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Abstract: Roadway pavement surface distress information is critical for effective pavement asset
management, and subsequently, transportation management agencies at all levels (i.e., federal, state,
and local) dedicate a large amount of time and money to routinely evaluate pavement surface
distress conditions as the core of their asset management programs. However, currently adopted
ground-based evaluation methods for pavement surface conditions have many disadvantages, like
being time-consuming and expensive. Aircraft-based evaluation methods, although getting more
attention, have not been used for any operational evaluation programs yet because the acquired
images lack the spatial resolution to resolve finer scale pavement surface distresses. Hyper-spatial
resolution natural color aerial photography (HSR-AP) provides a potential method for collecting
pavement surface distress information that can supplement or substitute for currently adopted
evaluation methods. Using roadway pavement sections located in the State of New Mexico as
an example, this research explored the utility of aerial triangulation (AT) technique and HSR-AP
acquired from a low-altitude and low-cost small-unmanned aircraft system (S-UAS), in this case
a tethered helium weather balloon, to permit characterization of detailed pavement surface distress
conditions. The Wilcoxon Signed Rank test, Mann-Whitney U test, and visual comparison were
used to compare detailed pavement surface distress rates measured from HSR-AP derived products
(orthophotos and digital surface models generated from AT) with reference distress rates manually
collected on the ground using standard protocols. The results reveal that S-UAS based hyper-spatial
resolution imaging and AT techniques can provide detailed and reliable primary observations suitable
for characterizing detailed pavement surface distress conditions comparable to the ground-based
manual measurement, which lays the foundation for the future application of HSR-AP for automated
detection and assessment of detailed pavement surface distress conditions.

Keywords: pavement surface distress evaluation; hyper-spatial resolution; natural color aerial
photography; small-unmanned aircraft systems (S-UAS); aerial triangulation

1. Introduction

As one of the most critical types of transportation infrastructure, roadways provide a foundation to
the performance of all national economies, delivering a wide range of economic and social benefits [1].
In most countries, roadways are the primary transport mode for both freight and passengers [1–4].
Similar to other types of transportation infrastructure, roads deteriorate over time due to various

Remote Sens. 2016, 8, 392; doi:10.3390/rs8050392 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 392 2 of 23

factors such as age, traffic load, and weather conditions [5]. The serviceability of roads (i.e., the ability
of a road to serve traffic) primarily depends on pavement surface conditions, and subsequently, road
management agencies at all levels (i.e., federal, state, and local) devote large amounts of time and
money to routinely evaluate pavement surface conditions as the core of their asset management
programs. These pavement surface condition data are used by these agencies to make maintenance
and repair decisions.

Historically, pavement evaluation was commonly performed with “boots on the ground” by
having experts visually inspect the surface conditions with subjective judgment [6]. Pavement surface
conditions were observed and recorded by inspectors in the field and the hand-written data was
later inputted into a computer database. In the 1980s, vehicle-mounted electronic sensors (e.g.,
video cameras, digital cameras, and laser sensors) at a fine enough resolution emerged and were
used for automated pavement surface evaluation [7–10]. Both manual observation and automated
observation methods are classified as ground-based evaluation methods because the evaluation
action occurs from the ground. Ground-based evaluation methods can collect detailed pavement
surface condition data for various types of distresses (e.g., alligator cracking and transverse cracking).
However, these methods are expensive [11], labor-intensive (manual observation only) [9,10,12–15],
time-consuming [10], tedious [16], subjective (manual observation only) [17–19], potentially dangerous
to inspectors in the hazardous roadway environment [10], require specialized staff on a regular
basis [20], and can exhibit a high degree of variability [21], thereby causing inconsistencies in surveyed
data over space and across evaluation [22]. In addition, data collected on the ground serves only
a single purpose (i.e., pavement surface evaluation) and cannot be shared with other government
agencies (e.g., U.S. Geological Survey) to reduce the cost [22].

Another method to evaluate pavement surface is through airborne observation. Airborne methods
require deploying cameras (both analog and digital) on aircraft that can fly over pavement sections.
Airborne remote sensing techniques, also known as aircraft-based evaluation, is getting more attention
because of its synoptic coverage [23], although it has not been used for operational evaluation programs
to the authors’ knowledge. The resulting aerial images, which typically have high-spatial resolutions
ranging from 0.075 m (3 in) to 1 m, can be used to evaluate the overall condition of pavement
surfaces in a more rapid, cost-effective (data can be shared with other government agencies), and safer
manner [22,24]. However, the spatial resolutions of these images limit the ability to detect and assess
fine and detailed defects such as individual cracks on a pavement surface because most cracks have
widths less than 0.01 m [25]. Although visual interpretation of large scale (e.g., 1:100) panchromatic
analog aerial photographs can be used to identify untreated cracks and other high-contrast pavement
defects such as patching and bleeding, extremely high cost and limited compatibility with modern
image processing techniques ultimately prevent the further exploration of their applications for
pavement surface evaluation [26–28].

The above literature reveals the actual obstacle for using digital aerial images for detailed
pavement surface distress evaluation is the spatial resolution is too coarse to resolve detailed distresses,
which often manifest at the millimeter scale. Recent advances in remote sensing have enabled
us to effectively collect hyper-spatial resolution (sub-centimeter or sub-inch) natural color aerial
photography (HSR-AP) at a low cost. HSR-AP has been used to facilitate research in many fields,
such as archaeology [29], ecology [30–32], zoology [33], emergency management [34], vegetation and
soil monitoring [35], and topographic mapping [36–38]. However, previous studies regarding the
application of HSR-AP for detailed pavement surface condition assessment are limited. The only
published research on this topic was performed by Chen et al. [39]. This research shows the potential
to use HSR-AP to evaluate crack-level pavement surface conditions, but the assessment capability is
limited to 2 cm wide cracks on bridge pavements because the spatial resolution of the used HSR-AP is
0.025 m (1 in).

Based on our review of literature, the use of HSR-AP for evaluating detailed pavement surface
distress condition is lacking and presents a significant gap in the research. The intellectual significance
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of this research lies in exploring the utility of millimeter scale HSR-AP acquired from a low-altitude
and low-cost small-unmanned aircraft system (S-UAS), in this case a tethered helium weather balloon,
to permit characterization of detailed pavement surface distress conditions. Unlike the ground-based
or aircraft-based evaluation methods, this research collected detailed pavement surface distress
information through a middle-ground approach—using a low-altitude S-UAS.

To collect millimeter scale HSR-AP and appropriately process them for characterizing detailed
pavement surface distress conditions, two emerging remote sensing techniques, including S-UAS
based hyper-spatial resolution imaging and aerial triangulation (AT) are leveraged for image collection
and image processing. An S-UAS, which can fly lower to the ground than traditional manned aircraft,
and thus permit ready collection of hyper-spatial resolution (HSR, i.e., ground sampling distance (GSD)
< 1 cm) aerial images using compact low-cost sensors, is used for HSR-AP collection. AT, also known
as structure-from-motion (SfM) in the computer vision field, is used to process the collected HSR-AP to
generate millimeter GSD mosaicked orthophotos and digital surface models (DSMs) for standardized
evaluation of detailed horizontal and vertical pavement surface conditions, potentially reducing the
cost and duration of evaluation while improving the comparability of surveyed results.

In recent years, S-UAS have emerged as an important platform for collection of HSR aerial
data [40,41]—a trend that is all but certain to continue [42]. For now, due to a wide variety of
regulatory and safety concerns, the legal use of S-UAS is severely restricted in the United States
of America. In anticipation of an established regulatory environment and availability of S-UAS for
routine pavement surface condition evaluation, this research used a tethered helium weather balloon
system to simulate the collection of HSR-AP from untethered S-UAS, as suggested by the Public
Lab [43]. This organization is a popular community across the world for researchers/hobbyists using
inexpensive do-it-yourself (DIY) S-UAS to collect various remote sensing data, including HSR-AP.
Currently, the tethered helium weather balloon is not restricted from flying in the United State of
America as long as the flight location is 8 km (5 miles) away from the airports and the flight altitude
above ground level (AGL) is less than 120 m (400 ft) [44].

As a basic photogrammetric method, AT is used for calculating the three-dimensional (3D)
coordinates of objects by analyzing overlapping aerial images captured from varied perspectives [45].
AT traditionally requires the manual identification of thousands of control points linking images to
one another and to a reference dataset to enable least squares estimation of the optimal triangulation
model. New computation approaches (e.g., SfM and graphic processing unit (GPU) based image
processing) have enabled the automation of traditional AT and expansion of the number of triangulated
XYZ locations to millions up to hundreds of millions, ultimately permitting routine estimation of
3D surface structure and subsequently orthocorrection of large datasets at approximately the spatial
resolution of input images [46,47]. When coupled with HSR aerial image data such as that collected
by low-altitude S-UAS, this technique holds the potential to permit the estimation of horizontal
and vertical measurements at millimeter scales [46], and ultimately, the detection and assessment of
pavement surface distresses at finer scales than has traditionally been possible by airborne survey.

HSR-AP acquired from S-UAS has already been commercially applied in the context of airport
runway condition assessment in Germany [48], which indicates its application in roadway pavement
surface condition assessment is promising. Using roadway flexible pavement (i.e., asphalt concrete)
sections in the State of New Mexico in the United States of America as an example, we explored
the utility of AT technique and millimeter scale HSR-AP acquired from a low-altitude and low-cost
S-UAS to characterize detailed pavement surface condition to assess: (1) if millimeter-scale HSR-AP
can be used to characterize detailed pavement surface distress condition, and if they can; (2) how
well can HSR-AP characterize detailed pavement surface distress conditions when compared with
ground-based manual measurement? The answers to these questions lay the foundation for the
development of automated procedures for the extraction of detailed pavement surface distress metrics
and operational use of HSR-AP to detect and assess pavement surface conditions.
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2. Materials and Methods

Using HSR-AP acquired from a low-altitude and low-cost S-UAS as input, AT was used to generate
3 mm GSD mosaicked orthophotos and co-registered DSMs for characterizing pavement surface
conditions. Key metrics used to evaluate flexible pavement surface distresses were identified from the
United States Department of Transportation (USDOT) Highway Performance Management System
(HPMS) Field Manual [49], and included rutting (item 50), alligator cracking (item 52), and transverse
cracking (item 53). These metrics were measured from the orthophotos and DSMs and then compared
with ground reference data manually collected by trained inspectors using standard protocols [50].
Unlike the manual evaluation methods operationally used by transportation management agencies,
which are characterized by subjective visual observation, inspectors of this research used measuring
tapes to objectively measure distresses.

2.1. Data Acquisition and Preparation

A low-altitude AGL and low-cost S-UAS was constructed to simulate the collection of HSR-AP
from other untethered low altitude AGL S-UAS that are now common in the marketplace. This system
includes a tethered helium weather balloon with custom-designed rigging based on the Picavet
suspension system, as suggested by the Public Lab [43]. As mentioned in the previous section,
a tethered helium weather balloon is permitted to fly in the United States of America as long as the
flight meets the rules about location and altitude. The sensor affixed to the platform was an off-the-shelf
small-format Canon SX260 HS digital camera. This camera has a 12-megapixel Complimentary
Metal-Oxide Semiconductor (CMOS) detector array collecting in the visible blue, green, and red
wavelength bands through Bayer array sampling and a built-in GPS unit. A firmware enhancement
application known as the Canon Hack Development Kit (CHDK), was used to permit more control
over the operation of the Canon SX260 HS camera, including shutter speed, shutter lag, aperture size,
and intervalometer (Figure 1).

HSR-AP data were collected from 28 study sites (i.e., sections of roadway pavement surfaces)
in Bernalillo County, New Mexico. Twenty-one sites were located on United States Highway 66,
two sites were located on the campus of the University of New Mexico (UNM), and five sites were
located on New Mexico Highway 333. All study site roadways run in a generally east-west direction.
Approximately 300 overlapping HSR aerial images were acquired for each study site at about 5 m
AGL to permit a nominal GSD of 0.002 m. At this AGL, the size of the ground area covered by each
frame is approximately 8 ˆ 6 m. Image acquisition was not controlled into flight lines, but was instead
collected as a highly redundant block in a largely randomized pattern. However, the long side of each
frame was approximately aligned perpendicular to the roadway while the short side of each frame
was approximately parallel to the roadway. Crab angles were relatively stable along the roadways
because balloon operators were standing along the shoulder of the roadways.

Ground control point (GCP) data were collected by a trained six-person surveying crew at each of
the 28 sites. GCPs were identified using identifiable objects on the pavement surfaces, including sharp
edges of cracking, intersections of cracking, and asphalt stains. GCPs were collected on the pavement
surfaces using a survey grade CHC X900+ real-time kinematic (RTK) Global Navigation Satellite
System (GNSS) in a base/rover configuration. Base stations were set up over National Geodetic Survey
(NGS) benchmarks. Data were collected using the Carlson SurvCE software package and a WGS84
UTM Zone 13 North projection. When collecting the GCP coordinates, detailed photos of each GCP
were acquired with the survey instrument in place. These detailed photos were used to facilitate the
placement of GCPs on the acquired HSR aerial imagery. A total of 16 GCPs were collected for each
site. The collected GCP coordinates were post-processed with the National Oceanic and Atmosphere
Administration (NOAA) Online Positioning User Service (OPUS) and the ultimate root mean square
(RMS) RTK accuracy achieved was 0.004 m + 1 ppm horizontally and 0.006 m + 1 ppm vertically.
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Figure 1. The helium weather balloon small-unmanned aircraft system (S-UAS); (a) a filled helium 
weather balloon and a helium tank; (b) customized rigging and mounted Canon SX260 HS digital 
camera; the characteristics of the rigging are lightweight, durable, resilient, capable of protecting the 
sensor, capable of removing the string in the aerial images and capable of dynamically adjusting the 
sensor position (i.e., the lens always facing down the nadir or principal point); (c) balloon mapping 
kit, including a balloon, reels, gloves, rubber bands, and zip ties; (d) front facet of Canon SX 260 HS 
digital camera and Canon Hack Development Kit (CHDK) graphical user interface (GUI).  

A ground reference dataset of pavement surface conditions was collected by a trained 
two-person crew at each of the study sites. The crew performed manual measurements based on the 
standard evaluation protocols adopted by the HPMS Field Manual. Both inspectors assessed 
pavement surface distresses (rutting, alligator cracking, and transverse cracking) independently and 

Figure 1. The helium weather balloon small-unmanned aircraft system (S-UAS); (a) a filled helium
weather balloon and a helium tank; (b) customized rigging and mounted Canon SX260 HS digital
camera; the characteristics of the rigging are lightweight, durable, resilient, capable of protecting the
sensor, capable of removing the string in the aerial images and capable of dynamically adjusting the
sensor position (i.e., the lens always facing down the nadir or principal point); (c) balloon mapping kit,
including a balloon, reels, gloves, rubber bands, and zip ties; (d) front facet of Canon SX 260 HS digital
camera and Canon Hack Development Kit (CHDK) graphical user interface (GUI).

A ground reference dataset of pavement surface conditions was collected by a trained two-person
crew at each of the study sites. The crew performed manual measurements based on the standard
evaluation protocols adopted by the HPMS Field Manual. Both inspectors assessed pavement surface
distresses (rutting, alligator cracking, and transverse cracking) independently and the results were
recorded as the average value of the two independent measurements. In accordance with the HPMS



Remote Sens. 2016, 8, 392 6 of 23

Field Manual, rutting depth was measured for only the rightmost driving lane for both inner and outer
wheel paths at three locations along the wheel path within each site and then the depth was averaged
for each wheel path. The HPMS Field Manual requires reporting the percent area of total alligator
cracking to the nearest 5%. For transverse cracking, the HPMS Field Manual requires reporting an
estimation of relative length in meters per kilometers (feet per mile).

2.2. Aerial Triangualtion

After excluding blurred and oblique HSR aerial images, between 120 and 300 overlapping aerial
images were processed and assessed for each study site according to the protocols established by
Zhang et al. [51]. As one of the most complex photogrammetric workflows, traditional AT is composed
of many processes, which include image import, interior orientation, tie points determination, GCP
measurements, bundle block adjustment, and quality control [52]. As in traditional AT, automated
AT (or SfM) uses overlapping images acquired from multiple viewpoints [52]. However, automated
AT differs from traditional AT by determining internal camera geometry using an in situ automated
process and by triangulating camera position and orientation automatically without the need for
a pre-defined set of visible GCPs at known 3D positions [53]. To do so, automated AT requires a high
degree of overlap (ideally 75% for sidelap and 80% for forward overlap) to observe the full geometry
of scene structure [46]. For this research, images were collected in a hyper redundant block pattern and
the sidelap and forward overlap percentage meet or exceed the 75% and 80% requirements identified
by Zhang et al. [46].

In recent years, many software packages have emerged to efficiently implement automated AT.
The commercial software Agisoft Photoscan was selected as the tool of choice for this study as it
permits minimal human intervention. Among the 16 GCPs, 10 were used to calibrate the automated
AT process while the remaining six were reserved to evaluate the horizontal and vertical accuracy of
the AT outputs, including orthophotos and DSMs.

For each of the 28 study sites, an in situ camera model was generated based on all of the input
HSR aerial images. Therefore, the camera model is not identical across the sites. For each of the study
sites, millions of tie points were automatically identified from the input of overlapping images to build
a dense point cloud, and then a triangulation irregular network (TIN) mesh was generated based
on the identified tie points. Lastly, a DSM was created based on the digital mesh and a mosaicked
orthophoto was created based on input images to co-register with DSM.

Once these processes were completed, orthophotos and the DSMs were exported as rasters in TIFF
format at a spatial resolution of 0.003 m. Orthophotos and DSMs are generated in a single processing
routine and are therefore tightly co-registered. An example of the orthophotos and DSM are showed
in Figure 2. Orthophotos were used to assess the horizontal accuracy while DSMs were used to assess
the vertical accuracy. Root-mean-squared-error (RMSE) was used to assess the accuracy [54], and
the results show that the overall horizontal accuracy is 0.004 m while the overall vertical accuracy
is 0.007 m. The number of overlapping images used and accuracy for each study site is reported in
Table 1. More details regarding the accuracy assessment can be found in the study performed by
Zhang et al. [51].
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Figure 2. (a) An example of hyper-spatial resolution orthophotos with 0.003 m resolution and (b) an 
example of hyper-spatial resolution digital surface model (DSM) with 0.003 m resolution. The 
black to white color scale in (b) indicates elevations.  

Table 1. Accuracy Assessment Result (RMSE) for Each Study Site. RMSE refers to 
root-mean-squared-error. 

Study Site No. of Image Frames Horizontal Accuracy (m) Vertical Accuracy (m) 
1 122 0.003 0.006 
2 135 0.005 0.011 
3 183 0.003 0.006 
4 177 0.003 0.007 
5 181 0.003 0.007 
6 180 0.004 0.008 
7 165 0.004 0.006 
8 133 0.004 0.006 
9 126 0.003 0.006 

10 189 0.003 0.006 
11 162 0.005 0.007 
12 156 0.004 0.006 
13 292 0.005 0.007 
14 207 0.005 0.008 
15 163 0.005 0.008 
16 150 0.005 0.007 
17 225 0.004 0.007 
18 155 0.004 0.008 
19 145 0.004 0.007 
20 136 0.003 0.005 
21 168 0.004 0.006 
22 130 0.003 0.006 
23 105 0.003 0.006 
24 103 0.004 0.005 
25 109 0.004 0.006 
26 155 0.004 0.007 
27 112 0.003 0.006 
28 115 0.003 0.006 

Mean 157 0.004 0.007 

Figure 2. (a) An example of hyper-spatial resolution orthophotos with 0.003 m resolution and
(b) an example of hyper-spatial resolution digital surface model (DSM) with 0.003 m resolution.
The black to white color scale in (b) indicates elevations.

Table 1. Accuracy Assessment Result (RMSE) for Each Study Site. RMSE refers to root-mean-squared-error.

Study Site No. of Image Frames Horizontal Accuracy (m) Vertical Accuracy (m)

1 122 0.003 0.006
2 135 0.005 0.011
3 183 0.003 0.006
4 177 0.003 0.007
5 181 0.003 0.007
6 180 0.004 0.008
7 165 0.004 0.006
8 133 0.004 0.006
9 126 0.003 0.006
10 189 0.003 0.006
11 162 0.005 0.007
12 156 0.004 0.006
13 292 0.005 0.007
14 207 0.005 0.008
15 163 0.005 0.008
16 150 0.005 0.007
17 225 0.004 0.007
18 155 0.004 0.008
19 145 0.004 0.007
20 136 0.003 0.005
21 168 0.004 0.006
22 130 0.003 0.006
23 105 0.003 0.006
24 103 0.004 0.005
25 109 0.004 0.006
26 155 0.004 0.007
27 112 0.003 0.006
28 115 0.003 0.006

Mean 157 0.004 0.007
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2.3. Rutting Depth Measurement

Rutting is an unrecoverable longitudinal surface depression in both inner and outer wheel
paths [50]. In ground-based manual measurement, rutting depth was measured with a wooden bar
and a measuring tape. The wooden bar was used as a reference line between the two highest points
of the rut and the measuring tape was used to measure the distance from the lowest point on the
pavement surface perpendicularly to the point at the bottom of the wooden bar that is perpendicular to
the lowest point. The actual measured points in the field are the lowest points as visually determined
by inspectors. The minimum scale of the measuring tape used for manual evaluation was 0.001 m.
The length and width of the wooden bar is 1.22 m (48-inch) and 0.02 m (0.8-inch).

DSMs (reconstructed 3D pavement surface) were used to measure rutting depths using a digital
process designed to simulate the ground-based manual measurement. Points and polygons were
created on DSMs to simulate the locations of the actual measured points and wooden bars. The actual
measured points in the field and the locations of the wooden bars are shown in Figure 3. With the
actual measured point (as photographed in the field) as the center, two polygons (one on either side of
the filed measured point) with a size of 0.61 m by 0.02 m were created to simulate the location of the
wooden bar.
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Unlike ground-based manual measurement, it is not possible to directly identify the highest point
at the bottom of the wooden bar. Therefore, the following method was used to identify the highest and
lowest points of rutting. Using the polygon as the boundary, the DSM pixels within the boundary were
extracted and reclassified to find the highest point on both sides of the actual field measured points.
If there were multiple pixels having the same highest value, the one closer to the actual measured
point in the field was used. Then, as shown in Figure 4, we considered the two highest points within
the two polygons as Point A and Point B, while the two measured points as Point C and Point D.
The distance from Point C to Point D is the rutting depth. Points A, B, and C will have the same height
if the heights of Points A and B are equal. However, under most circumstances the heights of Points A
and B are different. Therefore, a weighted average method was used to calculate the height of Point C:

HC “
HA ˚ DA ` HB ˚ DB

DA ` DB
(1)

RD “ HC ´ HD (2)

where H represents the height of a given point, and therefore HA represents the height of Point A, and
HB represents the height of Point B. DA represents the horizontal distance from Point A to Point D,
while DB represents the horizontal distance from Point B to Point D. RD represents the rutting depth.
HA and HB were determined from the DSMs, while DA and DB were determined from the orthophotos.
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2.4. Alligator Cracking Measurement

Alligator cracking is interconnected cracks resembling check wire or alligator skins [50].
Longitudinal cracking (cracks that are parallel to the pavement’s centerline) should also be included as
alligator cracking [49]. According to the HPMS Field Manual, alligator cracking should be reported
as the percentage of the total evaluated area to the nearest 5% at a minimum. In manual evaluation,
inspectors measure the cumulative length of alligator cracking and mark the location of occurrence
in one or two wheel paths. For example, typically the width of the driving lane is 3.66 m (12 ft), and
therefore, for a 100 m (328 ft) section, the total area is 366 m2 (3940 ft2). If alligator cracking exists
for both wheel paths, and for each wheel path the total length of the measured alligator cracking is
15 m (49 ft) while the width is 0.5 m (1.64 ft), the total area of the measured alligator cracking is 15 m2

(15 ˆ 0.5 ˆ 2 = 15). There the total area percentage should be 5 percent (15/366 ˆ 100 = 4.09%, which
should be rounded up to the nearest 5 percent, which is 5%).

In order to simulate the alligator cracking measurement prescribed by the HPMS Field Manual,
orthophotos were visually analyzed to locate alligator cracks and then mark them with on-screen
digitization in GIS software. Polygons were digitized to represent both the entire evaluated pavement
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section and the sections that alligator cracking occurred. The polygon defining the entire evaluated
pavement section was used to calculate the total evaluated area, while the polygons defining alligator
cracking were used to calculate the total area of alligator cracking. The area percentage of alligator
cracking was then calculated by comparing the areas of the two sets of polygons. The use of polygons
to determine area percentage of alligator cracking is shown in Figure 5. It should be noted that both
actual area percentage and rounded area percentage were calculated for each site, but only rounded
area percentage was used for comparison to ground-based manual measurements.
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Figure 5. An illustration of orthophoto-based alligator cracking measurement. The blue polygons
are the digitized alligator cracking area while the red polygon is the entire manual evaluation zone.
Areas for these polygons can be calculated with GIS software and therefore, alligator cracking area
percentage can be determined by dividing alligator cracking area by the entire evaluation zone area.
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2.5. Transverse Cracking Measurement

Transverse cracking are cracks that are perpendicular to the pavement’s centerline [50].
According to the HPMS Field Manual, field inspectors should measure the length of each transverse
crack that extends at least half of the lane width (1.83 m [6 ft] or longer cracks) to calculate the total
length of transverse cracking. The total length of transverse cracking will be normalized by the total
length of the evaluated pavement section, and therefore, the final results will be delivered in the format
of meter per kilometer (or feet per mile).

In order to simulate the transverse cracking measurement prescribed by the HPMS Field Manual,
orthophotos were visually analyzed and any transverse cracks longer than 1.83 m (6 feet) were
identified and digitized in GIS software as polylines to facilitate the calculation of total length of
transverse cracking (Figure 6). The same polygon created for the alligator cracking measurement
representing the entire evaluated pavement section was used to measure the total length of the
evaluated pavement section.
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Figure 6. An illustration of orthophoto-based transverse cracking measurement. The blue polylines are
the digitized transverse cracking while the red polygon is the entire evaluation zone. The lengths of
these transverse cracks and the length of the entire evaluation zone can be calculated with GIS software
and, therefore, transverse cracking length can be determined by dividing total transverse cracking
length by the entire evaluation zone length.
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2.6. Measurement Results Comparision

For each study site, rutting depth (for both wheel paths), alligator cracking area percentage,
and transverse cracking length measured from the DSMs and orthophotos were compared with
ground-based manual measurement results to examine the utility of using HSR-AP derived products
to detect and assess detailed pavement surface distresses. In order to select the most appropriate
statistical test, the sample size of each set of measurements was examined. Most statistical researchers
and scientists accept that non-parametric statistical tests should be employed if the sample size is less
than 30 [55–58], even if sample values are normally distributed. The examination revealed that the
sample size for each set of measurements was 28, and therefore, non-parametric statistical tests were
used to compare ground-based measurements with HSR-AP derived products based measurements.

Measurement comparisons were performed as a paired group and unpaired group. Paired group
tests are more appropriate if two groups of measurements are dependent (i.e., repeated measurements
for the same subject but at two different times). Unpaired group tests are more appropriate if
two groups of measurements are independent (i.e., measurement for one sample in Group A has
no bearing on the measurement for one sample in Group B). The relationship between ground-based
manual measurements and HSR-AP derived products measurements can be interpreted in both
a dependent way and an independent way. In the dependent way, repeated measurements of
a specific distress at a study site were performed on the ground and from HSR-AP derived products at
two different times, and therefore, they are dependent. In the independent way, the ground-based
measurement of a specific distress at a study site has no bearing on the HSR-AP derived product based
measurement of a specific distress at the same study site since they are measured from two different
data sources. Since the relationship can be interpreted in both ways, to err on the side of caution,
this research used both paired group and unpaired group statistical tests to examine if the detailed
pavement surface distress rates measured from HSR-AP derived products and distress rates manually
measured on the ground are statistically different.

In the paired group comparisons, repeated measurements (i.e., ground-based measurement
and HSR-AP derived products based measurement) of a specific distress (e.g., alligator cracking)
for a specific study site (e.g., site 20) constitute a pair, and the purpose of this comparison is
to examine whether the median difference between the two sets of paired measurements is zero.
Nonparametric Wilcoxon Signed Rank test [59], which does not assume normality in the data, was
used in this study as a robust alternative to parametric Student’s t-test.

In the unpaired group comparisons, two sets of measurements (i.e., the ground-based
measurement and the HSR-AP derived products based measurement) of a specific distress constitute
two independent groups, and the purpose of this comparison is to examine whether two independent
groups of samples exhibit the same distribution pattern (i.e., shape and spread) or have differences in
medians. Nonparametric Mann-Whitney U test [60], also known as Wilcoxon Rank-Sum test, which
also does not assume normality in the data, was used to detect differences in shape and spread as well
as differences in medians.

3. Results

For rutting depth, the ground-based and DSM-based measurements are summarized in Table 2.
It should be noted that the results are organized by inner and outer wheel paths for each study site.
Table 3 summarizes the ground-based and orthophoto-based measurements for alligator cracking area
percentage and transverse cracking length.



Remote Sens. 2016, 8, 392 13 of 23

Table 2. Rutting Depth Measurements for Inner and Outer Wheel Path (in m).

Site ID
Inner Wheel Path Outer Wheel Path

Ground Depth DSM Depth Ground Depth DSM Depth

1 0.021 0.024 0.006 0.009
2 0.012 0.020 0.009 0.017
3 0.015 0.016 0.007 0.007
4 0.017 0.017 0.008 0.013
5 0.022 0.019 0.018 0.015
6 0.019 0.016 0.021 0.017
7 0.017 0.022 0.018 0.023
8 0.022 0.018 0.018 0.017
9 0.013 0.013 0.016 0.018
10 0.008 0.010 0.015 0.016
11 0.020 0.016 0.024 0.021
12 0.023 0.019 0.014 0.014
13 0.017 0.018 0.010 0.013
14 0.010 0.015 0.007 0.009
15 0.010 0.014 0.011 0.012
16 0.017 0.014 0.018 0.012
17 0.008 0.013 0.007 0.011
18 0.014 0.014 0.015 0.011
19 0.007 0.010 0.011 0.011
20 0.016 0.013 0.007 0.009
21 0.015 0.011 0.017 0.014
22 0.010 0.007 0.009 0.006
23 0.010 0.005 0.006 0.008
24 0.003 0.006 0.010 0.005
25 0.003 0.005 0.007 0.006
26 0.003 0.007 0.003 0.007
27 0.002 0.004 0.004 0.004
28 0.024 0.031 0.025 0.033

Table 3. Alligator Cracking Area Percentage and Transverse Cracking Length Measurements.

Site ID
Alligator Cracking Area Percentage (%) Transverse Cracking Length (m/km)

Ground Measure Orthophoto Measure Ground Measure Orthophoto Measure

1 10 10 638 660
2 5 5 728 783
3 5 5 606 589
4 15 15 1326 1290
5 5 10 1395 1410
6 25 20 1032 1064
7 20 25 774 766
8 20 20 1113 1098
9 15 10 1136 1148

10 25 25 653 632
11 20 20 814 771
12 35 35 1141 1121
13 30 30 1145 1212
14 25 25 1186 1136
15 20 25 859 905
16 45 45 1219 1256
17 25 25 649 682
18 30 30 839 815
19 25 25 1135 1102
20 25 25 958 978
21 15 15 665 683
22 5 5 264 280
23 5 5 369 359
24 5 10 175 202
25 10 10 248 284
26 10 10 263 290
27 0 0 0 0
28 35 35 534 500
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The box plots, histogram plots, and radar plots displaying each set of measurements were visually
examined and are shown in Figures 7–9. Box plots revealed that only DSM-based rutting measurement
showed evidence of outliers (dots found above the whiskers). However, box plots did not show
a substantial difference in the medians between ground-based measurements and HSR-AP derived
products based measurements. There also did not appear to be a substantial difference in the box
sizes. Histogram plots provide a visual presentation of the frequency distribution of each distress’
measurement differences (residuals). Measurement difference was defined as the difference between
ground-based measurement and HSR-AP derived products based measurement. The plots did not
show a substantial difference in the two sets of measurements for each distress. Most of the residuals
were distributed around the value of zero. Radar plots provide another visual presentation of the
measured distress rates for each study site. The plots did not reveal a substantial difference in the
shape and spread of distribution between the two sets of measurements for each distress.
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Figure 7. Box plot for each set of measurement. In each quadrant, the two boxes are ground-based
measurement and HSR-AP derived products based measurement, respectively. (a) Inner wheel path
rutting depth measurement; (b) outer wheel path rutting depth measurement; (c) alligator cracking
area percentage measurement; (d) transverse cracking length measurement. The uppermost bar is the
maxium measurement value, while the lowermost bar is the nimimum measurement value. The bar
inside of the box indciates the median. The dots in (a) and (b) indicate measurement outerliers.

Continuing with visual analysis, formal statistical tests were performed. The Wilcoxon Signed
Rank test was performed to compare the measurement results of each type of distress at the paired
group level. For rutting depth, the test was performed for both the inner wheel path and outer wheel
path. For each comparison test, the null hypothesis is that the median difference between each pair
of measurements is zero. Test results are summarized in Table 4. For each pair of measurements,
p-values are greater than 0.05, and therefore the null hypothesis should be accepted; thereby indicating
that for each distress the median difference between the paired ground-based measurement and
HSR-AP derived products based measurement is zero at a 95% confidence interval. In other words, for
rutting, alligator cracking, and transverse cracking, ground-based measurements and HSR-AP derived
products based measurements are not statistically different at a 0.05 significance level.
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Table 4. Wilcoxon Signed Rank Test Results for Each Distress.

Test ID Distress Null Hypothesis p-Value

1 Inner Wheel Path
Rutting Depth

The median difference between the two paired measurements
(ground-based measurement vs. DSM-based measurement) is zero 0.424

2 Outer Wheel Path
Rutting Depth

The median difference between two paired measurements
(ground-based measurement vs. DSM-based measurement) is zero 0.541

3 Alligator Cracking
Area Percentage

The median difference between two paired measurements
(ground-based measurement vs. orthophoto-based measurement)
is zero

0.688

4 Transverse
Cracking Length

The median difference between two paired measurements
(ground-based measurement vs. orthophoto-based measurement)
is zero

0.701
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measurement difference; (d) transverse cracking length measurement diference.
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Figure 9. Radar plot for each set of measurement. In each quadrant, the whole numbers (i.e., 1 to 28)
adjacent to the outmost ring indicate each of the twenty-eight study sites. (a) Inner wheel path
rutting depth measurement, and the decimal numbers adjacent to the multiple-rings indicate rutting
depths in m; (b) outer wheel path rutting depth measurement, and the decimal numbers adjacent to
the multiple-rings indicate rutting depths in m; (c) alligator cracking area percentage measurement,
and the whole numbers adjacent to the multiple-rings indicate alligator cracking area percentages;
(d) transverse cracking length measurement, and the whole numbers adjacent to the multiple-rings
indicate transverse cracking length in m per km.

The Mann-Whitney U test was performed to compare the measurement results of each distress
unpaired, as a group. For rutting depth, the test was again performed for both the inner wheel path
and outer wheel path. Although the Mann-Whitney U test does not require normally distributed
data, it does not mean that it is assumption free. For the Mann-Whitney U test, data from each
population must be an independent random sample, and the population must have equal variances.
For non-normally distributed data, the Levene’s test and Barlett’s test are usually adopted to determine
variance equability.

For the Levene’s test and the Barlett’s test, the null hypothesis is that the population variances are
equal. Test results are summarized in Table 5. For each comparison, the p-value is greater than 0.05,
and therefore the null hypothesis should be accepted; thereby indicating that the population variances
for each pair of comparisons are equal at a 95% confidence interval. Therefore, the Mann-Whitney U
test is appropriate for all metrics.
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Table 5. Levene’s Test and Bartlett’s Test Results.

Distress Comparison Null Hypothesis Variance Test p-Value

Levene’s Test Bartlett’s Test

Inner Wheel Path
Rutting Depth

Ground-based Measure vs.
DSM-based Measure

Population variances
are equal 0.481 0.832

Outer Wheel Path
Rutting Depth

Ground-based Measure vs.
DSM-based Measure

Population variances
are equal 0.546 0.866

Alligator Cracking
Area Percentage

Ground-based Measure vs.
DSM-based Measure

Population variances
are equal 0.987 0.929

Transverse
Cracking Length

Ground-based Measure vs.
DSM-based Measure

Population variances
are equal 0.946 0.962

For each of the Mann-Whitney U tests, the null hypothesis is that there is no difference in the
distribution (shape and spread) of ground-based measurement and HSR-AP derived products based
measurement. For all tests, the null hypothesis was retained, meaning that there is no significant
difference in the distribution pattern (Table 6) at a 95% confidence interval.

Table 6. Mann-Whitney U Test for Each Distress.

Test ID Distress Null Hypothesis p-Value

1 Inner Wheel Path
Rutting Depth

The distribution pattern (shape and spread) of
measurement values for ground-based measure vs.
DSM-based measure is the same

0.850

2 Outer Wheel Path
Rutting Depth

The distribution pattern (shape and spread) of
measurement values for ground-based measure vs.
DSM-based measure is the same

0.786

3 Alligator Cracking
Area Percentage

The distribution pattern (shape and spread) of
measurement values for ground-based measure vs.
orthophoto-based measure is the same

0.855

4 Transverse
Cracking Length

The distribution pattern (shape and spread) of
measurement values for ground-based measure vs.
orthophoto-based measure is the same

0.948

4. Discussion

Formal statistical test results revealed that there is no evidence showing that detailed pavement
surface distress (i.e., rutting, alligator cracking, and transverse cracking) rates measured from HSR-AP
derived products and distress rates manually measured on the ground using standard protocols are
statistically different at a 0.05 significance level. Visual comparison of the results supports this finding.
Ultimately, these results show that orthophotos and DSMs generated from HSR-AP acquired from
S-UAS can be effectively used to characterize detailed pavement surface distress that is comparable to
ground-based manual measurement.

It should be noted that current manual evaluation methods operationally used by transportation
management agencies rely on only visual observation to estimate distress rates (e.g., estimate the
length of the cracks), which is highly subjective [21]. However, inspectors of this research physically
measured the distress rates to collect ground reference data, which is objective. When using the
on-screen analysis and digitization to detect and assess distress, the inspectors did not digitize a crack
unless it exists and the inspectors were able to identify it, which is also objective. Given the horizontal
and vertical accuracy (RMSE = 4 mm and 7 mm, respectively) of the orthophotos and DSMs, the
discrepancy between the ground-based manual measurement method and the HSR-AP method could
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be from either method. This is because distress measurements made by inspectors involves random
errors which cannot be avoided [61,62].

Further investigation of the measurements for each type of distress revealed a more detailed
pattern. For the inner and outer wheel path rutting depth, DSM-based measurements are generally
higher than ground-based measurements, with 15 sites showing higher DSM-based rutting depth
and only ten sites exhibiting higher ground-based rutting depth. The measured vertical accuracy
(RMSE = 7 mm) of the DSMs can be interpreted as an indication that much of the discrepancy between
the two methods is likely a product of variability in the reconstructed DSMs. This also indicates
that DSM-based measurement has a tendency to overestimate rutting depth. Increasing the vertical
accuracy of DSMs may be able to reduce the variability in the reconstructed DSMs, and ultimately
reduce the variability in rutting depth measurement.

For alligator cracking area percentage, 22 sites have equal orthophoto-based measurements and
ground-based measurements. For transverse cracking, the percent difference between orthophoto-based
measurements and ground-based measurements for 20 sites are less than 5%. The measured horizontal
accuracy (RMSE = 4 mm) of the orthophotos can be interpreted as an indication that much of the
discrepancy between the two methods is likely a product of variability in the field measurements.
Field measurement is prone to disturbances originated from traffic, weather conditions, physical
conditions, and so on. However, on-screen digitization is not affected by these factors.

Formal statistical test results and visual comparison of results also reveal that discrepancies
in the vertical (i.e., rutting) are higher than in the horizontal (i.e., alligator cracking and transverse
cracking). However, these results may not indicate that the proposed method works more effectively
for characterizing horizontal pavement surface distresses such as cracking. This is because cracking
measurements were rounded (for alligator cracking) or normalized (for transverse cracking), which
would increase apparent accuracy. In contrast, rutting measurement in the field or on DSMs was error
prone, which would decrease apparent accuracy.

Although the novel aspect of this research lies in evaluating whether HSR-AP acquired from
S-UAS can be used to characterize detailed pavement surface distress conditions, the remote sensing
techniques and methods (e.g., S-UAS based hyper-spatial resolution imaging, SfM, and digitization)
associated with this research are readily deployable for detailed pavement surface condition assessment
once restrictions on S-UAS operations are lifted. SfM enabled AT to leverage graphic processing
units to permit the generation of tightly co-registered orthophotos and DSMs from large HSR aerial
image sets. Collectively, these techniques enabled the 3D characterization of pavement surfaces at
unprecedented millimeter scales. In a broader context, the proposed method can be used for myriad
other infrastructure condition inspection tasks. These results can be replicated by researchers or
practitioners from the infrastructure management and asset management communities to assess
whether HSR-AP acquired from S-UAS can be used characterize their managed infrastructure or assets
such as oil and gas pipelines, bridges, and dams.

Although detailed pavement surface distress conditions are detected and assessed through
manual digitizing, it is actually less labor-intensive, less expensive, and more accurate when compared
with operationally used ground-based manual observation. The physical and financial requirements
for digitization are less than for ground-based manual observation. This is because inspectors are
not required to drive to the evaluation destination and walk or drive along the roadways to perform
inspection. When inspectors are conducting ground-based physical measurement, at least three people
are required because one of them is designated as the safety spotter (inspectors do not have the
authority to stop the traffic) and two of them perform the physical measurements. The time for
the three-people crew to complete an evaluation for a pavement section with a size of 8 m by 6 m
is approximately 20 min. However, evaluating the same pavement section with HSR-AP derived
products will only need one inspector for approximately 10 min.

Undeniably, there are costs associated with acquiring HSR-AP from S-UAS, but the cost of using
S-UAS acquired aerial data has been substantially reduced in recent years [42]. In addition, the cost
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can be reduced by collaborating with various government agencies such as the U.S. Geological Survey
(USGS), U.S. Department of Agriculture (USDA), and U.S. Department of Homeland Security (USDHS)
because these agencies also need HSR aerial imagery data for their managerial activities. Long-term
archived HSR aerial imagery records also provide transportation management agencies with the
capability to identify spatial and temporal patterns of pavement surface distress conditions from
a primary record. It should also be noted that high costs cannot prevent a method from deployment if
it has other advantages. For example, New Mexico Department of Transportation (NMDOT) had been
using visual observation methods to annually evaluate their 12,500 miles of roadways for many years
at an annual cost of approximately $720,000. However, recently NMDOT adopted survey vehicle-based
automated evaluation methods and the annual cost jumped to approximately $2,100,000 [63].

More importantly, manual digitization is much more accurate than currently adopted manual
observation methods which are based on only subjective judgement (no physical measurement).
Formal statistical test results reveal that HSR-AP derived products based measurements are comparable
to ground-based measurements. For this research, inspectors performed physical measurements to
ensure consistent and reliable measures of distress on which to evaluate the efficacy of HSR-AP
derived measures.

Even if the proposed methods are readily deployable, the next logical step is automating the
extraction of pavement surface distress metrics given the data quantities involved [42]. Automation will
reduce the cost of scaled operational deployment as the U.S. Federal Aviation Administration (FAA)
establishes regulations and clears restrictions for S-UAS work in the near future. One potential
approach to automate the extraction of alligator cracking and transverse cracking is geographic
object-based image analysis (GEOBIA) methods [64]. One potential approach to automate the
extraction of rutting depth is having digitized wheel path polygons stored in a GIS database and then
routinely monitoring their height change by comparing DSMs acquired at different times (e.g., yearly).
Nevertheless, significant algorithm development will be required for both potential approaches,
especially for cracking detection and assessment. It might be comparatively easy to identify transverse
cracking, but the path to computational rules defining alligator cracking is less clear. For example,
according to the HPMS manual, longitudinal cracking should be considered alligator cracking if it
occurs in inner or outer wheel paths.

To summarize, S-UAS based hyper-spatial resolution imaging and AT techniques can be used
to provide detailed and reliable primary observations suitable for characterizing detailed pavement
surface distress conditions, which lays the foundation for the future application of these techniques for
automated detection and assessment of detailed pavement surface distress conditions. Operationally
HSR-AP based pavement surface evaluation could be implemented as a service internally by
transportation agencies or implemented through consulting firms. Eventually the extraction of
distress metrics from HSR-AP should be automated to enable cost effective scaling of S-UAS based
asset management, requiring end users (i.e., federal, state, or local transportation management
agencies) only to design a flight plan and select the distresses to be evaluated, with all other processes
being automated.

5. Conclusions

This research evaluated whether HSR-AP acquired from S-UAS can be used to characterize
detailed roadway pavement surface distress conditions. Research results indicate that using HSR-AP
acquired from S-UAS as input, AT can be used to generate millimeter scale orthophotos and DSMs and
these products can be effectively used to characterize detailed pavement surface distresses comparable
to ground-based manual measurement. This finding lays the foundation for future research into
automated pavement surface distress detection and assessment by demonstrating that HSR-AP has
the capability to provide accurate and reliable information to characterize detailed pavement surface
distress conditions; automation is the logical next step. In recent years, many other sensors such
as thermal infrared (IR) and LiDAR are becoming commercially available in miniaturized forms
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suitable for operation on S-UAS. Many of these sensors, while more expensive per sensor, have the
potential to improve detailed pavement surface distress evaluation. In the near term, the proposed
digitization method could be used to measure pavement surface conditions in situations where field
inspectors cannot evaluate without considerable labor costs (e.g., sections in remote areas) or where
survey vehicles cannot gain access; however, in the long term, the proposed method is capable of
completely replacing field pavement surface distress evaluation due to its high accuracy, potential for
full automation, and the potential to dramatically reduce long-term cost.
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AGL Above ground level
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CHDK Canon hack development kit
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DSM Digital surface model
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GNSS Global Navigation Satellite System
GPS Global positioning system
GSD Ground sampling distance
HSR Hyper-spatial resolution
HSR-AP Hyper-spatial resolution natural color aerial photography
NOAA National oceanic and atmosphere administration
OPUS Online positioning user service
RMSE Root-mean-squared-error
RTK Real-time kinematic
SfM Structure from motion
TIN Triangulation irregular network
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