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Abstract: This paper presents a novel multi-view dense point cloud generation algorithm based
on low-altitude remote sensing images. The proposed method was designed to be especially
effective in enhancing the density of point clouds generated by Multi-View Stereo (MVS) algorithms.
To overcome the limitations of MVS and dense matching algorithms, an expanded patch was set
up for each point in the point cloud. Then, a patch-based Multiphoto Geometrically Constrained
Matching (MPGC) was employed to optimize points on the patch based on least square adjustment,
the space geometry relationship, and epipolar line constraint. The major advantages of this
approach are twofold: (1) compared with the MVS method, the proposed algorithm can achieve
denser three-dimensional (3D) point cloud data; and (2) compared with the epipolar-based dense
matching method, the proposed method utilizes redundant measurements to weaken the influence
of occlusion and noise on matching results. Comparison studies and experimental results have
validated the accuracy of the proposed algorithm in low-altitude remote sensing image dense point
cloud generation.

Keywords: multi-view stereo; dense point cloud; image matching

1. Introduction

With the development of laser scanning and image matching technology, three-dimensional (3D)
information has increasingly attracted researchers’ attention. Applications of 3D information have
extended from digital elevation model (DEM) and digital surface model (DSM) generation to many
other fields including archeology [1,2], topographic monitoring [3,4], facial geometry and dynamic
capture [5,6], cultural heritage protection [7,8], forest and agriculture modeling [9,10], and medical
treatment [11]. Since laser scanning can produce highly accurate, reliable, dense, and more integrated
3D point clouds of objects [12], it has been utilized as the preferred technology for 3D modeling
over the last two decades. In recent years, with the significant progress of photogrammetry and
computer vision technology, image-based 3D reconstruction stands as a major competitor against
laser scanning [13]. Compared with laser scanning, the advantages of image-based 3D reconstruction
are that:
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‚ Images can be accepted from any type of camera [14], including calibrated or uncalibrated images,
images taken from smartphones or tablets [15], images captured from digital cameras or frames
intercepted from video streams [16];

‚ It is low in cost;
‚ Point cloud data contains color information; and
‚ Theoretically, it may produce much denser point clouds [17].

In numerous photographic platforms, low-altitude remote sensing images have been considered
a popular data source for large-scale 3D modeling [18]. In addition to sub-decimeter high-resolution
imagery [19], a low-altitude remote sensing platform also has several advantages including: flexibility,
low cost, simplicity of operation, and ease of maintenance [20].

This paper proposes a multi-view dense point cloud generation algorithm based on low-altitude
remote sensing images. The proposed method exploited Patch-based Multi View Stereo (PMVS) [21]
results as a seed point cloud. It took advantage of pixels in image windows and object points on
patches to expand the seed point cloud. Then, it utilized multi-image projection relationships to
improve the accuracy of the point cloud. In summary, the purpose of this paper is a new approach
that takes advantage of redundant measurements of multi-images and generates a much denser point
cloud than MVS.

The remainder of the paper is structured as follows: related works are presented and compared
with each other in Section 2; in Section 3, the proposed method is introduced in detail; in Section 4,
experiments are conducted to verify the feasibility of the proposed algorithm in terms of reliability
and matching accuracy; and finally, conclusions are stated in Section 5.

2. Related Works

The theory of stereo matching was first investigated in the early mid-1970s [22] and underwent
extensive development in the 1990s [17]. During those 10 years, a large number of high accuracy
matching applications and commercial photogrammetric systems appeared for digital surface model
(DSM) and digital terrain model (DTM) generation from aerial images. In the last decade, image-based
3D reconstruction approaches have been further advanced by recent developments in computer vision
and photogrammetry. Additionally, the data source of images has been extended from satellite aerial
images to generic photos, such as those taken on mobile photos.

2.1. Two-Frame Dense Matching in Photogrammetry

Since the advent of stereo matching, the derivation of ground object point coordinates from
corresponding image pixels has become one of the most key issues in the domain of photogrammetry
and remote sensing [23,24]. With the advances of hardware and innovative image matching algorithms,
photogrammetry-based 3D modeling can deliver results in a reasonable amount of time. Some
researchers have focused on how to utilize photogrammetry technology to produce relatively sparse
seed points [25,26], while others have sought to take advantage of the corresponding epipolar lines
between two corresponding images to perform pixel-wise dense matching [27–29]. In 2002, Scharstein
and Szeliski [27] introduced a taxonomy and evaluation of two-frame stereo dense matching algorithms,
dividing it into four primary steps:

‚ Matching cost computation;
‚ Cost (support) aggregation;
‚ Disparity computation/optimization; and
‚ Disparity refinement.
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Based on the implementation employed in the cost (support) aggregation step, dense matching
can be divided into two categories: local algorithms and global algorithms. Local algorithms connect
the matching costs within a local neighborhood and select the lowest matching cost as a disparity [30],
that is “winner takes all11. Global algorithms typically define a global energy function which includes
a data term and a smoothness term acting on the whole image instead of local cost aggregations [31].
Since the local algorithm uses a part of the local neighborhood for calculations, the processing speed
of the local algorithm is faster, and due to the global algorithms taking into account the whole
image in processing, the matching accuracy of the global algorithms is greater. Hirschmüller [32]
employed Semi-Global Matching (SGM) which integrates the advantages of local and global algorithms
and further improved the efficiency and accuracy of dense matching. Despite these advantages,
the two-frame method could not evade the key problem that without the redundant measurements,
two-frame dense matching was not robust to the noise and occlusion, and the accuracy of the point
cloud reconstructed by two-frame matching is inferior to that of multi-view stereo [33].

2.2. Multi-View Stereo in Computer Vision

With the development of a number of different low-cost and open-source software systems,
the multi-view stereo method is becoming one of the most popular subjects in computer vision.
Multi-view stereo can use redundant information to weaken the influence of occlusion and noise.
From the Middlebury evaluation supplied by Seitz et al. [34], for a single object or small-scale sense
reconstruction, multi-view reconstruction can provide a first-rate result which is comparable to the
point cloud obtained from laser scanning. Since the Structure from Motion (SFM) method makes it
possible for disordered image calibration, multi-view stereo quickly extends from photogrammetric
images to generic photos, even those downloaded from the Internet or captured from mobile
phones [35]. Recently, the challenges of multi-view stereo have focused on the following aspects:

‚ dynamic capture;
‚ 3D reconstruction from video streams; and
‚ 3D reconstruction for large-scale scenes.

For large-scale scene reconstruction, although there are plenty of efforts devoted to making point
cloud data denser and more accurate, the density and accuracy of the result cannot substitute the laser
scanning point cloud. Since low-altitude remote sensing images have many advantages such as flying
under the cloud, low cost and fast response, etc., this article focuses on how to apply low-altitude
remote sensing images to reconstruct large-scale scenes.

3. Method

The proposed method can be divided into four steps: (1) a PMVS point cloud generation;
(2) patch-based point cloud expansion; (3) point cloud optimization; and (4) an outliers filter. In this
section, details of the proposed method are introduced. The principle of this algorithm is illustrated
in Figure 1. As shown in Figure 1, the proposed method derives from a technique where growing
regions start from a set of seed points or patches [36]. The result of PMVS is a set of patches, and the
geometric significance of the patch is a local tangent plane of the object. The proposed algorithm
utilizes these results as seed points and takes advantage of projection rules between image pixels and
patches to segment the generated patches to expand denser patches. Then, a patch-based Multiphoto
Geometrically Constrained Matching (MPGC) algorithm is used to optimize the expanded patches to
obtain a more accurate result. Finally, a density constraint [37] is employed to filter the outliers.
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Figure 1. Diagrammatic sketch of the multi-view dense point cloud generation algorithm.
(a) The result of the seed patch generated from PMVS; (b) The expanded patch from the PMVS
patch; (c) The optimized patch to improve accuracy.

3.1. PMVS Point Cloud Generation

In recent years, many researchers have focused on using MVS to reconstruct large-scale 3D scenes.
PMVS is accepted as one of the most popular MVS algorithms due to its accuracy and completeness [8].
By utilizing (1) initial feature matching; (2) patch expansion; and (3) patch filtering, PMVS generates
and propagates a semi-dense set of patches [38]. In contrast to a feature-based algorithm, the seed
points generated by PMVS have three advantages:

‚ Much denser: seed points obtained in feature-based matching are expanded in the second step
of PMVS;

‚ Evenly distributed: the PMVS algorithm attempted to reconstruct at least one patch in each image
cell with β ˆ β pixels;

‚ More accurate: a Nelder-Mead method [39] was utilized in the PMVS algorithm to refine each
patch in the reconstruction model and filter outliers in the last step.

3.2. Patch-Based Point Cloud Expansion

The goal of the expansion step is to expand the seed patch and increase the point cloud density.
PMVS attempted to grow a patch starting from a seed matching pixels, and expanding to the neighbor
image cells in the visible images until each corresponding image cell reconstructed at least one point.
The proposed method utilizes the projection rules to segment the patches into small pieces. Each piece
contains one center point, the seed point is growing on the patch and the point cloud is denser.

The result of PMVS records each point in the point cloud with its coordinates (Xc, Yc, Zc),
color (R, G, B) and normal vector (a, b, c). By projecting the object point P(Xc, Yc, Zc) on each image,
the image point coordinate pi(xi, yi) (i is the image index) is calculated. Since the distance between
the image point and the origin of the image coordinate system is shorter, the projection distortion is
smaller, and the proposed method supposes image I(R) as a reference image when the image I(R) is
satisfied by:

b

xR2 ` yR2 ď

b

xi
2 ` yi

2pi “ 1, 2...n, i ‰ Rq (1)

Supposing (Xc, Yc, Zc) is the center of the patch, and (a, b, c) is the normal vector, the local tangent
plane (patch in PMVS) at P(Xc, Yc, Zc) is:

P : a pX´ Xcq ` b pY´Ycq ` c pZ´ Zcq “ 0 (2)

As illustrated in Figure 2a, the image point pi(xi, yi) is the center of the image window, where the
window size is µ ˆ µ pixels. By projecting the image window onto the patch, µ ˆ µ object points are
obtained. Theoretically, the density of the point cloud could expand µ ˆ µ times. The overall algorithm
description for this step is given in Figure 2b. The result patch P1 consists of the coordinates (X, Y, Z),
normal vector (a, b, c) and reference image index R.
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Figure 2. (a) Projection relationship between pixels (grids) in image window and object points (dots) in
patch; (b) Process of patch-based point cloud expansion algorithm.

3.3. Patch-Based MPGC to Optimize the Point Cloud

PMVS utilized the projection relationship between the patch and the corresponding images to
build a function to find the optimal matching pixel:

f pz, α, βq “
1
n

n
ÿ

i“1

p1´ fiq (3)

In the function above, i is the index of the visible images (in PMVS, if patch p is visible in image i,
i is considered as a visible image of p); n is the number of the visible images; fi is a function that denotes
the Normalized Cross-correlation Coefficient (NCC) between corresponding image windows which is
obtained by the patch projecting to the reference image (I0) and visible images (Ii);

fipz, α, βq “ NCCpI0, Iiq (4)

z is the distance of the patch center moving along the ray; (α, β) are the direct angle of the normal
vector (a, b, c). The optimization process employed the Nelder-Mead method [39] to calculate the
minimum value of Function (3). From the result of the calculation, the optimal patch (denoted by its
center point P1 and normal vector (a, b, c)) is obtained:

P1 “ P` z ¨ normp
Ñ

OPq (5)

a “ cos α cos β

b “ sin α cos β

c “ sin β

(6)

As with the optimization method in PMVS, the proposed method also introduces a patch in
the optimization step to obtain a better initial value of the optimization function. In the 1990s,
Baltsavias [40,41] introduced epipolar line constraints (collinear equation) to Least Square Image
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Matching (LSM) [42,43] and proposed an extremely useful application named Multi-photo
Geometrically Constrained Matching (MPGC). This approach simultaneously derives the accurate
coordinates of corresponding object points in the object space coordinate system during the image
matching process. It has been widely applied to refine matching results in a three-dimensional
reconstruction [25,26,44,45]. The proposed method utilizes a modified MPGC algorithm to optimize
the point cloud.

In the traditional LSM method, each pixel in the matching image window is used to build an
error equation:

v “ dh0i ` gi pxi, yiq ¨ dh1i ` h1i

ˆ

Bgi
Bxi

dxi `
Bgi
Byi

dyi

˙

´ pg0 px0, y0q ´ h0i ´ h1i ¨ gi pxi, yiqq (7)

In the error equation above, v is the projection error; h0i and h1i are the radiation distortion
coefficients between the reference image and search image i. In the experiments, the initial values
of h0i and h1i are usually 0 and 1, respectively. Further, dh0i and dh1i are corrections of parameter h0i
and h1i; g0(x0, y0) is the pixel intensity values in the image window of the reference image; gi(xi, yi)
is the pixel intensity values of image points (xi, yi) in the search image window; ( Bgi/ Bxi, Bgi/ Byi)
is the derivative values of pixel intensity in the x and y directions; (dxi, dyi) is the correction values
of the image points (xi, yi). Therefore, in a matching of the µ ˆ µ pixels image window, the µ ˆ µ

error equations can be listed; if µ ˆ µ is larger than the unknown, using least square adjustment, the
corresponding pixels (xi, yi) can be calculated.

MPGC applied epipolar line constraints to the LSM method, and the coordinates of (xi, yi) can
be denoted by the interior (xs, ys, f ) and exterior parameters (projection center S(Xs, Ys, Zs), rotation
matrix (a1, a2, a3; b1, b2, b3; c1, c2, c3)) of image i and the corresponding object point (X, Y, Z):

xi ´ xs “ ´ f a1pX´Xsq`b1pY´Ysq`c1pZ´Zsq
a3pX´Xsq`b3pY´Ysq`c3pZ´Zsq

yi ´ ys “ ´ f a2pX´Xsq`b2pY´Ysq`c2pZ´Zsq
a3pX´Xsq`b3pY´Ysq`c3pZ´Zsq

(8)

Applying the collinear Equation (8) to the LSM error Equation (7), the optimal object point
coordinate can be directly obtained during the process of least square adjustment.

However, despite the fact that MPGC performs well in matching refinement, how to select the
initial matching window is still a challenge that has yet to be overcome, because either the accuracy of
the result or the efficiency of the process is reliant on the quality of the initial value. The proposed
method introduces the patch to MPGC to refine the point cloud. By using the patch set obtained
in Section 3.2 as an initial value and projecting each patch onto the visible images to get the initial
matching image windows, these initial matching windows have two superior qualities:

‚ All pixels which are located at the same place in the image matching window between the
reference and search images are approximate corresponding pixels.

‚ Normal vectors in PMVS results as initial normal vectors of the patch plane, by projecting the
patch points onto the images which can significantly decrease the projection deformation.

As with PMVS, the optimization algorithm in the proposed method is based on an individual
patch, and each patch P1 is optimized separately in the following steps: (1) a matching window is
selected in reference image R; (2) the matching window is projected onto the patch plane to calculate
the corresponding object points V(P1) on patch P1; (3) V(P1) is projected onto each image except image
R to obtain the corresponding points w(pi

1) on the search images; (4) if the matching window w(pi
1) is

located in the range of image I and the Normalized Cross-correlation Coefficient (NCC) is larger than
0.6, then image i is collected into image set I(p1); (5) an error equation is built for each corresponding
point in the image window between reference image R and search image set I(p1); (6) a least square
adjustment is applied to calculate the optimal solution. The overall algorithm description for this step
is illustrated in Figure 3.
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The proposed method uses this patch-based MPGC algorithm to optimize the point cloud instead
of the PMVS optimization method for the following reasons:

‚ Epipolar line constraint is the most strict constraint for a single-center projection, especially when
the camera parameters are known;

‚ Least square adjustment can utilize redundant pixels to decrease the influence of the noise, and has
a faster speed in the iterative convergence;

‚ Radiation distortion is taken into account.

3.4. Outliers Filter

To improve the accuracy and reduce the number of outliers in the point cloud, an erroneous point
filter step is a prerequisite. The proposed method makes use of a density constraint [37] in the outliers
filter step. A radius of one meter is used to compute the local neighborhood of each point. If the
number of neighbor points around a center point is lower than a fixed threshold ε, the center point is
considered as an outlier that should be removed. In the method of [37], εwas defined as half of the
average neighbor number.

4. Experiments and Discussion

4.1. Input Data Sets

In order to evaluate the performance of the proposed method, three sets of low-altitude images
were selected. Each image data set consists of five images. The data sets were captured from
Northwestern University (a university in Shaanxi Province, China), Yangjiang (a city in Guangdong
Province, China) and Hainan (a province in China), respectively. The parameters of the cameras
(parameters of the K-matrix) were acquired from laboratory camera calibration and bundle adjustment.
Commercial low altitude photogrammetric processing software called GodWork, which was developed
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by Wuhan University, was used to perform automatic aero-triangulation to acquire external orientation
elements (parameters of the C-matrix and R-matrix) of the images. Detailed parameters of the input
data sets are provided in Tables 1–3 and the sample input images used in the experiments are shown
in Figure 4.

Table 1. The parameters of the photography from Northwest University (unmanned aerial vehicle
images).

Camera
Name

Area Size
(m ˆ m)

CCD Size
(mm)

Image Size
(pixel)

Pixel
Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number
of

Images

Canon
EOS 400D 415.8 ˆ 339.5 22.16 ˆ 14.77 3888 ˆ 2592 5.7 24 600 0.118 5

Table 2. The parameters of the photography from Yangjiang (aerial image captured at nadir).

Camera
Name

Area Size
(m ˆ m)

CCD Size
(mm)

Image Size
(pixel)

Pixel
Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number
of

Images

SWDC-5 417 ˆ 426 49.24 ˆ 36.47 8206 ˆ 6078 6 82 800 0.058 5

Table 3. The parameters of the photography from Hainan (unmanned aerial vehicle images).

Camera
Name

Area Size
(m ˆ m)

CCD Size
(mm)

Image Size
(pixel)

Pixel
Size
(µm)

Focal
Length
(mm)

Flying
Height

(m)

Ground
Resolution

(m)

Number
of

Images

Canon
EOS 5D 981.3 ˆ 1004.4 36 ˆ 24 5616 ˆ 3744 6.4 24 650 0.174 5

Remote Sens. 2016, 8, 381 8 of 16 

Table 1. The parameters of the photography from Northwest University (unmanned aerial vehicle images). 

Camera 
Name  

Area Size 
(m × m) 

CCD Size 
(mm) 

Image Size 
(pixel) 

Pixel 
Size 
(μm) 

Focal 
Length 
(mm) 

Flying 
Height 

(m) 

Ground 
Resolution 

(m) 

Number 
of 

Images 
Canon 
EOS 
400D 

415.8 × 339.5 22.16 × 14.77 3888 × 2592 5.7 24 600 0.118 5 

Table 2. The parameters of the photography from Yangjiang (aerial image captured at nadir). 

Camera 
Name  

Area Size 
(m × m) 

CCD Size 
(mm) 

Image Size 
(pixel) 

Pixel 
Size 
(μm) 

Focal 
Length 
(mm) 

Flying 
Height 

(m) 

Ground 
Resolution 

(m) 

Number 
of 

Images 
SWDC-5 417 × 426 49.24 × 36.47 8206 × 6078 6 82 800 0.058 5 

Table 3. The parameters of the photography from Hainan (unmanned aerial vehicle images). 

Camera 
Name  

Area Size  
(m × m) 

CCD Size 
(mm) 

Image Size 
(pixel) 

Pixel 
Size 
(μm) 

Focal 
Length 
(mm) 

Flying 
Height 

(m) 

Ground 
Resolution 

(m) 

Number 
of 

Images 
Canon 

EOS 5D 
981.3 × 1004.4 36 × 24 5616 × 3744 6.4 24 650 0.174 5 

 

Figure 4. Sample input images of all the data sets used in the experiments. (a) Northwestern 
University; (b) Yangjiang; (c) Hainan. 

4.2. Reconstructed Point Cloud 

In the expansion step, expanded patch size μ is the only parameter which has to be set up, 
because the PMVS algorithm attempts to reconstruct at least one patch in each image cell with β × β 
pixels, where μ is usually less than β. From 1 to β, the density of the point cloud result is increased. 
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experiments compared the point cloud reconstructed by PMVS, SURE, Pixel4D and the proposed 
method. Each input data set experimented in the four comparison methods is exactly the same 
(same images, same camera parameters and same image parameters). The reconstructed point 
cloud and details are shown in Figures 5–7. 

As illustrated in the figures, due to the proposed method’s utilization of the PMVS result as a 
seed patch, the completeness of the point cloud reconstructed by PMVS and that of the proposed 
method are almost same. The point cloud reconstructed by the Pix4D software program has a better 
completeness; the point cloud reconstructed by the SURE software program was the poorest. 
Although SURE failed in the reconstruction of images with complex texture (i.e., the Yangjiang and 
Hainan data sets), for relatively simple images (the Northwestern University data set) the density of 
the point cloud was extremely high. From the cut figures on the right of the figure cells, it can be 
seen that when compared with the other three methods, the point cloud generated by the proposed 
method is much denser and contains more details. For instance, much plainer silhouettes and roads 

Figure 4. Sample input images of all the data sets used in the experiments. (a) Northwestern University;
(b) Yangjiang; (c) Hainan.

4.2. Reconstructed Point Cloud

In the expansion step, expanded patch size µ is the only parameter which has to be set up, because
the PMVS algorithm attempts to reconstruct at least one patch in each image cell with β ˆ β pixels,
where µ is usually less than β. From 1 to β, the density of the point cloud result is increased. Taking into
account visualization and running speed, our experiments project an image window with 17ˆ 17 pixels
on the PMVS patch and one pixel as the project interval. The comparison experiments compared
the point cloud reconstructed by PMVS, SURE, Pixel4D and the proposed method. Each input data
set experimented in the four comparison methods is exactly the same (same images, same camera
parameters and same image parameters). The reconstructed point cloud and details are shown
in Figures 5–7.
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As illustrated in the figures, due to the proposed method’s utilization of the PMVS result as a
seed patch, the completeness of the point cloud reconstructed by PMVS and that of the proposed
method are almost same. The point cloud reconstructed by the Pix4D software program has a better
completeness; the point cloud reconstructed by the SURE software program was the poorest. Although
SURE failed in the reconstruction of images with complex texture (i.e., the Yangjiang and Hainan data
sets), for relatively simple images (the Northwestern University data set) the density of the point
cloud was extremely high. From the cut figures on the right of the figure cells, it can be seen that
when compared with the other three methods, the point cloud generated by the proposed method
is much denser and contains more details. For instance, much plainer silhouettes and roads in the
Northwestern University point cloud, cars parked on the side of the basketball court in the Yangjiang
point cloud and much more meticulous roofs in the Hainan point cloud data are extracted. Detailed
information of the reconstructed result is illustrated in Tables 4 and 5.

Table 4. Performance of dense point cloud generated by the proposed method.

Study Area Seed Patch
Number

Expanded Patch
Size

Patch Number
(after Expand)

Patch Number
(after Filter)

Density
(patches/m2)

Times
(min)

Northwestern
University

107514 17 ˆ 17 (step: 2) 7890775 7802802 55.275 175

Yangjiang 324072 17 ˆ 17 (step: 2) 24369048 24003611 135.122 627
Hainan 178317 17 ˆ 17 (step: 2) 8481032 8474530 8.598 253

Table 5. Comparison of the point cloud performance.

Experimental
Method

Northwestern University Yangjiang Hainan

Point
Number

Density
(points/m2)

Point
Number

Density
(points/m2)

Point
Number

Density
(points/m2)

PMVS 107514 0.762 324072 1.824 178317 0.181
SURE 2053708 14.410 638032 3.592 770993 0.782
Pix4D 525402 3.686 2126320 11.970 1123166 1.140

The proposed method 7802802 55.275 24003611 135.122 8474530 8.598

The third column in Table 4 represents the experiments which used a 17 ˆ 17 image window,
and each other pixel in the image window was projected onto the patch. The computational times
are recorded in the last column. All timings were obtained on a PC with Intel Core(TM) i7 3.60 GHz
processors, 8 GB RAM and a 1 TB SCSI disk device for data storage, and the Microsoft Windows 7
operating system. All the processes were performed offline. From the comparison experiment results
in Table 5, it can be noted that the proposed method achieves more than 40 times denser points per
m2 than PMVS and a more than eight times denser point cloud per m2 than Pix4D. According to the
image parameters and the reconstructed results, it can be seen that the density of the point cloud
depends on the ground resolution of the input images. As long as the ground resolution is high
enough, the proposed method can obtain much denser point clouds than laser scanning [4], such as
the point cloud from Yangjiang.

4.3. Point Cloud Accuracy Evaluation

To evaluate the accuracy, each set of point clouds produced by the proposed method were
registered into the PMVS model. A relative Euclidean distance (error) comparison between a point
from the point cloud and the surface of the PMVS model where this point is supposed to be located
is measured.

The accuracy evaluation is based on the method raised by Dai et al. [46]. Supposing mj is the
number of points, it should belong to the jth surface of the PMVS model which is denoted as ajX + bjY
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+ cjZ + dj = 0. The ith point coordinate in point set mj is denoted as (Xi
j, Yi

j, Zi
j); n is the number of

surfaces. The average error of the point cloud can be calculated as:

error “
1

řn
j“1 mj

n
ÿ

j“1

mj
ÿ

i“1

ˇ

ˇ

ˇ
ajX

j
i ` bjY

j
i ` cjZ

j
i ` dj

ˇ

ˇ

ˇ

b

a2
j ` b2

j ` c2
j

(9)

Note that if a point’s distance to the surface is far beyond the average value, it will be deemed as
an outlier and removed from the point cloud set. Details of the accuracy evaluation are listed in Table 6.

Table 6. Evaluation of accuracy.

Study Area Point Cloud
Number

Outlier
Number

Outliers/Point
Cloud

Average Error
(m)

Northwestern University Campus 7802802 1780 2.281/104 0.332
Yangjiang region 24003611 919 3.827/105 0.166

Hainan urban district 8474530 8217 9.695/104 0.480

As illustrated in Table 6, it can be seen that the point clouds generated by the proposed method
achieved exceptional results. Specifically, the Yangjiang point cloud data contains less than four
outliers in 105 points, and the other two data sets contains less than 10 outliers in 10,000 points.
The average errors of the point cloud data registered into the PMVS model are all less than 0.5 m. For 3D
reconstruction from low-altitude remote sensing images, the accuracy of the point cloud data is reliable.
From comparison experiments of image ground resolution and accuracy between these three study
areas, it can be noted that the study images which had the highest ground resolution (Yangjiang region)
had the most accurate point cloud. With a decrease in ground resolution, the precision was also
reduced. It should be noted that parts of the images with weak texture do not be reconstruct well
under the proposed method (e.g., flat farmland in the Northwestern University data sets) because
feature or seed points to expand these regions are not found. In the three data sets, topographic relief
of the Northwestern University model (nearly 30 m) is lower than topographic relief of Yangjiang and
Hainan models, which are almost same (nearly 50 m). The Yangjiang point cloud achieved higher
accuracy than Northwestern University, which illustrates that, compared with the topographic relief,
the influence of the ground resolution and remote sensing platform stability on the accuracy is greater.

5. Conclusions

In this study, a novel algorithm is presented for improving the density of point clouds generated
from low-altitude remote sensing images. The proposed algorithm builds an expanded patch for
each point in a PMVS point cloud. The method integrates the advantages of Multi-View Stereo and
epipolar-based dense matching methods and generates a denser point cloud with more details.

The matching results have illustrated that the proposed approach can achieve a far denser
point cloud than PMVS, and the matching accuracy of the proposed method is reliable when using
low-altitude remote sensing images. It is important to note that the precision of the image orientation
parameter can directly affect the results of the PMVS seed and MPGC refining. Thus, the proposed
approach is more suitable for 3D reconstruction using calibrated images with high accuracy. From this
work, two potential areas of future research are proposed: (1) raise the efficiency of image matching to
extend this method to 3D reconstructions of larger scenes; and (2) improve the PMVS result in areas
with little or no texture.
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The following abbreviations are used in this manuscript:

MVS Multi-View Stereo
MPGC Multiphoto Geometrically Constrained Matching
DEM Digital Elevation Model
DSM Digital Surface Model
DTM Digital Terrain Model
PMVS Patch-based Multi-View Stereo
SGM Semi-Global Matching
SFM Structure from Motion
NCC Normalized Cross-correlation Coefficient
LSM Least Square Image Matching
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