrapolation for DEM modification [12], the height of the lake bottom, or simulation of
lake bathymetry, is achieved, as displayed in the lower panel of Figure 2a. It is worth mention that
this empirical approach may only be valid near the shore, say within a few tens of meters. A longer
distance from the shoreline may result in large errors in the modified DEM due to invalid assumptions
of a constant slope.

Next, we calculated the value of MNDWI by using Equation (5) to determine that each pixel is
water or non-water by thresholding (Table 1). Panel b in Figure 2 is an example of an original natural
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color image and its classification result for watery areas. After extraction of the water outline from
the classification, outline pixels are placed onto the modified DEM to find intersections. These DEM
intersections, as displayed in panel c, become height samples of the lake at certain snapshots. It is
emphasized that Figure 2c is an example of shoreline detection of the entire twin lake. For analysis in
this study, the two lakes were separated for individual water level computation. Finally, these samples
would form a histogram with a mean value and some noises due to DEM uncertainty and classification
errors (see panel d). Thus, we could apply the GEV fitting function to locate the best estimate of height
among these samples. We noticed that the elevation of SRTM V3 was based on the EGM96 geoid
model instead of the most up-to-date EGM2008 or EIGEN6 references. However, because we focused
on height change of water levels relative to a consistent reference, the accuracy of the absolute water
level was not a concern in the analysis. For example, a deviation of the differences at mostly <5 cm
between EGM96 and EGM2008 in this twin lake was ignored.
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Figure 2. Workflow of TIAS at study site. (a) Modify raw SRTM DEM and fill in simulated
lake bathymetry; (b) compute MNDWI from Landsat bands and use a threshold to separate
water/non-water pixels; (c) extract water body outline and intersect with modified DEM to obtain
height information; and (d) use Generalized Extreme Value fitting function of find the maximum
likelihood estimate of height.

3.4. GRACE Gravimetry Mission Data

Satellite gravimetry is an emerging technique used to observe Earth’s gravity field, including
static and temporally changing terms. Understanding of the distribution/redistribution of Earth’s
mass is helpful for monitoring environmental changes due to anthropogenic or natural forcing. The
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Gravity Recovery and Climate Experiment (GRACE) [8] is a joint United States and German satellite
mission that was lunched on 7 March 2002. The primary science objective is to measure the Earth’s
gravity field and its time variability with unprecedented accuracy. It is composed by two identical
satellites about 220 km away. The K/Ka-band microwave ranging (KBR) system and GPS receivers as
well as other on-board instruments are used to determine the orbit perturbation, mainly due to the
inhomogeneous gravity field. The gravity anomaly can be derived from the distance change between
the two satellite detected by the KBR system. GRACE is used to solve both the static and temporal
gravity fields. The static gravity field is defined as the long-term average of the total mass measured
by GRACE. Once the static gravity field has been determined, we assume some factors below the crust
remains unchanged and all the atmospheric loading can be fully eliminated. The temporary gravity
anomaly is finally calculated by subtracting the static model from the instant gravity field. However,
the signal is not only surface water, but also soil moisture, groundwater mass change, and other mass
redistribution near the Earth’s surface, such as the post-glacial rebound.

The gravity field data from GRACE is decomposed as spherical harmonic (SH) coefficients, which
can be approximately understood as sinusoidal functions in both zonal and longitudinal direction.
Different wavelengths of spherical harmonics are expressed by degree and order, where degree/order
is the index of spherical harmonics in zonal and longitudinal directions. The higher the degree/order,
the more detailed feature can be explained. The original GRACE data inverted gravity field solution
can reach about degree/order of 200, but it is filled with noise in high frequencies. Thus, the standard
release of GRACE data truncated the SH degree/order at 60–90 to solve the Earth’s gravity field at a
spatial resolution of ~330 km. Once we have the Earth’s gravity anomaly, the mass can be converted
into equivalent water height (EWH) by analogy with the height of water per unit area. In this study,
three monthly solutions (long enough in time to be consist of recognizable mass changes) provided
by GeoForschungsZentrum (GFZ), Jet Propulsion Laboratory (JPL)/NASA, and the Center for Space
Research (CSR, The University of Texas at Austin) were used and the C20 derived from Satellite Laser
Ranging replaced those from GRACE [50]. A de-correlation process and 200 km Gaussian smoothing
was also applied to reduce the north-south stripes of gridded EWH [51,52]. We subtracted the mean
field (GIF48, [50]) from all GRACE monthly solutions to obtain the anomaly.

GRACE CSR/GFZ/JPL L2 Release 05 (RL05) monthly geopotential coefficients, covering from
April 2002 to September 2015, were used here to estimate the total EWH over the study area. For
each monthly solution, we first corrected the coefficients by replacing degree 1 [53], and zonal degree
two [54] by using CSR’s spherical harmonics in January 2006. We also corrected the glacial isostatic
adjustment (GIA) IJ05_R2 model [55]. The spherical harmonic coefficients obtained from data agencies
were converted into a 180 ˆ 180 EWH grid and picked one cell (2˝ by 2˝) near 33.5˝N and 90˝E.
However, it is emphasized that the studied lake is still small relative to the grid size of GRACE monthly
solution. The data used here is to reveal the neighboring condition of a combined geodynamical and
hydrological evolution, including lake, glacier, soil moisture, groundwater, permafrost, and residual
tectonic movement. There are even more uncertainties in the GRACE solution of sub-grid study,
such as leakage problems, which require further study to piece together all temporal changes of
abovementioned geophysical parameters in neighboring grids. A better approach to compare with
GRACE may be the forward modeling [56], e.g., to set the contribution purely from lake area and
convert the field into the spherical harmonic domain. After applying similar smoothing processes, as
GRACE filtering and scaling, the signal would potentially be more realistic to the actual lake mass
time series.

3.5. TRMM Precipitation Record

The Tropical Rainfall Measuring Mission (TRMM) jointly operated by NASA and JAXA offers
unprecedented high-quality precipitation measurements over the tropical and subtropical regions [57].
It was launched in 1997 and started to deliver regular rainfall product since January 1998. It carries
suites of instruments including a single-frequency precipitation radar (PR), TRMM microwave imager
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(TMI), clouds and the Earth’s radiant energy sensor (CERES), visible and infrared scanning radiometer
(VIRS), and lightning imaging sensor (LIS). The orbital design has an inclination of 35˝ and low altitude
at 350–400 km. Along with wide-swath or conically scanning capability, these onboard sensors perform
250–880 km swath in cross-track and provide measurement within 50˝N–S, covering 80% of the Earth’s
surface. Here we used the level-three monthly solution (product 3B43 version 7) of daily rainfall rate
at 0.25˝ ˆ 0.25˝, to obtain a reference of mass anomaly potentially contributed by precipitation. We
separated the study area roughly into two basins based on adjacent topography and water features:
the left side for Dorsoidong Co covers a spatial box bounded 33˝N–34˝N and 89˝E–90˝E, with 16
TRMM grids, while the right side for Chibuzhang Co covers a similar size of spatial box bounded
33˝N–34˝N and 90˝E–91˝E. We used the entire 3B43 dataset spanning January 1998 to August 2015.
For each month we took an arithmetic mean of 16 grids within the boundary to obtain the average
rainfall rate in mm¨day´1.

4. Results

4.1. Validtion of Altimetry Results

Temporal water level variation of Chibuzhang Co and Dorsoidong Co analyzed separately by
TIAS is shown in Figure 3. In this figure, a˘1σ error bar at each point is plotted to show the uncertainty
during the GEV fitting procedure. It is an indicator of combined error resulting from the relative height
error of SRTM, water misclassification, and uncertainty due to Landsat’s 30 m coarse resolution. This
figure indicates two lakes varied independently before 2005, with a separation in height by about
8 m. The independency can be traced back to June 1973 according to the first available snapshot
taken by Landsat-1 MSS. Between 2000 and the end of 2005, the Dorsoidong Co experienced a sharp
increasing in water level at 1.19 m¨yr´1 while the Chibuzhang Co remained almost stable, with a
gradually increasing rate at 0.06 m¨ yr´1, until 2005 when the two lakes became interlinked. After the
interconnection, this twin lake appeared a combined rising trend at 0.40 m¨yr´1 and 0.46 m¨yr´1 as
computed from Chibuzhang Co and Dorsoidong Co, respectively.

To validate the result given by TIAS, the time series is compared with other sensors, such as
nominally more accurate ICESat estimates. ICESat finished a total of 35 usable passes in this twin
lake: 20 in Chibuzhang Co and 15 in Dorsoidong Co (see Figure 1b). It is worth mentioning that since
the ICESat data spanning before and after the linkage of these two lakes, passes in each lake should
be treated individually to show the independent variation. To compare both loosely sampled time
series, we selected ICESat points within˘5 days of TIAS solutions and assumed the water level had no
change during such a short period. A temporal comparison between TIAS and ICESat results is shown
in Figure 4a, in which the up-pointing triangle means ICESat measurement from Chibuzhang Co and
down-pointing triangle means that from Dorsoidong Co. We see that both approaches have detected
the disconnection until the end of 2005, while the lines and triangles are almost overlapped after 2007.
The statistics of TIAS performance, while treating ICESat as reference data, is shown in Table 2. In this
table, the number in each cell indicates root-mean-square of the difference (RMSD) and the Pearson’s
correlation coefficient (CC) between two sensors (format: RMSD/CC). The upper-right triangle
numerates results from Chibuzhang Co and lower-left triangle is from Dorsoidong Co. According to
Table 2, TIAS estimates correlate very well with ICESat measurements with a RMSD at 0.30 m and a
CC at 0.90. This accuracy level also matches well with the simulation provided by the original TIAS
error analysis.
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Co, respectively) and (a) ICESat measurements (blue triangle in Chibuzhang and red triangle in
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Table 2. Comparison between sensors in the study area. Numbers in the matrix indicate
root-mean-square of the difference (RMSD) in meters and Pearson’s correlation coefficient (CC). The
format is RMSD/CC.

Chibuzhang Dorsoidong TIAS ICESat Jason-2 Envisat

TIAS – 0.30/0.90 0.49/0.93 1.02/0.65
ICESat 0.42/0.98 – N/A 0.54/0.93
Jason-2 0.48/0.94 N/A – 0.68/0.57
Envisat N/A N/A N/A –

For validation with other sensors, the rule of points selection, i.e., ˘5 days within each pair
of comparing points, is applied to all the following comparisons. Figure 4 also shows the water
level variation from Jason-2 (Figure 4b) and Envisat (Figure 4c) with the same TIAS time series as
background. In Figure 4b, we notice that Jason-2 is suffered from occasional jumps in water level,
even though an increasing trend is clearly detected. The cause of these jumps, mainly due to irregular
shapes of radar waveforms, is illustrated in Figure 5. Exemplified by the last cycle of this study (#270),
which has a clear drop in this time series of Figure 4b, a stake of waveforms along-track in the y-axis
has a misaligned leading edge away from its nominal 32.5 tracking gate in the x-axis. This pattern, due
to various reasons, has led to several abnormal drops in height measurements. Hence, the difference
between TIAS and Jason-2 is a bit higher than ICESat, with RMSD at 0.49 m and CC at 0.93. Since
Jason-2 has no overlap with the ICESat time series, it is difficult to quantify the relative accuracy of
Jason-2 itself.
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used in this study. The x-axis is the waveform gate from 1 to 104, and y-axis is the latitude of the ground
track. Ten waveforms are stacked and color-coded in relative power units. The nominal tracking gate
is 32.5.

On the other hand, the comparison between Envisat and TIAS, as exhibited in Figure 4c, is much
worse than others, where the RMSD and CC reaches only 1.02 m and 0.65. It is suspected that Envisat
pass #305, as shown in Figure 1a, has a narrow crossover of 8 km in the western basin of Chibuzhang
Co. Even though an 8 km-wide water channel is sufficient in earlier studies to pick points for altimetry
estimates, in this case the distance to the contiguous land in northeast and west is less than 5 km along
the entire crossover. The formation of terrain induces severe land contamination in the waveform;
thus, the height measurements are problematic and need further sophisticated retracking algorithms.
The underperformance of Envisat at this crossover is also seen in the comparison with ICESat and
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Jason-2 data, with RMSDs ranging between 0.54 and 0.68 m and CCs between 0.93 and 0.57, which are
generally worse than TIAS results. To conclude, TIAS is a reliable water level estimate approach in this
study site because the RMSD values, as compared with ICESat and Jason-2, are in 0.30–0.49 m level
while the CC are higher than 0.90.

4.2. Quantification of Water Volume Change

The quantification of water mass change is calculated through TIAS estimates and SRTM, and
compared with GRACE gravity field solutions. The water volume estimated by TIAS includes column
water from the bottom of a modified SRTM up to the water surface in each pixel. However, because the
depth of the simulated lake bottom contains large errors, we only quantify relative volume changes in
2002–2015, by subtracting the mean value of volumes over the time series span. The TIAS, plotted as a
red line with dots in Figure 6, is the mass change of a combined contribution from Chibuzhang Co and
Dorsoidong Co since 2002. It is converted into EWH over a 2˝ square that matches the same expression
with GRACE result. First, it is observed that in 2002–2015 the lake mass change has a nearly consistent
rate at +0.89 ˘ 0.05 cm¨yr´1 (95% CI) from TIAS-converted EWH, regardless of the interconnection
between lakes. To compare with a synoptic view of mass change offered by GRACE, the blue line with
dots is an average taken from JPL/CSR/GFZ solutions, where the error bar is the standard deviation
of the three. A blue fitting line in the middle indicates that the increasing trend from GRACE data is
slower at +0.41 ˘ 0.17 cm¨yr´1 (95% CI), where light blue and gray shades display 95% and 99% of
fitting confidence interval, respectively. This result suggests that this twin lake plays an important
role in the mass change of surrounding areas, in accordance with previous investigation [7]. However,
by looking at the time series itself the GRACE seems to experience higher variability than the TIAS
solution. We assume the majority of the GRACE signal within this region is driven by water storage
in snow, surface water, soil moisture, and effects from local glacier systems. This would cause the
GRACE signal to have a higher fluctuation compared to the lake system alone.
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5. Discussions

Based on [6], there is still about 40% of mass changes remain unexplained or technically
inseparable from factors abovementioned. Thus we could propose a scenario based on this evidence.
For example, the rising red line turned from sharp to gradual after lake connection in Figure 3, while
the blue line turned from stable to increase. Dorsoidong Co seems to dominate most of the mass
change in this area. We suspect that the water mass, except for precipitation that contributes to both



Remote Sens. 2016, 8, 441 14 of 18

lakes, is more from Purog Kangri on the west side than Gêladaindong on the east. This result also
implies the glacier depletion from Purog Kangri is probably faster than from Gêladaindong. However,
this theory is valid only if the mass loss in each glacier system contributes equal percentage toward
this twin lake area, which requires further study about contributing glaciers and surface runoff.

Another possibility causing the changing pattern in Figures 3 and 6 is a long-term unbalance of
rainfall in this area, e.g., more input from the west. By checking the rainfall record provided by TRMM
3B43 product, as shown in Figure 7, we notice that the rainfall rate on either side of this twin lake is
quite similar since the beginning of TRMM record in 1998. The blue line and red line indicate daily
rainfall rate roughly within the basin of Chibuzhang Co and Dorsoidong Co, respectively. In most
years, such as 2003, 2004, 2008, 2013, and 2014, the daily rainfall rate in peak months is even larger in
the basin of Chibuzhang Co than that of Dorsoidong. Only in 2002 and 2005, the rainfall rates from the
west have anomalous peaks. In most years, the rainfall pattern is nearly identical over this semi-arid
central of TP. Therefore, the mass change, especially the contrasting pattern of water volume increase
in this twin lake, is less disturbed by the factor of rainfall. This result supports the discussion in [6]:
the glacier meltwater augmented the precipitation-driven lakes near the central TP.
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Another interesting pattern in Figure 5 is the overturning trend of GRACE data after 2012.
Comparing with a positive trend at +0.41 ˘ 0.17 cm¨yr´1 over the entire time span, the trend in the
last four years (2012–2015) actually downturns to a negative value at ´0.44 ˘ 1.23 cm¨yr´1. Note
that this downward trend, although visually detectable from figures, still contains large uncertainty
due to short time span and seasonality. However, in contrast, all altimetry data sets show consistent
rising pattern during 2012–present, we are confident the mass contribution from this twin lake has no
significant drainage in the same period. However, without sufficient knowledge about ground water
and other hydrological/geophysical parameters, the cause of this reverse trend remains uncertain.
Again, the GRACE signal includes total water storage within a region that includes many other factors
than just lake water. Nevertheless, the regional scale of changes including glacier depletion in this area
can only be understood from the GRACE data at the current stage.

6. Conclusions

The lake change pattern of two major lakes, Chibuzhang Co and Dorsoidong Co, in the central TP
is separately observed by a variety of independent spaceborne sensors. The TIAS proved to be useful
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to fill spatial/temporal gaps between altimetry ground tracks and missions, to serve as complementary
data for water level observations. In this research, the TIAS method unveils the water level change
before and after interlink of these two lakes. Together with other measurements, such as ICESat,
Jason-2, and Envisat, we observe an increase of this twin lake, especially after 2000. The volume
change is also estimated through a combination with the SRTM DEM. Although the scale and sensing
parameters may not be equivalent, GRACE gravimetry is also employed here to provide a reference
of mass change in the neighborhood of 2˝. The high variability in the GRACE time series compared
to the lake level time series suggests other hydrologic components are incorporated in the gravity
signal. However, because this twin lake is one of the major mass sources in this area [7], it is worth
inspecting the temporal change from GRACE gravity anomaly. The trend of mass change is fairly
consistent between TIAS and GRACE derived EWH in 2002–2015. In contrast, the GRACE data shows
a short-term downward trend since 2012 but the pattern has not been seen in lake volume. This trend
is visually observable, but insignificant, at this moment due to the short time span. The reason that
causes a recent down-turning of mass change in the GRACE data remains elusive since no significant
anomaly in precipitation has been reported after 2012. The cause of such a momentum to reverse
the trend is interesting and worth overseeing further development. In future studies, inclusion of
other data products, such as large-scale land cover monitored by the Moderate Resolution Imaging
Spectroradiometer (MODIS), or the surface/subsurface condition provided by the Global Land Data
Assimilation System (GLDAS), would be helpful to bridge the gaps between data used currently.
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