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Abstract: MOD17A2 provides near real-time estimates of gross primary production (GPP) globally.
In this study, MOD17A2 GPP was evaluated using eddy covariance (EC) flux measurements at
eight sites in five various biome types across China. The sensitivity of MOD17A2 to meteorological
data and leaf area index/fractional photosynthetically active radiation (LAI/FPAR) products were
examined by introducing site meteorological measurements and improved Global Land Surface
Satellite (GLASS) LAI products. We also assessed the potential error contributions from land cover
and maximum light use efficiency (εmax). The results showed that MOD17A2 agreed well with
flux measurements of annual GPP (R2 = 0.76) when all biome types were considered as a whole.
However, MOD17A2 was ineffective for estimating annual GPP at mixed forests, evergreen needleleaf
forests and croplands, respectively. Moreover, MOD17A2 underestimated flux derived GPP during
the summer (R2 = 0.46). It was found that the meteorological data used in MOD17A2 failed to
properly estimate the site measured vapor pressure deficits (VPD) (R2 = 0.31). Replacing the existing
LAI/FPAR data with GLASS LAI products reduced MOD17A2 GPP uncertainties. Though land
cover presented the fewest errors, εmax prescribed in MOD17A2 were much lower than inferred εmax

calculated from flux data. Thus, the qualities of meteorological data and LAI/FPAR products need
to be improved, and εmax should be adjusted to provide better GPP estimates using MOD17A2 for
Chinese ecosystems.
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1. Introduction

Gross primary production (GPP), which is defined as the overall photosynthetic fixation of carbon
by plants, is an important variable in studies of the carbon balance between the atmosphere and
biosphere [1,2]. GPP is also the basis for essential ecosystem services such as food, fiber, fuel and
construction materials [3]. Thus, the quantification of GPP has become a topic of wide concern in
global change studies [4–7].

By using optical and near-infrared spectral wavelengths, GPP can be estimated from satellite
remote sensing [8,9]. In particular, the Moderate Resolution Imaging Spectroradiometer (MODIS)
primary production products (MOD17A2) are the first regular, near-real-time GPP datasets for the
repeated monitoring of global vegetation at a 1-km resolution every eight days [10]. Zhao et al.
(2005) [11] had demonstrated that MODIS GPP fitted well with GPP derived from 12 flux towers over
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North America, indicating MOD17A2 were reliable products. However, for MODIS GPP products,
there are still exist many potential sources of errors that arise from the input datasets, the parameters
used to describe the biophysical behavior of vegetation, and the algorithm itself [12]. First, there is
a large disparity between the spatial resolution of meteorological data and the resolution of MODIS
products, which will provide inaccurate atmospheric conditions at scales consistent with land surface
heterogeneities [13]. Second, the MODIS leaf area index (LAI) has a poor correlation with the ground
measurements, which will lead to an erroneous estimation for fraction of photosynthetically active
radiation (FPAR) [11]. Third, the accuracy of MODIS land cover classification is not very satisfactory,
and most mistakes are between similar classes [14]. Finally, it does not conform to reality to assign a
constant value of maximum light use efficiency (LUE) to the same biome type [5]. As a result, each
of these error sources (i.e., meteorology, LAI/FPAR, land cover and LUE) requires a corresponding
validation procedure and must be examined separately [15].

The error analysis of MODIS GPP products is a challenging task because of the difficulty in
making direct measurements of GPP values. One widely used approach uses the eddy covariance
(EC) technique, which measures the fluxes of carbon, water and energy between the atmosphere
and land [16,17]. A number of validation efforts have been established to evaluate the accuracy of
MOD17A2 products that use time series comparisons between MODIS-based and EC flux tower-based
GPP for one or more 1-km2 cells centered on towers [18,19]. Turner et al. (2003) [20] evaluated the
MODIS GPP products at two sites: a temperate forest site and a boreal forest site. Their results showed
that, relative to the flux tower measurements, MODIS overestimated the GPP by 35% at the boreal
forest site, but the MODIS estimates were comparable to the tower results for the temperate forest
site. Heinsch et al. (2006) [14] carried out a comprehensive evaluation of MOD17A2 by comparing
MODIS-based GPP to flux tower-based GPP at 15 research sites in six different biome classes across
North America. The authors reported that the MODIS GPP products overestimated the tower-based
calculations by 20%–30% on average. They further found that the use of MODIS GPP products with
DAO (NASA’S Data Assimilation Office) meteorology overestimated the annual GPP, whereas the use
of tower-specific meteorology in the MODIS GPP calculations led to underestimates. The performance
of MODIS GPP in Africa has also been evaluated using in situ measurements of meteorology and flux
tower GPP for 12 sites. The study indicated that MOD17A2 agreed well with the tower-based GPP for
wet sites, whereas the estimates were too small for dry sites [21].

Based on EC flux data provided by the Chinese FLUX Observation and Research Network
(ChinaFLUX), several studies have assessed the performances of MODIS GPP in Chinese different
biome types [22,23]. For example, Zhang et al. (2008) [24] evaluated MODIS GPP by using estimated
GPP from EC flux measurements over an alpine meadow on the Tibetan Plateau. Their results showed
that the mean annual MODIS GPP accounted for 1/2–2/3 of the flux-based GPP in the study region.
Liu et al. (2015) [25] reported that MODIS GPP performed poorly for evergreen forests but provided
accurate estimates for grassland and mixed forests. However, these studies explored error sources
mainly focused on one or two aspects, while comprehensive and detailed error analyses are still
needed. Thus, we not only methodically evaluated the eight-day, seasonal and annual MODIS GPP
against tower GPP, but also carefully analyzed each input. In this paper, we evaluated MOD17A2
GPP using EC flux tower data at eight sites in five various biome types across China (Figure 1 and
Table 1). The objectives of our study were to evaluate the performance of MOD17A2 in China through
comparisons with GPP measured at EC flux towers and to examine the potential error contributions of
all input variables (meteorology, LAI/FPAR, land cover and LUE) used in the algorithm.
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Figure 1. Locations of the eight flux tower sites used in this study. MF: Mixed forest; ENF: Evergreen 
needleleaf forests; EBF: Evergreen broadleaf forests; Crop: Croplands; Grass: Grasslands. 

Table 1. Site descriptions including name (abbreviation), latitude and longitude (lat/long, decimal 
degrees), general biome type, mean annual long-term precipitation (MAP, mm), mean annual 
temperature (MAT, °C), years of measurements and references. MF: Mixed forest; ENF: Evergreen 
needleleaf forests; EBF: Evergreen broadleaf forests; Crop: Croplands; Grass: Grasslands. 
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Lat 
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(°E) 
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MAP 
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(°C) 

Data 
Range References 

Changbaishan 
forest site (CBS) 

42.40 128.10 MF 713 3.6 2003–2005 
Guan et al. 
(2006) [26] 

Qianyanzhou 
forest site (QYZ) 

26.74 115.06 ENF 1542 17.9 2003–2005 
Wen et al. 
(2006) [27] 

Dinghushan 
forest site (DHS) 

23.17 112.53 EBF 1956 20.9 2003–2005 
Zhang et al. 
(2006) [28] 

Xishuangbanna 
forest site (XSBN) 

21.95 101.20 EBF 1493 21.8 2003–2005 
Yu et al. 

(2006) [29] 
Yucheng 

cropland site (YC) 
36.83 116.57 Crop 582 13.1 2003–2005 

Sun et al. 
(2006) [30] 

Haibei grassland 
site (HB) 

37.67 101.33 Grass 580 −1.7 2003–2005 
Fu et al. 

(2006) [31] 
Inner Mongolia 
grassland site 

(NMG) 
43.55 116.68 Grass 338 0.9 2004–2005 

Fu et al. 
(2006) [31] 

Dangxiong 
grassland site 

(DX) 
30.50 91.07 Grass 450 1.3 2004–2005 

Yu et al. 
(2006) [29] 

 

  

Figure 1. Locations of the eight flux tower sites used in this study. MF: Mixed forest; ENF: Evergreen
needleleaf forests; EBF: Evergreen broadleaf forests; Crop: Croplands; Grass: Grasslands.

Table 1. Site descriptions including name (abbreviation), latitude and longitude (lat/long, decimal
degrees), general biome type, mean annual long-term precipitation (MAP, mm), mean annual
temperature (MAT, ˝C), years of measurements and references. MF: Mixed forest; ENF: Evergreen
needleleaf forests; EBF: Evergreen broadleaf forests; Crop: Croplands; Grass: Grasslands.

Sites
(Abbreviation)

Lat
(˝N)

Lon
(˝E)

Biome
Type

MAP
(mm)

MAT
(˝C)

Data
Range References

Changbaishan
forest site (CBS) 42.40 128.10 MF 713 3.6 2003–2005 Guan et al.

(2006) [26]

Qianyanzhou forest
site (QYZ) 26.74 115.06 ENF 1542 17.9 2003–2005 Wen et al.

(2006) [27]

Dinghushan forest
site (DHS) 23.17 112.53 EBF 1956 20.9 2003–2005 Zhang et al.

(2006) [28]

Xishuangbanna
forest site (XSBN) 21.95 101.20 EBF 1493 21.8 2003–2005 Yu et al.

(2006) [29]

Yucheng cropland
site (YC) 36.83 116.57 Crop 582 13.1 2003–2005 Sun et al.

(2006) [30]

Haibei grassland
site (HB) 37.67 101.33 Grass 580 ´1.7 2003–2005 Fu et al.

(2006) [31]

Inner Mongolia
grassland site

(NMG)
43.55 116.68 Grass 338 0.9 2004–2005 Fu et al.

(2006) [31]

Dangxiong
grassland site (DX) 30.50 91.07 Grass 450 1.3 2004–2005 Yu et al.

(2006) [29]
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2. Materials and Methods

2.1. Materials

2.1.1. MODIS GPP Algorithm

The GPP calculation used in the MODIS GPP algorithm (MOD17A2) is based on the original logic
of Monteith (1972) [32] that relates gross photosynthesis to the amount of photosynthetically active
radiation (PAR) absorbed by plants over a growing season. As described in detail by Running et al.
(2000) [33], the algorithm was developed as follows:

GPP “ PARˆFPARˆ ε (1)

where FPAR is the fraction of PAR absorbed by the vegetation canopy, and PAR is determined as a
fraction of the downward solar shortwave radiation (SWRad):

PAR “ SWRadˆ 0.45 (2)

The magnitude of LUE ε in Equation (1) is calculated as

ε “ εmaxˆTsˆVPDs (3)

where εmax is the maximum LUE obtained from a Biome Properties Look-Up Table (BPLUT) on the basis
of biome type, and Ts and VPDs are the attenuation scalars from cold temperature (low daily minimum
temperature, Tmin) and water stresses (high daily vapor pressure deficit, VPD), respectively [34,35].

Following the MODIS GPP algorithm, essential MODIS product images from 2003 to 2005 were
downloaded from the Level 1 and Atmosphere Archive and Distribution System (LAADS) website [36].
Using the latitudes and longitudes of the flux tower sites, we obtained 5 km ˆ 5 km cutouts centered
over each tower location that represented the: (1) land cover classification (MCD12Q1, C5.1, 500-m
resolution, annual product); (2) LAI and FPAR (MOD15A2, C5, 1-km resolution, eight-day product);
and (3) GPP (MOD17A2, C5.5, 1-km resolution, eight-day product).

In particular, MCD12Q1 is used in the MOD15A2 and MOD17A2 calculations. Unlike the
MOD15A2 algorithm, which uses MCD12Q1 Land Cover Classification Type 3 (LAI/FPAR scheme) to
calculate FPAR, the MOD17A2 algorithm uses MCD12Q1 Land Cover Classification Type 2 (University
of Maryland land cover classification scheme) to map biome-specific physiological parameters (εmax,
maximum and minimum air temperature and VPD) according to the BPLUT [37].

2.1.2. Meteorological Data

‚ NCEP-DOE Reanalysis II Data

The MODIS GPP Collection 5.5 (MOD17A2, C5.5) data used in this paper implement National
Center for Environmental Prediction-Department of Energy (NCEP-DOE) Reanalysis II data for
direct meteorological inputs. For each flux tower site, six-hour data composed of air temperature
(Tair, ˝C), downward shortwave radiation (SWRad, W¨m´2), surface pressure (Pres, Pa), and specific
humidity (SH, kg¨ kg´1) for 2003–2005 were downloaded from the Earth System Research Laboratory
(ESRL) [38]. From these data, we obtained the daily average air temperature (Tavg, ˝C), daily minimum
air temperature (Tmin, ˝C), daily average VPD (VPDavg, Pa), and daily total SWRad (MJ¨m´2¨d´1)
at a 1.9˝ ˆ 1.9˝ resolution. To interpolate the 1.9˝ ˆ 1.9˝ resolution NCEP-DOE data down to the
1-km MODIS pixel resolution, the daily data for each pixel were interpolated using a spatial nonlinear
interpolation scheme following Zhao et al. (2005) [11].
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‚ Site Meteorological Data

Site meteorological data (PAR, air temperature and VPD) during 2003–2005 were obtained
directly from the flux towers or were derived from meteorological station data provided by the China
Meteorological Administration (CMA) [39]. Based on the half-hourly flux tower measurements, which
are composed of air temperature (Tair, ˝C) and either PAR (µmol¨m´2¨ s´1) or downward shortwave
radiation (SWRad, W¨m´2), we obtained the daily Tavg, Tmin and PAR. In addition, the daily average
ea (i.e., the actual air vapor pressure, Pa) and daily average RH (i.e., relative humidity, %) were selected
from the meteorological station datasets to calculate VPDavg [40]. The site meteorological data (Tavg,
Tmin, PAR and VPDavg) were then directly compared to the NCEP-DOE Reanalysis II data to evaluate
how well the reanalysis datasets represented the local climatic conditions.

2.1.3. GLASS LAI Data

For the MODIS GPP algorithm, the FPAR is an essential input. To examine the potential error
contributions from LAI/FPAR, the Global Land Surface Satellite Leaf Area Index (GLASS LAI)
products, which are an improved LAI dataset, were introduced into our study [41]. The GLASS
LAI algorithm uses general regression neural networks (GRNNs) to retrieve LAI data. In addition,
the GRNNs are trained by the fused LAI values from time-series multi-sensor remote sensing data,
including MODIS and CYCLOPES LAI products and the corresponding reprocessed MODIS reflectance
values [42]. It has been demonstrated that the GLASS LAI algorithm is able to produce temporally
continuous LAI datasets with significantly improved accuracies compared with current MODIS and
CYCLOPES LAI products [43]. In this paper, the GLASS LAI subsets (0.05˝ ˆ 0.05˝ resolution, eight-day
interval) during the 2003 to 2005 period centered over each of the flux tower locations were obtained
from the Generation and Applications of Global Products of Essential Land Variables website [44].

Using a simple Beer’s Law approach [45], the GLASS LAI data can be converted to FPAR data by:

FPAR “ 1´ ep´KqˆLAI (4)

where K is the canopy light extinction coefficient, which is set to 0.5. To explore the influence of FPAR
on GPP, we replaced the MOD15A2 FPAR with the above FPAR, which originated from GLASS LAI,
to recalculate MODIS GPP in this study.

2.1.4. EC Flux Data

Eight EC flux tower sites across China were included in this study (Figure 1). The sites cover a
diversity of biome types and climate regimes, including mixed forests, evergreen needleleaf forests,
evergreen broadleaf forests, croplands and grasslands [29]. A brief description of the sites is presented
in Table 1, and detailed information is available at the ChinaFLUX website [46].

The EC flux data measured at the eight flux tower sites for 2003–2005 were downloaded from the
ChinaFLUX website. The daily values, which were composed of the net ecosystem exchange (NEE)
and ecosystem respiration (Re), were used to calculate GPP:

GPP “ Re´NEE (5)

where the GPP values are in units of gC¨m´2¨d´1 [47]. For consistency with the time interval of
the MODIS GPP products, we then aggregated eight-day flux derived GPP from the calculated
daily values.
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2.2. Methods

2.2.1. Experimental Design

To differentiate the effects of the meteorological elements and LAI/FPAR on the GPP estimates,
we designed the following four experimental groups to recalculate GPP under different scenarios.
(1) Following the standard MOD17A2 products completely, NCEP-DOE Reanalysis II meteorology
data and MOD15A2 LAI/FPAR products were used to estimate GPP (MOD_NCEP GPP); (2) Site
meteorology data and MOD15A2 LAI/FPAR products were used to estimate GPP (MOD_Tower
GPP); (3) NCEP-DOE meteorology data and GLASS LAI/FPAR products were used to estimate GPP
(NCEP_GLASS GPP); (4) Site meteorology data and GLASS LAI/FPAR products were used to estimate
GPP (Tower_GLASS GPP). Finally, all the GPP estimates were directly compared with the EC flux
derived GPP (Flux_Tower GPP) to assess their accuracies and uncertainties.

2.2.2. Analytical Methods

In this study, the computation results for eight-day, seasonal and annual GPP had been analyzed,
respectively. We firstly calculated the daily GPP, and then integrated the daily GPP into eight-day,
seasonal and annual GPP by accumulating. The sensitivity of MOD17A2 algorithm to meteorological
data and LAI/FPAR products were examined by introducing site meteorological measurements and
improved GLASS LAI products. We also assessed the potential error contributions from land cover and
εmax. Four statistic indices were used to evaluate the accuracies and uncertainties: (1) the coefficient of
determination (R2), which represents the amount of variation in the observations explained by the
simulations; (2) bias, which quantifies the difference between the simulations and the observations;
(3) the root mean square error (RMSE, %), which is computed as

RMSE (%) “
1
´

O
ˆ

g

f

f

e

1
n
ˆ

n
ÿ

i“1

pSi ´Oi
2q ˆ 100 (6)

where
´

O is the average value of the observed data, and Si and Oi are the simulated and observed
values, respectively; and Equation (4) the relative error (RE, %), which is

RE (%) “
1
n
ˆ

n
ÿ

i“1

p
Si ´Oi

Oi
q ˆ 100 (7)

3. Results

3.1. GPP Validation

3.1.1. Eight-Day GPP

The tower-based GPP measurements (Flux_Tower GPP) were compared with the results of the four
experimental groups (i.e., MOD_NCEP GPP, MOD_Tower GPP, NCEP_GLASS GPP, and Tower_GLASS
GPP) over eight days (Figure 2). Overall, when compared with the MOD_NCEP GPP algorithm
(R2 = 0.55), the remaining three algorithms, particularly the NCEP_GLASS GPP (R2 = 0.65) and
Tower_GLASS GPP (R2 = 0.66) algorithms, were more effective at estimating the Flux_Tower GPP.

From the perspective of a single site, in CBS, QYZ and YC, all four algorithms (MOD_NCEP
GPP, MOD_Tower GPP, NCEP_GLASS GPP, and Tower_GLASS GPP) underestimated the Flux_Tower
GPP to varying degrees (Figure 3, Table 2). The MOD_Tower GPP were the most underestimated
(´13 gC¨m´2¨ 8-day´1 for CBS, ´18 gC¨m´2¨ 8-day´1 for QYZ and ´22 gC¨m´2¨ 8-day´1 for
YC), and the NCEP_GLASS GPP were the least underestimated (´1 gC¨m´2¨ 8-day´1 for CBS,
´2 gC¨m´2¨ 8-day´1 for QYZ and ´14 gC¨m´2¨ 8-day´1 for YC). However, for NMG, all four
algorithms overestimated the Flux_Tower GPP. The MOD_NCEP GPP were the most overestimated
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(3 gC¨m´2¨ 8-day´1), and the NCEP_GLASS GPP and Tower_GLASS GPP were the least overestimated
(1 gC¨m´2¨ 8-day´1). For the other sites, some algorithms overestimated the Flux_Tower GPP, whereas
some underestimated them. For CBS, QYZ and DHS, the Tower_GLASS GPP algorithm most effectively
estimated the Flux_Tower GPP (R2 = 0.92, R2 = 0.87 and R2 = 0.75, respectively), and the greatest
improvements were obtained over the MOD_NCEP GPP algorithm (R2 = 0.76, R2 = 0.52 and R2 = 0.30)
in particular. However, for YC and NMG, the Tower_GLASS GPP algorithm was not as effective as
the other three algorithms for estimating the Flux_Tower GPP. In the case of YC, the performance
of the Tower_GLASS GPP algorithm (R2 = 0.77) was close to that of the most effective algorithm
(MOD_NCEP GPP, R2 = 0.81). However, for NMG, the gap between the Tower_GLASS GPP (R2 = 0.64)
and the best estimating algorithm (MOD_Tower GPP, R2 = 0.75) was large. For HB and DX, all four
algorithms effectively estimated the Flux_Tower GPP. In particular, the MOD_NCEP GPP (R2 = 0.95,
Bias = 0 gC¨m´2¨ 8-day´1) and MOD_Tower GPP (R2 = 0.89, Bias = 0 gC¨m´2¨ 8-day´1) algorithms
performed best for HB and DX, respectively. Regarding XSBN, however, no algorithm succeeded in
estimating the Flux_Tower GPP.
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Figure 3. Time series of eight-day GPP derived from the tower estimates (i.e., Flux_Tower GPP) and
four different experimental groups (i.e., MOD_NCEP GPP, MOD_Tower GPP, NCEP_GLASS GPP and
Tower_GLASS GPP) at: (a) CBS forest site; (b) QYZ forest site; (c) DHS forest site; (d) XSBN forest site;
(e) YC cropland site; (f) HB grassland site; (g) NMG grassland site; and (h) DX grassland site. The full
name for each site is listed in Table 1.
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Table 2. Comparison of eight-day GPP derived from the tower estimates with those derived from the
MODIS algorithms (MOD_NCEP GPP, MOD_Tower GPP, NCEP_GLASS GPP, and Tower_GLASS GPP)
at eight sites. The full name for each site is listed in Table 1.

Site Comparison R2 Mean (SD)
(gC¨ m´2¨ 8-day´1)

Bias
(gC¨ m´2¨ 8-day´1) RMSE (%) RE (%)

CBS

Flux_Tower vs. MOD_NCEP 0.76 ** 29(30) vs. 24(25) ´5 54 60
Flux_Tower vs. MOD_Tower 0.83 ** 29(30) vs. 16(19) ´13 68 59

Flux_Tower vs. NCEP_GLASS 0.84 ** 29(30) vs. 28(30) ´1 42 62
Flux_Tower vs. Tower_GLASS 0.92 ** 29(30) vs. 19(22) ´10 50 58

QYZ

Flux_Tower vs. MOD_NCEP 0.52 ** 38(18) vs. 32(20) ´6 41 34
Flux_Tower vs. MOD_Tower 0.66 ** 38(18) vs. 20(15) ´18 55 54

Flux_Tower vs. NCEP_GLASS 0.81 ** 38(18) vs. 36(18) ´2 22 18
Flux_Tower vs. Tower_GLASS 0.87 ** 38(18) vs. 22(15) ´16 45 48

DHS

Flux_Tower vs. MOD_NCEP 0.30 ** 30(10) vs. 38(24) 8 73 68
Flux_Tower vs. MOD_Tower 0.42 ** 30(10) vs. 27(19) ´3 51 45

Flux_Tower vs. NCEP_GLASS 0.55 ** 30(10) vs. 55(15) 25 90 95
Flux_Tower vs. Tower_GLASS 0.75 ** 30(10) vs. 36(17) 6 39 27

XSBN

Flux_Tower vs. MOD_NCEP - 60(21) vs. 54(18) ´6 49 41
Flux_Tower vs. MOD_Tower - 60(21) vs. 41(17) ´19 55 38

Flux_Tower vs. NCEP_GLASS 0.10 ** 60(21) vs. 62(11) 2 34 35
Flux_Tower vs. Tower_GLASS 0.07 ** 60(21) vs. 46(13) ´14 43 31

YC

Flux_Tower vs. MOD_NCEP 0.81 ** 37(39) vs. 19(18) ´18 80 -
Flux_Tower vs. MOD_Tower 0.80 ** 37(39) vs. 15(15) ´22 93 -

Flux_Tower vs. NCEP_GLASS 0.79 ** 37(39) vs. 23(20) ´14 72 -
Flux_Tower vs. Tower_GLASS 0.77 ** 37(39) vs. 21(19) ´16 78 -

HB

Flux_Tower vs. MOD_NCEP 0.95 ** 12(16) vs. 12(17) 0 31 -
Flux_Tower vs. MOD_Tower 0.94 ** 12(16) vs. 5(8) ´7 92 -

Flux_Tower vs. NCEP_GLASS 0.91 ** 12(16) vs. 14(19) 2 52 -
Flux_Tower vs. Tower_GLASS 0.94 ** 12(16) vs. 6(9) ´6 84 -

NMG

Flux_Tower vs. MOD_NCEP 0.73 ** 5(9) vs. 8(10) 3 124 -
Flux_Tower vs. MOD_Tower 0.75 ** 5(9) vs. 7(9) 2 106 -

Flux_Tower vs. NCEP_GLASS 0.65 ** 5(9) vs. 6(8) 1 112 -
Flux_Tower vs. Tower_GLASS 0.64 ** 5(9) vs. 6(8) 1 110 -

DX

Flux_Tower vs. MOD_NCEP 0.89 ** 4(6) vs. 2(4) ´2 74 -
Flux_Tower vs. MOD_Tower 0.89 ** 4(6) vs. 4(5) 0 46 -

Flux_Tower vs. NCEP_GLASS 0.86 ** 4(6) vs. 3(4) ´1 65 -
Flux_Tower vs. Tower_GLASS 0.88 ** 4(6) vs. 5(6) 1 48 -

Significance levels: ** p < 0.01.

3.1.2. Seasonal GPP

The tower-based GPP measurements (Flux_Tower GPP) were compared with the results
achieved by the four algorithms (i.e., MOD_NCEP GPP, MOD_Tower GPP, NCEP_GLASS GPP,
and Tower_GLASS GPP) over each season (Figures 4–7 and Table 3). Overall, the four algorithms
effectively estimated the Flux_Tower GPP in the spring, autumn and winter. In particular, the
algorithms had the best estimating effectiveness for the winter (the values of R2 ranged from 0.87 to
0.92). However, the overall estimating effectiveness of the four algorithms was poor for the summer
(values of R2 ranged from 0.36 to 0.52). The details are as follows:

(1) Spring (March–May): The estimation performances of MOD_NCEP GPP (R2 = 0.64) and
Tower_GLASS GPP (R2 = 0.65) were excellent (Figure 4, Table 3). The MOD_NCEP GPP,
MOD_Tower GPP and Tower_GLASS GPP underestimated the Flux_Tower GPP to varying
degrees (´39 gC¨m´2¨ 3-month´1, ´122 gC¨m´2¨ 3-month´1 and ´80 gC¨m´2¨ 3-month´1,
respectively), primarily because of the considerable underestimation for QYZ and YC
(Figure 4a,b,d). In contrast, NCEP_GLASS GPP overestimated the Flux_Tower GPP
(40 gC¨m´2¨ 3-month´1) because the measurements for DHS were considerably overestimated
(Figure 4c).

(2) Summer (June–August): None of the four algorithms estimated the Flux_Tower GPP
effectively (Figure 5, Table 3). The main reason that the Flux_Tower GPP were seriously
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underestimated by the MOD_NCEP GPP, MOD_Tower GPP and Tower_GLASS GPP
algorithms (´143 gC¨m´2¨ 3-month´1, ´254 gC¨m´2¨ 3-month´1 and ´161 gC¨m´2¨ 3-month´1,
respectively) was that the measurements for CBS, QYZ, XSBN and YC were considerably
underestimated (Figure 5a,b,d).

(3) Autumn (September–November): The MOD_NCEP GPP (R2 = 0.80, Bias = 0 gC¨m´2¨ 3-month´1

and RMSE = 32%) and NCEP_GLASS GPP (R2 = 0.76, Bias = 1 gC¨m´2¨ 3-month´1 and RE = 57%)
provided better estimating effectiveness (Figure 6, Table 3). In contrast, the MOD_Tower GPP and
Tower_GLASS GPP obviously underestimated the Flux_Tower GPP (´102 gC¨m´2¨ 3-month´1)
as a result of the common underestimations for CBS, HB, QYZ, XSBN and YC (Figure 6b,d).

(4) Winter (January–February and December): All four algorithms effectively estimated the
Flux_Tower GPP (Figure 7, Table 3). However, the MOD_NCEP GPP and NCEP_GLASS
GPP algorithms seriously overestimated the Flux_Tower GPP for DHS and XSBN (Figure 7a,c).
The Flux_Tower GPP for QYZ were severely underestimated by the MOD_Tower GPP and
Tower_GLASS GPP algorithms (Figure 7b,d).
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Table 3. Comparison of the seasonal and annual GPP derived from the tower estimates with those
derived from the MODIS algorithms (MOD_NCEP GPP, MOD_Tower GPP, NCEP_GLASS GPP,
and Tower_GLASS GPP).

Comparison R2 Mean (SD) Bias RMSE RE

Seasonal (gC¨ m´2¨ 3-month´1) (gC¨ m´2¨ 3-month´1) (%) (%)

Spring (March–May)

Flux_Tower vs. MOD_NCEP 0.64 ** 322(265) vs. 283(229) ´39 50 56
Flux_Tower vs. MOD_Tower 0.62 ** 322(265) vs. 200(200) ´122 63 55

Flux_Tower vs. NCEP_GLASS 0.56 ** 322(265) vs. 362(265) 40 58 75
Flux_Tower vs. Tower_GLASS 0.65 ** 322(265) vs. 242(211) ´80 54 44

Summer (June–August)

Flux_Tower vs. MOD_NCEP 0.46 ** 556(266) vs. 413(153) ´143 43 35
Flux_Tower vs. MOD_Tower 0.36 ** 556(266) vs. 302(122) ´254 60 50

Flux_Tower vs. NCEP_GLASS 0.52 ** 556(266) vs. 546(212) ´10 33 33
Flux_Tower vs. Tower_GLASS 0.43 ** 556(266) vs. 395(162) ´161 46 41

Autumn
(September–November)

Flux_Tower vs. MOD_NCEP 0.80 ** 337(238) vs. 337(243) 0 32 69
Flux_Tower vs. MOD_Tower 0.73 ** 337(238) vs. 235(176) ´102 48 62

Flux_Tower vs. NCEP_GLASS 0.76 ** 337(238) vs. 338(268) 1 38 57
Flux_Tower vs. Tower_GLASS 0.71 ** 337(238) vs. 235(193) ´102 48 58

Winter (January, February
and December)

Flux_Tower vs. MOD_NCEP 0.92 ** 116(137) vs. 137(197) 21 68 -
Flux_Tower vs. MOD_Tower 0.87 ** 116(137) vs. 91(141) ´25 48 -

Flux_Tower vs. NCEP_GLASS 0.92 ** 116(137) vs. 164(227) 48 98 -
Flux_Tower vs. Tower_GLASS 0.88 ** 116(137) vs. 101(155) ´15 48 -



Remote Sens. 2016, 8, 395 13 of 24

Table 3. Cont.

Comparison R2 Mean (SD) Bias RMSE RE

Annual (gC¨ m´2¨ year´1) (gC¨ m´2¨ year´1) (%) (%)

Flux_Tower vs. MOD_NCEP 0.76 ** 1331(806) vs. 1170(731) ´161 31 34
Flux_Tower vs. MOD_Tower 0.72 ** 1331(806) vs. 827(559) ´504 50 44

Flux_Tower vs. NCEP_GLASS 0.68 ** 1331(806) vs. 1410(913) 79 39 35
Flux_Tower vs. Tower_GLASS 0.69 ** 1331(806) vs. 972(664) ´359 43 38

Significance levels: ** p < 0.01.

3.1.3. Annual GPP

The tower-based GPP measurements (Flux_Tower GPP) were compared with the results of the
four algorithms (i.e., MOD_NCEP GPP, MOD_Tower GPP, NCEP_GLASS GPP, and Tower_GLASS
GPP) during 2003–2005. (Figure 8, Table 3). For all the sites, the annual average value of the Flux_Tower
GPP was 1331 gC¨m´2¨year´1, and those of the four algorithms were 1170 gC¨m´2¨year´1,
827 gC¨m´2¨ year´1, 1410 gC¨m´2¨ year´1 and 972 gC¨m´2¨ year´1, respectively. The NCEP_GLASS
GPP algorithm accurately estimated the measurements for CBS, QYZ and HB (Figure 8c) and
therefore had the smallest bias (79 gC¨m´2¨year´1). However, for the MOD_Tower GPP and
Tower_GLASS GPP algorithms, the Flux_Tower GPP for CBS, HB, QYZ, XSBN and YC were severely
underestimated (Figure 8b,d), which led to large biases (´504 gC¨m´2¨year´1 for MOD_Tower
GPP and ´359 gC¨m´2¨year´1 for Tower_GLASS GPP). In terms of the estimating effectiveness,
the MOD_NCEP GPP algorithm had the greatest performance because it yielded the largest R2 (0.76)
and smallest RMSE (31%) and RE (34%).
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Based on the various biome types, the tower-based GPP measurements (Flux_Tower GPP)
were compared with the results of the four algorithms (i.e., MOD_NCEP GPP, MOD_Tower GPP,
NCEP_GLASS GPP, and Tower_GLASS GPP) over several years (Table 4). In the case of MF,
the Tower_GLASS GPP algorithm exhibited a significant correlation (R2 = 0.97), though it seriously
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underestimated the Flux_Tower GPP (´454 gC¨m´2¨year´1). For ENF, the estimated results of
the four algorithms were not statistically significant. The NCEP_GLASS GPP algorithm performed
relatively well and had the smallest bias (´76 gC¨m´2¨year´1), RMSE (6%) and RE (4%). For EBF,
the MOD_NCEP GPP algorithm was the most effective; it exhibited a significant correlation (R2 = 0.58)
and the smallest bias (55 gC¨m´2¨ year´1), RMSE (22%) and RE (21%). For Crop, none of the algorithms
provided effective estimates, with the exception of the NCEP_GLASS GPP algorithm, which also
exhibited a significant correlation (R2 = 0.98) and the smallest bias (´645 gC¨m´2¨year´1), RMSE
(39%) and RE (37%). Regarding Grass, the NCEP_GLASS GPP algorithm outperformed the other
algorithms due to its significant correlation (R2 = 0.80) and smallest RMSE (29%) and RE (46%).

Table 4. Biome-based comparison of the annual GPP derived from the tower estimates with those
derived from the MODIS algorithms (MOD_NCEP GPP, MOD_Tower GPP, NCEP_GLASS GPP,
and Tower_GLASS GPP).

Comparison R2 Mean (SD)
(gC¨ m´2¨ year´1)

Bias
(gC¨ m´2¨ year´1) RMSE (%) RE (%)

Mixed Forest

Flux_Tower vs. MOD_NCEP - 1341(110) vs. 1085(14) ´256 21 19
Flux_Tower vs. MOD_Tower 0.71 * 1341(110) vs. 752(72) ´589 44 44

Flux_Tower vs. NCEP_GLASS 0.27 1341(110) vs. 1281(32) ´60 11 11
Flux_Tower vs. Tower_GLASS 0.97 * 1341(110) vs. 887(64) ´454 34 34

Evergreen Needleleaf Forest

Flux_Tower vs. MOD_NCEP 0.14 1745(100) vs. 1467(131) ´278 17 16
Flux_Tower vs. MOD_Tower 0.55 1745(100) vs. 906(105) ´839 48 48

Flux_Tower vs. NCEP_GLASS 0.50 1745(100) vs. 1669(56) ´76 6 4
Flux_Tower vs. Tower_GLASS 0.58 1745(100) vs. 1019(78) ´726 42 42

Evergreen Broadleaf Forest

Flux_Tower vs. MOD_NCEP 0.58 * 2072(715) vs. 2127(423) 55 22 21
Flux_Tower vs. MOD_Tower 0.34 2072(715) vs. 1562(441) ´510 35 21

Flux_Tower vs. NCEP_GLASS 0.52 * 2072(715) vs. 2700(190) 628 41 48
Flux_Tower vs. Tower_GLASS 0.18 2072(715) vs. 1903(363) ´169 29 21

Cropland

Flux_Tower vs. MOD_NCEP - 1707(105) vs. 888(38) ´819 49 48
Flux_Tower vs. MOD_Tower - 1707(105) vs. 690(36) ´1017 60 59

Flux_Tower vs. NCEP_GLASS 0.98 * 1707(105) vs. 1062(35) ´645 39 37
Flux_Tower vs. Tower_GLASS - 1707(105) vs. 814(25) ´893 53 52

Grassland

Flux_Tower vs. MOD_NCEP 0.65 ** 354(182) vs. 379(185) 25 30 53
Flux_Tower vs. MOD_Tower - 354(182) vs. 255(61) ´99 58 55

Flux_Tower vs. NCEP_GLASS 0.80 ** 354(182) vs. 399(223) 45 29 46
Flux_Tower vs. Tower_GLASS 0.52 * 354(182) vs. 258(39) ´96 51 48

Significance levels: * p < 0.05, ** p < 0.01.

3.2. Meteorology

In this paper, the MOD_NCEP GPP algorithm followed the standard MOD17A2 algorithm,
which used the NCEP-DOE Reanalysis II meteorology data. However, the NCEP-DOE Reanalysis II
meteorology data were replaced with the site meteorology data for use with the MOD_Tower GPP
algorithm. Thus, the MOD_NCEP GPP and MOD_Tower GPP algorithms were compared to study
the impacts of the meteorological data on the estimation results. An analysis of the seasonal and
annual GPP estimates showed that the MOD_Tower GPP algorithm with the site meteorology data
was inferior to the MOD_NCEP GPP algorithm (Table 3). However, in the case of the eight-day GPP
estimates, the estimating effectiveness of the MOD_Tower GPP algorithm was better than that of the
MOD_NCEP GPP algorithm, and the improvements were seen at most of the sites (Table 2).



Remote Sens. 2016, 8, 395 15 of 24

The correlations between the daily NCEP-DOE Reanalysis II meteorology data and the daily site
meteorology data were analyzed (Figure 9). The results demonstrated significant correlations between
the two types of data in terms of Tavg (R2 = 0.92) and Tmin (R2 = 0.90) (Figure 9a,b). This meant that
the meteorological reanalysis datasets could be used to effectively estimate the on-site temperature
variations. However, in the case of VPDavg, the correlation between the NCEP-DOE Reanalysis
II meteorology data and the site meteorology data was poor (R2 = 0.31) (Figure 9c) because the
meteorological reanalysis datasets failed to estimate the on-site moisture conditions. Regarding PAR,
the NCEP-DOE Reanalysis II meteorology data commonly overestimated the site meteorology data
(Figure 9d). The correlation (R2 = 0.62) was stronger than that of VPDavg but weaker than those of Tavg

and Tmin.
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3.3. LAI and FPAR

Unlike the MOD_NCEP GPP algorithm, the NCEP_GLASS GPP algorithm followed the
MOD17A2 algorithm by substituting GLASS_FPAR (i.e., the FPAR derived from GLASS LAI datasets)
for MODIS_FPAR. Therefore, comparing the MOD_NCEP GPP and NCEP_GLASS GPP algorithms
was helpful for understanding the influences of FPAR on the estimating effectiveness. Similar to the
MOD_Tower GPP algorithm, the NCEP_GLASS GPP algorithm was outperformed by the MOD_NCEP
GPP algorithm in terms of the annual GPP estimates (Table 3). However, regarding the seasonal
estimates, the effectiveness of the NCEP_GLASS GPP algorithm for estimating the Flux_Tower GPP
was better than that of the MOD_Tower GPP algorithm, which was vastly inferior to the MOD_NCEP
GPP algorithm. In particular, no algorithm was more accurate than the NCEP_GLASS GPP algorithm
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for estimating the Flux_Tower GPP in the summer. In addition, the NCEP_GLASS GPP algorithm
achieved substantial improvements over the MOD_NCEP GPP algorithm for the eight-day estimates
(Figure 2a,c). It estimated the Flux_Tower GPP for CBS, QYZ and DHS far more effectively than the
MOD_NCEP GPP algorithm (Table 2).

Comparisons were made between GLASS_LAI and MODIS_LAI as well as GLASS_FPAR and
MODIS_FPAR (Figure 10 and Table 5). The results showed extremely significant correlations for the
average values of LAI (R2 = 0.93) and FPAR (R2 = 0.91). MODIS_FPAR underestimated GLASS_FPAR
in all of the eight sites except in NMG and DX. In particular, CBS, HB and DX exhibited the
strongest correlations between MODIS_FPAR and GLASS_FPAR, and DHS, QYZ and XSBN exhibited
relatively poor correlations (Figure 10b). From the perspective of the biomes, the correlations between
MODIS_FPAR and GLASS_FPAR were strong for MF and poor for EBF.
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Table 5. Comparison of the LAI and FPAR derived from the GLASS LAI datasets with those from the
MODIS products for various biomes.

Site (Biome) Comparison Mean (SD) Bias RMSE (%)

CBS (MF) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 2.120(0.041) vs. 1.583(0.051) ´0.537 25
GLASS_FPAR vs. MODIS_FPAR 0.498(0.004) vs. 0.480(0.015) ´0.018 4

QYZ (ENF) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 2.464(0.055) vs. 2.267(0.170) ´0.197 10
GLASS_FPAR vs. MODIS_FPAR 0.663(0.012) vs. 0.565(0.043) ´0.098 16

DHS (EBF) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 3.609(0.055) vs. 2.478(0.373) ´1.131 33
GLASS_FPAR vs. MODIS_FPAR 0.829(0.003) vs. 0.563(0.074) ´0.266 33

XSBN (EBF) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 4.795(0.084) vs. 4.737(0.366) ´0.058 7
GLASS_FPAR vs. MODIS_FPAR 0.907(0.004) vs. 0.785(0.037) ´0.122 14

YC (Crop) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 1.192(0.007) vs. 0.728(0.044) ´0.464 39
GLASS_FPAR vs. MODIS_FPAR 0.396(0.004) vs. 0.339(0.024) ´0.057 15

HB (Grass) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 0.901(0.026) vs. 0.749(0.032) ´0.152 17
GLASS_FPAR vs. MODIS_FPAR 0.296(0.004) vs. 0.277(0.006) ´0.019 7

NMG (Grass) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 0.332(0.038) vs. 0.361(0.072) 0.029 13
GLASS_FPAR vs. MODIS_FPAR 0.145(0.014) vs. 0.188(0.033) 0.043 32

DX (Grass) GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 0.333(0.020) vs. 0.299(0.014) ´0.034 10
GLASS_FPAR vs. MODIS_FPAR 0.146(0.006) vs. 0.159(0.004) 0.013 9

EBF
GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 4.202(0.597) vs. 3.607(1.189) ´0.595 21

GLASS_FPAR vs. MODIS_FPAR 0.868(0.039) vs. 0.674(0.126) ´0.194 25

Grass
GLASS_LAI vs. MODIS_LAI (m2¨ m´2) 0.576(0.283) vs. 0.510(0.214) ´0.066 18

GLASS_FPAR vs. MODIS_FPAR 0.210(0.075) vs. 0.218(0.056) 0.008 14
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3.4. Land Cover

The four algorithms used the MCD12Q1 Land Cover Classification Type 2 as their land cover
classification scheme. The results of the land cover classification directly determine the value of the
maximum light use efficiency (εmax) and further influence the estimation results. Based on the user’s
guide for flux data provided by ChinaFLUX, we obtained the actual land cover type of each site.
By comparing the MCD12Q1-based classification results with the actual land cover types at all eight
sites, we found that MCD12Q1 correctly classified most of the sites (Figure 11). The only mistake was
that MCD12Q1 misclassified the QYZ site to the MF category (the actual land cover was ENF).

Remote Sens. 2016, 8, 395 17 of 24 

 

sites, we found that MCD12Q1 correctly classified most of the sites (Figure 11). The only mistake 
was that MCD12Q1 misclassified the QYZ site to the MF category (the actual land cover was ENF). 

 

Figure 11. University of Maryland (UMD) land cover classification (MCD12Q1 Collection 5.1, Land 
Cover Classification Type 2) for the eight sites. The red columns indicate the actual land cover at each 
site. 

3.5. Light Use Efficiency 

For the MODIS GPP algorithm, the values of the maximum light use efficiency (εmax) depend 
on the types of land cover. Each land cover type corresponds to a constant value of εmax. Equations 
(1) and (3) in Section 2.1 were utilized to obtain the inferred εmax for each land cover type, which 
were then compared with MOD17A2 εmax directly (Figure 12 and Table 6). The results show that the 
inferred εmax were higher than MOD17A2 εmax by 60% for MF, 74% for ENF, 11% for EBF, 143% for 
Crop and 37% for Grass, respectively. However, in the case of a single site, the inferred εmax were 
not invariably higher than MOD17A2 εmax. For example, the inferred εmax for DHS and NMG were 
less than the MOD17A2 εmax. 

Table 6. Comparison of the inferred εmax and MOD17A2 εmax at the eight sites. 

Site (Biome) Inferred εmax MOD17A2 εmax Bias 
CBS (MF) 1.68 1.05 −0.63 

QYZ (ENF) 1.67 0.96 −0.71 
DHS (EBF) 1.07 1.27 0.20 

XSBN (EBF) 1.59 1.27 −0.32 
YC (Crop) 2.53 1.04 −1.49 
HB (Grass) 1.75 0.86 −0.89 

NMG (Grass) 0.67 0.86 0.19 
DX (Grass) 0.91 0.86 −0.05 
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3.5. Light Use Efficiency

For the MODIS GPP algorithm, the values of the maximum light use efficiency (εmax) depend
on the types of land cover. Each land cover type corresponds to a constant value of εmax.
Equations (1) and (3) in Section 2.1 were utilized to obtain the inferred εmax for each land cover
type, which were then compared with MOD17A2 εmax directly (Figure 12 and Table 6). The results
show that the inferred εmax were higher than MOD17A2 εmax by 60% for MF, 74% for ENF, 11% for
EBF, 143% for Crop and 37% for Grass, respectively. However, in the case of a single site, the inferred
εmax were not invariably higher than MOD17A2 εmax. For example, the inferred εmax for DHS and
NMG were less than the MOD17A2 εmax.
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Figure 12. Eight-day tower estimated GPP (gC¨ m´2¨ 8-day–1) against the product of GLASS FPAR,
tower PAR, VPDs and Ts for: (a) Mixed forests; (b) Evergreen needleleaf forests; (c) Evergreen
broadleaf forests; (d) Croplands; and (e) Grasslands. APAR (Absorbed Photosynthetic Active
Radiation) = FPAR ˆ PAR.

Table 6. Comparison of the inferred εmax and MOD17A2 εmax at the eight sites.

Site (Biome) Inferred εmax MOD17A2 εmax Bias

CBS (MF) 1.68 1.05 ´0.63
QYZ (ENF) 1.67 0.96 ´0.71
DHS (EBF) 1.07 1.27 0.20

XSBN (EBF) 1.59 1.27 ´0.32
YC (Crop) 2.53 1.04 ´1.49
HB (Grass) 1.75 0.86 ´0.89

NMG (Grass) 0.67 0.86 0.19
DX (Grass) 0.91 0.86 ´0.05
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4. Discussion

In this paper, GPP measurements from eight EC flux towers (Flux_Tower GPP) were used to
verify four groups of GPP values calculated from the MODIS GPP algorithms (i.e., MOD_NCEP
GPP, MOD_Tower GPP, NCEP_GLASS GPP and Tower_GLASS GPP). The results show that the four
groups of GPP values deviated from the tower-based GPP values to varying degrees. The extent
of the deviations varied depending on the time interval, the site and the biome type used in the
calculation. The deviations can be attributed to many potential factors. Clearly, the accuracy of
each parameter input in the MODIS GPP formula will influence the accuracy of the GPP estimates.
That is, the meteorology, LAI/FPAR, land cover and εmax data are all error sources [48]. Furthermore,
the accuracies of the tower-based GPP measurements and the reasonableness of the MODIS GPP
algorithm itself should also be taken into account [49].

4.1. Impact of Meteorology on MODIS GPP

The PAR in the MODIS GPP algorithm together with Tmin and VPDavg, which influence LUE,
are all meteorological factors. Thus, the meteorological inputs may be the largest sources of error in
the GPP estimates [50]. The NCEP-DOE Reanalysis II meteorology dataset used in the C5.5 version
of MOD17A2 product has a low resolution. Although a strict interpolation was used to make the
resolution comparable to the MOD15A2 product, the errors caused by the original low resolution
could not be eliminated completely. In addition, the interpolation process produces new uncertainties.
From comparisons between the meteorological reanalysis data and the site meteorology data, it can
be clearly observed that the NCEP-DOE Reanalysis II meteorology data are ineffective for estimating
PAR, and the outcome is even worse for VPD (Figure 9c,d). In fact, the MODIS GPP algorithm does
not directly take the soil moisture into account. However, soil moisture plays a key role in GPP
estimation [51]. To compensate for this defect, the VPD was added to the algorithm as a proxy for the
soil moisture; however, errors will be unavoidably introduced. In particular, the estimation error will
increase when the deviations between the VPD estimates and measurements are large.

In this paper, we replaced the NCEP-DOE Reanalysis II meteorology data with the site
meteorology data to recalculate the MODIS GPP formula and obtained new GPP values
(i.e., MOD_Tower GPP). Unexpectedly, the GPP estimates over eight days calculated using the site
meteorology data did not result in obvious improvements in the accuracy of the GPP estimates
(Figure 2a,b). On the contrary, the estimates of the seasonal and annual GPP calculated using the site
meteorology data were not as accurate as those calculated using the meteorological reanalysis data
(Table 3). This implies that improved meteorological inputs will not necessarily enhance the estimation
effectiveness of the MODIS GPP algorithm, highlighting the need to analyze other sources of error.

4.2. Impact of LAI/FPAR on MODIS GPP

In addition to improving the quality of the meteorological inputs, we also introduced an
improved LAI dataset (GLASS LAI) to evaluate the impacts of LAI/FPAR on the GPP estimates
(i.e., NCEP_GLASS GPP). The results show that after replacing MODIS FPAR with GLASS FPAR,
substantial improvements were achieved in estimating the eight-day GPP values (Figure 2a,c).
The effectiveness in estimating GPP during the summer was also improved (Figure 5a,c). For Cropland
and Grassland, the GPP estimates became more accurate after FPAR was improved (Table 4). Based
on the comparisons, it was found that the MODIS LAI/FPAR were generally less than the GLASS
LAI/FPAR (Table 5). Indeed, the MOD17A2 GPP algorithm generally underestimated the tower-based
GPP (Table 3). Therefore, the improved LAI/FPAR compensated for the underestimation caused by
MODIS LAI/FPAR to some extent, which resulted in a higher effectiveness of the GPP estimation.

In this paper, we further estimated GPP by improving the quality of the meteorological inputs and
the LAI/FPAR data jointly (i.e., Tower_GLASS GPP). We simply replaced the NCEP-DOE Reanalysis
II meteorology data with the site meteorology data and replaced MODIS FPAR with GLASS FPAR.
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The results demonstrate that the replacements resulted in the greatest improvements in estimating the
eight-day GPP values (Figure 2a,d). However, this type of replacement strategy was not very effective
in estimating the seasonal and annual GPP (Table 3). This implies that the GPP estimation accuracy
can be greatly improved by simultaneously enhancing the quality of the multiple inputs of the MODIS
GPP algorithm. However, it does not mean that improvements can be achieved simply by substituting
the input parameters because the overall performance gains are by no means the sum of the individual
gains. In the future, we will thoroughly study how to use the synergies among the individual gains to
increase GPP estimation accuracy.

4.3. Impact of Land Cover on MODIS GPP

The impact of land cover classification on GPP estimation is non-negligible. In this paper, the
land cover at site QYZ was of type ENF, but it was misclassified to type MF by MCD12Q1 (Figure 11).
This misclassification directly led to the misestimation of the FPAR by MOD15A2 and the misjudgment
of εmax by BPLUT and thus affected the MOD17A2 GPP estimate for site QYZ.

4.4. Impact of LUE on MODIS GPP

Regarding the MODIS GPP algorithm, εmax represents the maximum light use efficiency of the
vegetation in photosynthesis. The value of εmax will vary with the type of biome. For a given biome
type, εmax is set to a constant by BPLUT. Encouragingly, BPLUT corrected and updated the value of
εmax several times. However, because of the immense diversity of earth surface environments and
climate conditions, assigning a constant value of εmax to the same biome type does not conform to the
truth [52]. The improved εmax that we inferred for the eight sites in this paper greatly differed from
the MOD17A2 εmax that was specified by BPLUT (Figure 12 and Table 6). Because the value of εmax

provides the foundation for the actual light use efficiency, the misestimation of εmax will inherently
decrease the accuracies of the GPP estimates.

4.5. Uncertainties, Errors, and Accuracies

Note that our evaluation of MODIS GPP is based on the assumption that the GPP values measured
by the EC flux tower are the ground truth. However, many uncertainties exist in the tower-based
GPP measurements [53]. The tower GPP data used in this paper were calculated as the difference
between the net ecosystem exchange (NEE) and ecosystem respiration (Reco). The precise estimation
of Reco is difficult and can lead to systematic and random errors in estimating GPP. Furthermore,
uncertainties also arise due to scale mismatches between the tower flux footprints and MODIS pixels.
In addition, the MODIS GPP algorithm itself is also a potential error source in GPP estimation.
Recently, many studies have examined the structural errors of the MODIS GPP algorithm [54–56].
For example, Zhang et al. (2012) [57] compared the MODIS GPP product with estimates from a two-leaf
process-based model. Their results showed that the MODIS GPP algorithm cannot properly treat the
contribution of shaded/sunlit leaves to the calculation of the total GPP.

We should also notice that the number of observations in the regression analysis could affect our
estimation results. The seasonal and annual GPP reduced a lot the number of observations in relation
to the eight-day data. This could be one reason why the eight-day data gave, in general terms, more
accurate estimations.

5. Conclusions

In this study, we methodically evaluated the eight-day, seasonal and annual MODIS GPP using
EC flux measurements at eight sites in five various biome types across China from 2003 to 2005.
The sensitivity of MOD17A2 algorithm to meteorological data and LAI/FPAR products were examined
by introducing site meteorological measurements and improved GLASS LAI products. We also
assessed the potential error contributions from land cover and εmax. Each of these validation steps
would help to isolate and identify sources of error. The main conclusions can be summarized as follow:
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(1) The standard MOD17A2 product (i.e., MOD_NCEP GPP) performed better at estimating the
annual GPP (R2 = 0.76) and agreed well with the tower GPP during the autumn (R2 = 0.80) and
winter (R2 = 0.92). However, the effectiveness of the MOD_NCEP GPP algorithm for estimating
GPP over eight days was poor (R2 = 0.55) and even worse during the summer (R2 = 0.46).
In addition, the MOD_NCEP GPP algorithm was ineffective when estimating the annual GPP for
mixed forests, evergreen needleleaf forests and cropland.

(2) Replacing the NCEP-DOE Reanalysis II meteorology data with the site meteorology data (i.e.,
MOD_Tower GPP) only slightly improved the correlation with the tower GPP over eight days
(R2 = 0.56). However, substantial improvements in estimating the tower GPP over eight days
(R2 = 0.65) and during the summer (R2 = 0.52) were achieved by substituting GLASS_FPAR for
MODIS_FPAR (i.e., NCEP_GLASS GPP). For cropland, the GPP estimates were more accurate after
the FPAR data were improved. When the meteorology inputs and FPAR data were simultaneously
replaced with improved data (i.e., Tower_GLASS GPP), the effectiveness in estimating the tower
GPP was improved significantly for mixed forests and evergreen needleleaf forests.

(3) There are four potential error sources related to the inputs of the MOD17A2 algorithm:
meteorology, LAI/FPAR, land cover and εmax. The NCEP-DOE Reanalysis II meteorology data
failed in estimating the tower measured VPD (R2 = 0.31), and MODIS_FPAR underestimated the
improved FPAR data at most sites. Although MCD12Q1 succeeded in classifying most of the sites
correctly, the values of MOD17A2 εmax were much smaller than the optimized εmax values for all
five biome types discussed in this paper.

From above analysis, we suggest that the qualities of the meteorological data and LAI/FPAR
products need to be improved and the BPLUT parameters should be adjusted to provide better GPP
estimates using MOD17A2 for Chinese ecosystems. In future research, additional high-resolution
LAI/FPAR and GPP products should be considered, such as MOD15A2H and MOD17A2H, which
have been recently released.
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