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Abstract: Crop extent and frequency maps are an important input to inform the debate around land
value and competitive land uses, in particular between cropping and mining in the case of Queensland,
Australia. Such spatial datasets are useful for supporting decisions on natural resource management,
planning and policy. For the major broadacre cropping regions of Queensland, Australia, the complete
Landsat Time Series (LTS) archive from 1987 to 2015 was used in a multi-temporal mapping approach,
where spatial, spectral and temporal information were combined in multiple crop-modelling steps,
supported by training data sampled across space and time for the classes Crop and No-Crop.
Temporal information within summer and winter growing seasons were summarised for each
year, and combined with various vegetation indices and band ratios computed from a pixel-based
mid-season spectral synthetic image. All available temporal information was spatially aggregated to
the scale of image segments in the mid-season synthetic image for each growing season and used
to train a number of different predictive models for a Crop and No-Crop classification. Validation
revealed that the predictive accuracy varied by growing season and region and a random forest
classifier performed best, with κ = 0.88 to 0.91 for the summer growing season and κ = 0.91 to 0.97 for
the winter growing season, and are thus suitable for mapping current and historic cropping activity.

Keywords: crop-mapping; agriculture; land-use; time series; synthetic image generation;
classification; land management; GEOBIA; Landsat Time Series (LTS); data mining

1. Introduction

Agricultural production and productivity have important economic and environmental
implications, most notably for present and future food security. These implications are magnified
by a steadily increasing global population, a changing climate and, with that, a greater frequency of
extreme weather events. Spatially detailed census data on cropping activities could provide essential
information for managing and predicting crop production [1]. These data may form the spatially
explicit basis upon which yields [2] and yield potentials can be estimated with additional sources
of Earth-observation data [3,4]. Worldwide, the food supply to local and regional markets can be
a driving factor for agricultural land use. However, cropping activities may compete with other
economic interests and land uses [5]. Urban expansion and mining interests, along with grazing and
forestry, are the most common types of land uses that compete with cropping [6]. This competition
may in the future be aggravated by an increasing demand for biofuel production [7]. Managing land
resources to support the needs of the population is a mandate common to all levels of government.
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Finding a balance between different interest groups is a complex task that cannot always be left to
market forces alone. It is imperative that governments are provided with reliable and spatially and
temporally explicit land use and land cover data to provide the foundation for defensible policy
development and ongoing monitoring and reporting requirements.

A range of land use classification systems exist on a global or continental scale that are generally
designed to classify broad land use types [8,9]. High temporal resolution satellite imagery with coarse
spatial resolution is commonly used at this scale [8]. The Advanced Very High Resolution Radiometer
(AVHRR), which started operating in 1982 and has a spatial resolution of 1.1 km to 8 km depending on
the mode of operation [10,11], was one of the first and most widely used sensors for land cover and
land use classifications [8,12]. A linear spectral unmixing (LSU) approach was used to estimate crop
area by the authors of [13], in attempting to overcome mixed-pixel problems inherent with the coarse
spatial resolution. A similar approach was followed by the authors of [14] who created membership
grades for several land cover classes based on an artificial neuronal network (ANN), LSU and a
fuzzy c-means classification. These membership grades are subsequently used for area estimates by
applying thresholds or other rulesets [13–15]. In following a similar approach, the authors of [16]
applied ANNs to a time series of AVHRR imagery (1988–2001) for a subpixel winter crop estimation
in Tuscany, Italy. In the late 1990s, new instruments became available with a higher spatial and
spectral resolution, which also offered Earth-surface data at about 0.25 km to 1 km spatial resolution.
These include satellite missions, such as Sea-Viewing Wide Field-of-View Sensor (SeaWifs), Moderate
Resolution Imaging Spectroradiometer (MODIS), Medium Resolution Imaging Spectrometer (MERIS)
and SPOT-Vegetation. The authors of [17] outline a global MODIS land cover product. The authors
of [18], for example, developed an Australia-wide dynamic land cover product based on time series of
MODIS EVI (Enhanced Vegetation Index) to derive land cover information for each year between 2001
and 2010. A probabilistic LSU approach with MODIS imagery for sub-pixel estimation of crop area
was applied by the authors of [19], using a temporal unmixing approach throughout a growing season.
Their endmember spectra of “pure pixels” were constructed with Landsat imagery. A limitation of
these schemes and products, particularly for regional policy and monitoring applications, is that the
spatial resolution is still too coarse, despite some of the benefits from the temporal coverage [20].

Imagery from the Landsat missions, with a spatial resolution of about 30 m, provides this level of
detail. Traditionally, Landsat-based mapping approaches had an underlying image-selection process,
where cloud-free image coverages are chosen and classified according to a certain rule-set. Several
classification initiatives have been operating successfully at a this spatial resolution, such as the
National Land Cover Database in the United States (US) [21], the European CORINE land cover [22]
and the Australian Collaborative Land Use and Management Program (ACLUMP) [23], all originally
operating with Landsat imagery. ACLUMP is a national land use mapping program into which state
and federal mapping activities are provided and compiled under a consistent land use classification.
One of these state-based activities is the Queensland Land Use Mapping Program (QLUMP) [24].
Accurate land use classification often involves interpretation and digitisation processes and therefore
can have a considerable cost associated, as in the case of CORINE, ACLUMP and QLUMP. Land use
mapping is mostly a point-in-time representation and in the case of cropping, a map of the maximum
extent of cropping activity. These maps are therefore limited in their representation of cropping activity
and actual food production, which is more related to land management. The intention here is therefore
to provide spatial information which identifies those areas which have a history of being agronomically
productive, to help inform policy which aims to protect these lands from other development which
could impact or diminish their food-producing value into the future.

The availability of the full Landsat archive [25] allows for time series approaches to derive land
use information at 30 m spatial resolution. The available time series information can be used to reduce
the effect of missing data (e.g., cloud cover, sensor defects) and atmospheric contamination [26]. Image
composites have long been used in high-temporal-resolution imaging, such as MODIS or AVHRR [27]
and are increasingly used in medium resolution imaging.



Remote Sens. 2016, 8, 312 3 of 24

The authors of [28] use the Web-Enabled Landsat Data (WELD) in the US for “best pixel” image
compositing with additional maximum Normalised Differenced Vegetation Index (NDVI; [29]) and
maximum brightness temperature compositing criteria. These “cloud free” composites have been
the basis for subsequent analysis (e.g., [30] have applied a tree-based vegetation classification on
these composites). The authors of [31] have used Landsat data to generate three spectral image
composites from different years and phenological stages for land use mapping in Eastern Europe. The
authors of [32] created five years of weekly Landsat composites in the US from the WELD dataset and
developed a crop probability map based on a time series of maximum NDVI composites, followed
by a Geographic Object-Based Image Analysis (GEOBIA) to map cropped fields during that period.
A refinement of this approach using the same dataset demonstrates the feasibility of automated
field delineation from Landsat time series data with GEOBIA [33]. Temporal gap-filling [34] or the
prediction of surface reflectance data at a given time to generate synthetic images [35] are other ways to
produce composite-like imagery with no data gaps, that have been successfully applied more recently.

Composites or synthetic imagery are one way of analysing data, while other approaches use
time series data (e.g., for a within-season analysis). Including the temporal domain in addition to the
multispectral component can help to analyse surface features that were previously inseparable by
single-date land use classifications, (e.g., for within-season cropping or surface water dynamics). The
authors of [36] extracted temporal metrics for three years of Landsat data to generate a pixel-based land
use map that differentiated croplands and pastures in a Brazilian savannah environment. The authors
of [20] used Landsat-based time series to differentiate areas that were “never” or “ever-cropped” based
on annual metrics of maximum NDVI composites and a long-term maximum for a Landsat footprint
in the US. The authors of [37] investigated the potential for seasonal, Landsat-based crop mapping
for two years in Australia (2010 and 2011). The authors of [38] have used the SPOT 4-Take 5 data in
combination with Landsat-8 imagery to investigate the annual crop-mapping potential at 8 sites across
four continents based on generic spectral and temporal features of crop growth. The accuracy of the
crop maps was greater than 85% for the year investigated (February 2013 to January 2014).

In this paper, we demonstrate the use of the full Landsat archive to dynamically create maps
that describe cropping activity for each growing season and year in the archive (starting in 1987),
with the objective of being able to provide the information in an ongoing operational program, rather
than as one-off static maps. The outputs from this automated approach can be used to derive or
update land use information and other related attributes such as land use intensity and the spatial and
temporal distribution of land use patterns. The method presented involves several processing steps:
(i) a seasonal, cloud free, pixel-based synthetic image for a pre-defined green vegetation peak date
was generated; (ii) the synthetic image for each growing season was segmented via GEOBIA; (iii) the
image segments were attributed with spectral and temporal metrics of the respective season; and (iv)
a Crop or No-Crop classification per growing season and year was performed and maps generated.
This provided the opportunity to create a consistent history of land cover and cropping land use at
field-scale, back to the beginning of the Landsat Thematic Mapper (TM) archive.

The overall objective of this study was to create validated cropping activity maps for dryland
agronomy in Queensland, Australia (excluding coastal areas) at field-scale. This involves the
development of a flexible and robust classification approach that can be applied to the full historic
archive of Landsat 5 TM, Landsat 7 ETM+ (Enhanced Thematic Mapper Plus) and Landsat 8 OLI
(Operational Land Imager) imagery.

2. Materials and Methods

2.1. Study Area and Rationale

The study area (Figure 1) is the Western Cropping Zone (WCZ) within the State of Queensland,
Australia, which is based on a strategic cropping land map by the Queensland Department of Natural
Resources and Mines [39]. The WCZ major industries are mining (particularly for coal and coal seam
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gas) and other agricultural sectors (i.e., cropping and livestock grazing). QLUMP maps 9.7% of the
total area of the western cropping region as “cropping” land, with 85.4% mapped as grazing and 0.4%
as mining.
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Figure 1. Regional subdivision of the WCZ of Queensland into north and south regions: “NW” and
“SW”. Superimposed is the Landsat data coverage based on the World Reference System 2 (WRS2).

The area is summer-rainfall dominated (350–500 mm) originating from prevailing south-easterly
winds, with average annual precipitation between 500 and 700 mm and a high between-season
variability [40]. Cropping land use is mainly determined by the presence of highly fertile clay soils
(classified mainly as Vertosols, according to the authors of [41]) and well-drained, friable clay-loam
soils high in iron (ferrosols), which occur in patches [40].

Queensland’s gross value of broadacre cropping commodities for 2013–2014 were 2.7 billion
dollars [42]. Over half of this is produced in the WCZ (the remainder being the coastal 1.2 billon dollar
sugarcane industry). The dominant summer crops are sorghum, maize and cotton or (in the case of
late summer rain) mungbeans. The dominant winter crops are wheat, barley, and chickpea [43]. Due to
a strong north-south climatic gradient, the WCZ can be subdivided into “NW” (for north-western) and
“SW” (south-western) regions. This gradient and division is mainly driven by increased evaporation
due to latitudinal radiation increase and lower winter rainfall in the NW [40].

Some large areas of the WCZ’s most productive cropping land coincide with areas of economically
viable coal. This conflicting land use has implications for food security and the long-term economic
potential from agriculture. In 2014, the State Government of Queensland introduced legislation to
help manage the competing land uses in areas of regional interest, including the WCZ. The Regional
Planning Interests Act (RPI) 2014 aims to protect high-quality agricultural areas and areas considered to
be strategic cropping land [44]. To help identify these areas, current and historical spatial information
is required, particularly information and data which can identify how often, and where, cropping
activity has been undertaken.

2.2. Defining the Growing Seasons

The WCZ primarily has a winter and a summer growing season [40]. We therefore aim to identify
actively growing crops in these key growing seasons. For the purposes of this study, we define the
summer growing season as November to May (inclusive), and the winter growing season as June to
October (inclusive). When attributing a year to a summer-growing crop the most recent was used, e.g.,
“summer 2013” represents the period November 2012 to May 2013.
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2.3. Satellite Imagery

All available Landsat 5 TM, Landsat 7 ETM+ and Landsat 8 OLI data across 27 footprints with
cloud cover of less than 60% were used (Figure 2). The archived images over Australia appear only
with higher image frequency since late 1987 [45]. This criterion was chosen to reduce the potential for
noise in the data due to imperfect cloud/cloud shadow masking and water vapour variations.
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path/row and growing season.

All images were cloud-masked with a regionally adapted version of Fmask [46–48] then
NBAR-corrected [46]; this latter step converts the units of the imagery to bottom-of-atmosphere
reflectance, scaled to the interval (0, 1). The high internal geometric consistency of the
USGS-based Landsat imagery allows further data processing and analysis without further geometric
adjustment [28].

2.4. Synthetic Image Generation and Segmentation

All archived images were used to generate a synthetic spectral image for each season (s) and
year (y). The synthetic images are denoted herein L ps, yq. The images were generated per pixel and
per spectral band (excluding the thermal band), based on a statistical model [49] (Figure 3). Seasonal
mid-points, t0, of cropping activity were defined as 14 February for the summer growing season and
15 September for the winter growing season. These mid-points represent the times when generally the
most plant vigour is expected in the study area [43].

Denote the time series of reflectance for a particular Landsat pixel and band within L ps, yqi,j
with i representing the number of images within a season (i = 1, . . . , n); and j a single pixel. When
an observation coincided with t0 nothing more needed to be done; the reflectance value entered the
synthetic image directly. Otherwise, when n = 1 a nearest-neighbour interpolation was applied to
establish the reflectance value for t0; when n > 1 we calculated, in statistical parlance, the “location” and
“scale” of L ps, yq. For 2 ď n ď 4 location and scale were taken as the conventional mean and standard
deviation, respectively; for n > 4 we invoked robust statistics, where location and scale became the
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median and median absolute deviation of the reflectance z at t0. The median absolute deviation is
given by the authors of [50] and gives a robust estimation of one standard deviation:

scale pL ps, yqq “ 1.4826
!

median
´
ˇ

ˇ

ˇ
L ps, yqi,j ´median pL ps, yqq

ˇ

ˇ

ˇ

¯)

(1)
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Figure 3. An example contrived to demonstrate, for a single pixel, how synthetic reflectance values
for a Landsat band were generated for the midpoint of a growing season, t0, within a particular year.
Outliers were Winsorised (Equation (1)), then the 4 nearest neighbours to t0 were used in a linear
regression to predict reflectance at t0.

Any observation outside the interval:

location pL ps, yqq ˘ 2 tscale pL ps, yqqu (2)

was considered an outlier and adjusted to the interval (Figure 3). This procedure is known as
Winsorising [49]. A linear regression was then fitted to the nearest four observations to t0, with z as
the response variable (reflectance), and time as the single explanatory variable. Note that Winsorising
does not remove the effect of an outlier, it merely reduces its influence on subsequent analyses.

The most recent QLUMP mapping was used to mask areas from each synthetic image that were
associated with land uses that were not of interest for this study (e.g., conservation areas, forestry, and
intensive uses). Travelling stock routes, which are areas reserved along roadways for the movement of
livestock, were also masked from each image. Water bodies were masked for each synthetic image by
calculating the water index of the work in Reference [51] for each image in L ps, yq. If the minimum of
the water index was > tr (the recommended threshold was tr = 68 units) it was assumed that the pixel
was not covered by water during the growing season and hence left unmasked; otherwise, a one-sided
Wilcoxon signed-rank test was used to determine if the median water index over the growing season
was < tr. If the null hypothesis was rejected at p < 0.05 the pixel was considered inundated for a
substantial part of the growing season and masked from all further analyses.

To reflect the fact that land is managed in discrete parcels, and to reduce data loads, the (masked)
synthetic images were segmented into homogeneous areas using the open-source software package
RSGISLib with Python bindings [52,53]. Each synthetic image was segmented independently to
account for change between seasons. The segmentation combines a k-means clustering algorithm with
a clumping step to find the connected regions of the image [53]. The number of cluster centres and
the minimum segment size are required input parameters. A minimum segment size of 50 pixels
(4.5 ha) with 60 k-means nodes per Landsat image were used (recommended settings; [52]). Sixty
nodes appeared to work best on a full Landsat image, while the minimum segment size of 50 pixels
was empirically determined as a good compromise between avoiding an under splitting and too much
over splitting. The segmented image was stored in the GDAL-supported KEA image format [54] where
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the image segments are linked with a raster attribute table (RAT) and used as the basis of all further
analysis. This step is a method of data reduction by moving away from a pixel-based analysis to spatial
medians per segment for all classification variables. A final step used a 1-s digital elevation model [55]
to mask out segments with a slope of greater than 10% as cropping is generally not undertaken in
steep terrain within the study region.

2.5. Classification Variables

A range of variables were calculated in order to capture reflectance signatures and temporal
characteristics, which were used to classify the image segments (Table 1). Firstly, the mid-season values
for a number of vegetation indices and band ratios were calculated for the pixel-based mid-season
synthetic image. Similarly, pixel-based NDVI values were calculated from the mid-season synthetic
image, as well as descriptions of several temporal metrics (Table 1). The RATs were populated with the
spatial median per segment for each variable listed in Table 1.

Table 1. Remote sensing variables, computed on a per-pixel basis, that were spatially aggregated and
added to the raster attribute table of the segmented synthetic images.

Vegetation Indices, Temporal Variables and Band Ratios

1 Normalised Difference Vegetation Index (NDVI) [29]
2 Modified Chlorophyll Absorption in Reflectance Index (MCARI) [56]
3 Renormalized Difference Vegetation Index (RDVI) [57]
4 Triangular Vegetation Index (TVI) [57]
5 Modified Simple Ratio (MSR) [57]
6 Normalised Difference Burn Ratio (NDBR) [58]
7 NDVI seasonal variance (ndviTsVr)
8 NDVI seasonal minimum (ndviTsMn)
9 NDVI seasonal maximum (ndviTsMx)

10 NDVI seasonal coefficient of variation (ndviTsCV)
11 NDVI seasonal range (ndviTsRng)
12 NDVI gradient up (first minimum to maximum) (ndviTsGr1)
13 NDVI gradient down (maximum to second minimum) (ndviTsGr2)
14 NDVI day of time series maximum (ndviTsDyMx)
15 b7 ´ b3/(b7 + b3) (nr73)
16 b7 ´ b2/(b7 + b2) (nr72)
17 b5 ´ b7/(b5 + b7) (nr57)
18 b4 ´ b5/(b4 + b5) (nr45)
19 b5 ´ b3/(b5 + b3) (nr53)
20 b5 ´ b2/(b5 + b2) (nr52)
21 b4 ´ b2/(b4 + b2) (nr42)
22 b2/b3 (r23)
23 b4/b3 (r43)

A final variable was created based on the land use data from QLUMP [24] to help constrain the
classification to known areas of cropping. All areas classified as “cropping” were extracted from the
QLUMP mapping data to create a mask of cropping areas. It is important to note that, due to the
limited temporal information that is used for mapping cropping areas in the QLUMP, these areas
classified as cropping may not be a comprehensive spatial representation of all areas of active cropping
over time. Hence, while being a potentially useful explanatory variable for classification purposes, the
land use mapping was not used as an explicit representation of all cropping in the study area. The
metrics used here are specifically targeted to distinguish the Crop/No-Crop classes and differ from,
e.g., the authors of [8,30] who aimed for a more general land use classification.
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2.6. Training and Validation Data

Field-based training data described in Reference [43] was used in this study. These data, collected
from various campaigns between September 1999 and February 2012, include observations about
presence and absence of crop (e.g., wheat, maize, sorghum, etc.) at the time of observation. For
the purpose of this study, all records were recoded as either Crop or No-Crop. The field data were
intersected spatially and temporally with the image segments from each synthetic mid-season image.
When more than one observation fell within the same image segment only the first was retained and
only if the observations belonged to the same class (Crop or No-Crop); if they had different classes
none of the observations were used.

An additional set of records were generated through desktop interpretation of the seasonal
synthetic images. The sites were sampled at random over space, growing seasons, and years. The
intention of these records was to provide an unbiased assessment of cropping activity that could
serve as validation data. From a desktop, an expert would “visit” a sampled location in space-time
and use L ps, yq data (and any other higher-resolution imagery if available) to assess whether the
on-ground activity was either Crop or No-Crop. Occasionally the sampled spatial coordinate fell on a
field boundary or road; in this case, the coordinate was manually moved inside the nearest field (but
never more than a distance greater than 3 pixels).

These records form a set of explanatory variables and a response variable amenable to statistical
modelling. A breakdown of the numbers of training and validation data is shown in Table 2. In NW
51% and 52% for summer and winter, respectively, were derived from the collated field data. For SW
the field data accounted for 49% and 46% of the total data set for summer and winter, respectively.

Table 2. The number of training and validation data used, separated by growing season and region.

Summer
Crop No-Crop Crop No-Crop Crop No-Crop

Training Training Validation Validation Total Total

NW 280 1215 58 1359 338 2574
SW 547 732 113 1245 660 1977

Winter
Crop No-Crop Crop No-Crop Crop No-Crop

training training validation validation total total

NW 145 1309 68 1292 213 2601
SW 448 758 181 1236 629 1994

The number of validation data points for the class Crop is relatively small (Table 2). The random
sampling approach (with 9.7% of the study area being mapped as “cropping” by the QLUMP) does
imply that about 10% of the validation data should be Crop if all areas are actively cropped at all times.
The class Crop is, however, in the validation dataset represented with an even smaller percentage,
resulting in an unbalanced dataset. Table 2 reflects this distribution and implies that a validation based
on these data is, due to the small number of points for the class Crop, potentially misleading. Due to
the intensive field sampling and farm surveys, more data on the actively cropped fields is available in
the training data. Therefore, for the purpose of training and validation, the original validation data
were merged with the original training data. A 75% random subsample of the merged data was chosen
for the model training and the remaining 25% subsample quarantined for validation. Thus, a total
1387 points were used for validation in summer and 1359 in winter across the regions.

2.7. Image Classification

The generation of a categorical classification generally has the underlying assumption that the
features in question can be systematically separated into distinct classes by their numerical properties.
The classes in a supervised classification are specified a priori, and associated with a set of training data
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for each class. A wide range of algorithms exists to choose from, each with their specific advantages
and disadvantages. The authors of [59] tested 179 different classification models arising from 17
classification families on 121 different datasets, to answer the question if we always need to apply
multiple classifiers and choose the best performing algorithm. They came to the conclusion that
Random Forest (RF) [60] is most likely performing best, but with no significant improvement over
the second-best performing algorithm, Support Vector Machines (SVM) [61]. In this approach we
compared four classification algorithms with the same training data: (i) SVM; (ii) multinominal logistic
regression; (iii) the decision-tree classifier C5.0 ([62]; and (iv) RF; all within the R software. Table 1
describes the explanatory variables spanning the classification feature space. A total of 23 variables
were generated for each region and season.

i In a (non-linear) SVM classification the feature space is transformed to a higher dimension
using what is called a “kernel trick”, where a hyperplane is fitted to separate the different
classes [61,63], which may not be feasible in the lower dimensional space.

ii Multinominal logistic regression (also called the multinomial logit model) can be used when
the dependent variable is categorical, and thus for classification problems [64]. The multinomial
logit model (referred to as “Logit” from here on) assumes that dependent variables cannot be
perfectly predicted from the independent variables, but that a linear combination of training
data can be used to determine the probability of each outcome.

iii The C5.0 decision-tree classifier was originally a commercial tree-based classifier that was
introduced by the authors of [65], made publicly available in 2011 and described in detail by
the authors of [62].

iv RF is a method suitable for classification applications that constructs a multitude of decision
trees [60,66]. RF is a way of averaging multiple single trees trained on slightly different
sub-samples of the training data. This “bootstrapping” step generally leads to a better model
performance by reducing the variance without introducing bias. This also means that, while a
single tree may be subject to noise in the input data, the average is not (as long as the trees are
not correlated). These features of the RF were further explored in an offline analysis: a single RF
tree was selected as a classifier, as well as a single RF pruned tree, and a RF trees with Bayesian
bagging (single and pruned). The single trees and Bayesian bagging did not result in improved
classification accuracy and was not further investigated due to the processing cost. Within the
RF classifier was land use “cropping” extracted from QLUMP and used as an a priori variable
(as a factor) in the suite of classification approaches (RF + land use).

For each of the classifiers used, the probabilities of the class membership were stored per image
segment. Each segment was labelled as Crop if the predicted probability for that segment was greater
than 0.5, due to the binary nature of the classification.

The classification is performed ensemble for all years per season and region, to account for
inter-annual variability in the cropping and for years without field data.

3. Results

3.1. Synthetic Image Generation

Figure 4a,c provide examples of the mid-season synthetic images for a subset of the SW region
for the winter growing season and the summer growing season, respectively. Figure 4b,d show the
respective single-date images closest to the mid-season date (in this case both Landsat 7). Both images
contain clouds with different degrees of image contamination with the Fmask based cloud and cloud
shadow polygons overlaid. The robust seasonal synthetic image algorithm appears to work well; even
if at times artefacts can be found, e.g., if scan-line correction (SLC) is off in Landsat 7 ETM+ or if the
temporal gap between images is large (i.e., due to changes in vegetative phenology).
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outline in Figure 4a) for summer 2014 (grey background) and winter 2014 (within the scene path = 90, 
row = 79); summer (November–May) and winter (June–October). The two mid-season dates (14 
February and 15 September) are indicated by the dotted lines. The green point marks the predicted 
value at the mid-season date, while the red points represent Landsat 8 OLI and the black points 
Landsat 7 ETM+ spatially averaged data values. 

Figure 4. Subset of the mid-season synthetic image (R/G/B with Landsat TM bands 4/3/2) for winter
2014 (a) scene 90/79 and the closest Landsat image (ETM+) (b) to the mid-season interval for winter
on 20 September 2014. Panel (c) displays the summer 2014 mid-season synthetic image; and (d) the
closest Landsat image on 8 February (ETM+). Fmask cloud and cloud shadow masks are shown as
black hatching, the yellow circle in (a) marks a centre pivot irrigation field.

The temporal behaviour of a crop in relation to the synthetic image is graphically illustrated
in Figure 5 for a centre pivot circle (yellow outline in Figure 4a), which is fallow in summer 2014
and irrigated in the following winter 2014. The green data point marks the predicted value at the
mid-season date, while the red data points represent Landsat 8 OLI and the black data points Landsat
7 ETM+ spatially averaged (over the extent of the circle) data values.

Figure 5 demonstrates that the prediction point for summer is well aligned with the Landsat
observations, while prediction point for winter 2014 has some deviation, particularly in Bands 1 to 3,
due to the effects of clouds and SLC-off. Generally though, the predicted green points are in line with
the temporal behaviour of the curve. This suggests that Bands 1 to 3 are likely to have been affected
by other factors including variations in atmospheric constituents, such as water vapour in decreasing
magnitude [46,47]. The synthetic image generation based on the Winsorising approach appears to
have filtered the effects of contamination, and retained the overall trend.

The quality of the synthetic image generation was evaluated in an image subset for scene 90/79.
The synthetic image was generated without the image observation on 15 September 2015 (Figure 6a).
The synthetic image (Figure 6b) resembles the real image fairly well as the difference map (Figure 6c)
indicates. The major differences visible are a crop circle, where the band 4 reflectance was overestimated
(lower left) and some close by fields which were underestimated. Both of these cases are due to the
phenological changes in the latest image selected in the prediction (9 October). The majority of the
differences in band 4 is between ˘ 0.05, which is similar to the synthetic image generation by the
authors of [35]. A regression between the observation and synthetic image revealed a residual standard
error of 0.021 with an adjusted r2 of 0.95 (p < 0.00001).
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Figure 5. Example of time series synthetic image generation for a centre pivot irrigation field (yellow
outline in Figure 4a) for summer 2014 (grey background) and winter 2014 (within the scene path = 90,
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7 ETM+ spatially averaged data values.
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The spatial consistency of the cloud-free synthetic image enables the application of an image 
segmentation approach. Each synthetic image over time is segmented independently, as field sizes 
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Figure 6. Subset of a Landsat 8 false color image observation (R/G/B with Landsat TM bands 5/4/3)
of 15 September 2015 (a) and the synthetic image for 15 September 2015 of the same location omitting
the observed image (b); the difference image (a,b) is shown in (c) and the respective histogram in (d).
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Despite the (minor) differences in greenness was the synthetic image considered adequate
for GEOBIA.

3.2. Image Segmentation

The spatial consistency of the cloud-free synthetic image enables the application of an image
segmentation approach. Each synthetic image over time is segmented independently, as field sizes
and shapes may vary. Figure 7 illustrates the result of GEOBIA over a complex and heterogeneous
area within the same image subset as used in Figure 3. The amount of strip cropping seen here is an
extreme example of image heterogeneity within the study region.Remote Sens. 2016, 8, 312 12 of 24 
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vectorised version of the image segments in yellow. 
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comparison of the mid-season synthetic image is effective if the crops are greening-up during this 
particular time, but if a crop is planted late, e.g., due to a late summer rain, the crop might not appear 
green in the synthetic image. This appears to be the case for the majority of fields, but for an accurate 
assessment all of the seasonal imagery have to be assessed as the general peak vegetation date does not 
necessarily coincide with the real maximum of vegetation greenness. 

Figure 7. (a) Subset of the RGB (4/3/2) synthetic image for winter 2014 and (b) overlaid with the
vectorised version of the image segments in yellow.

The majority of the landscape features and field outlines are captured by GEOBIA. Some larger
fields are represented boundary sharp as individual segments. The segmentation parameters appear
to not separate the strips at the highest level of detail, e.g., if the strip cropping is very narrow (i.e.,
1–3 pixels wide). Within-field variation can cause the algorithm to split one field or pivot circle if the
heterogeneity is high [33]. This over splitting issue does not pose a problem for the overall approach
as the spatially aggregated values are classified as Crop or No-Crop only. The median number of
segments per Landsat path/row in NW was 74,514 and 79,861 in SW, with a median area of 873 ha
and 879 ha, respectively.

The image segments for the cropped field may not always be sharp on the field boundaries so
that some discrepancies with the true field outlines are apparent. This may especially when viewing
the classifications over time result in some fuzziness at these borders.
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3.3. Classification and Map Accuracies

Figure 8 represents an example of the image classification for several seasons, based on the
(RF + landuse) classification. The full time series of the subset is shown in the Appendix as Figure A1.
The same image stretch has been applied to the mid-season synthetic images, while the probabilities
for active crop are colour-coded according to the legend in Figure 8 (yellow to green). The comparison
of the mid-season synthetic image is effective if the crops are greening-up during this particular time,
but if a crop is planted late, e.g., due to a late summer rain, the crop might not appear green in the
synthetic image. This appears to be the case for the majority of fields, but for an accurate assessment
all of the seasonal imagery have to be assessed as the general peak vegetation date does not necessarily
coincide with the real maximum of vegetation greenness.Remote Sens. 2016, 8, 312 13 of 24 
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Figure 8. Time series example within the SW subzone (480 ˆ 500 pixel) for the classification model
chosen (RF + land use). The 1st and 3rd columns display an R/G/B (Landsat TM bands 6/4/3, i.e.,
green represent green vegetation) and in the 2nd and 4th columns are the associated (RF + landuse)
classifications. In orange are predicted crop probabilities <50%; from yellow to green the predicted
crop probabilities >50%, the black areas are mainly masked water bodies or farm buildings. A figure
showing all years and seasons for this subset can be found in the Appendix as Figure A1.

Table 3 shows the accuracy statistics for each of the five classification approaches and for each
region and growing season. The same training and validation data were used for each classifier.
It is important to note that the classifiers were trained and validated over all years for which data
were available.

In some instances gave SVM and Logit the superior classification results, but overall the RF
classifiers were always amongst the better performing. The inclusion of the prior information derived
from land use mapping improved the classification accuracy considerably for summer, especially
the user’s accuracy of the class Crop. To visualise the variable importance the MeanDecreaseGini
metric [60,64] is displayed (Figure 9). This is a measure of variable importance based on the Gini
impurity index used for the calculation of splits during RF training. Every time a node split is made in
the RF based on an explanatory variable, the Gini impurity criterion for the two descendent nodes is
less than the parent node. Adding up the Gini decreases for each explanatory variable over all trees in
the forest gives an importance measure that is often very consistent with the permutation importance
measure [60,64]. Figure 9 plots the 10 most important variables in the four cases (NW and SW in
summer and winter).
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Table 3. User’s and Producer’s accuracies are given for the Crop/No-Crop classification as well as the overall accuracy and the Kappa coefficient. The validation is
performed separately for each region (NW and SW) and season (summer and winter). The validation was performed including all years with the 95% confidence
intervals in brackets.

NW Summer

Class Accuracy C5.0 SVM Logit Random Forest (RF) RF + landuse

Crop Producer‘s acc. 0.580 (0.469, 0.682) 0.959 (0.848, 0.992) 0.734 (0.606, 0.833) 0.869 (0.752, 0.937) 0.878 (0.782, 0.936)
Crop User‘s acc. 0.638 (0.521, 0.739) 0.588 (0.471, 0.694) 0.588 (0.471, 0.694) 0.663 (0.547, 0.762) 0.900 (0.807, 0.952)

No-Crop Producer‘s acc. 0.954 (0.933, 0.968) 0.951 (0.930, 0.965) 0.950 (0.929, 0.964) 0.959 (0.939, 0.972) 0.987 (0.974, 0.994)
No-Crop User‘s acc. 0.942 (0.920, 0.958) 0.997 (0.987, 0.999) 0.973 (0.956, 0.983) 0.987 (0.974, 0.994) 0.984 (0.970, 0.992)

Overall Acc. 0.908 (0.883, 0.927) 0.951 (0.932, 0.965) 0.930 (0.908, 0.947) 0.951 (0.932, 0.965) 0.975 (0.959, 0.984)
Kappa 0.555 0.704 0.615 0.725 0.875

NW Winter

Class Accuracy C5.0 SVM Logit Random Forest (RF) RF + landuse

Crop Producer‘s acc. 0.875 (0.740, 0.948) 0.939 (0.821, 0.984) 0.893 (0.774, 0.955) 0.922 (0.802, 0.974) 0.893 (0.774, 0.955)
Crop User‘s acc. 0.792 (0.655, 0.887) 0.868 (0.740, 0.940) 0.943 (0.833, 0.985) 0.887 (0.762, 0.953) 0.943 (0.833, 0.985)

No-Crop Producer‘s acc. 0.983 (0.968, 0.991) 0.989 (0.976, 0.995) 0.995 (0.985, 0.998) 0.991 (0.978, 0.996) 0.995 (0.985, 0.998)
No-Crop User‘s acc. 0.991 (0.978, 0.996) 0.995 (0.985, 0.998) 0.991 (0.978, 0.996) 0.994 (0.982, 0.997) 0.991 (0.978, 0.996)

Overall Acc. 0.975 (0.960, 0.985) 0.986 (0.972, 0.992) 0.987 (0.974, 0.993) 0.986 (0.972, 0.992) 0.987 (0.974, 0.993)
Kappa 0.818 0.894 0.910 0.896 0.910

SW Summer

Class Accuracy C5.0 SVM Logit Random Forest (RF) RF + landuse

Crop Producer‘s acc. 0.841 (0.777, 0.900) 0.892 (0.834, 0.933) 0.922 (0.868, 0.956) 0.860 (0.781, 0.893) 0.958 (0.911, 0.981)
Crop User‘s acc. 0.851 (0.788, 0.898) 0.856 (0.793, 0.903) 0.885 (0.826, 0.927) 0.879 (0.813, 0.917) 0.908 (0.853, 0.945)

No-Crop Producer‘s acc. 0.941 (0.913, 0.960) 0.944 (0.917, 0.963) 0.955 (0.931, 0.972) 0.952 (0.923, 0.967) 0.964 (0.942, 0.978)
No-Crop User‘s acc. 0.936 (0.908, 0.957) 0.959 (0.935, 0.975) 0.970 (0.950, 0.983) 0.943 (0.909, 0.957) 0.984 (0.966, 0.993)

Overall Acc. 0.912 (0.886, 0.933) 0.930 (0.906, 0.948) 0.946 (0.941, 0.961) 0.925 (0.893, 0.939) 0.963 (0.944, 0.976)
Kappa 0.784 0.825 0.866 0.817 0.906

SW Winter

Class Accuracy C5.0 SVM Logit Random Forest (RF) RF + landuse

Crop Producer‘s acc. 0.912 (0.853, 0.949) 0.954 (0.904, 0.979) 0.954 (0.904, 0.979) 0.967 (0.919, 0.987) 0.980 (0.938, 0.994)
Crop User‘s acc. 0.973 (0.928, 0.991) 0.980 (0.937, 0.994) 0.980 (0.937, 0.994) 0.973 (0.928, 0.991) 0.980 (0.938, 0.994)

No-Crop Producer‘s acc. 0.991 (0.975, 0.997) 0.993 (0.978, 0.998) 0.993 (0.978, 0.998) 0.991 (0.975, 0.997) 0.993 (0.979, 0.998)
No-Crop User‘s acc. 0.969 (0.947, 0.982) 0.985 (0.967, 0.993) 0.985 (0.967, 0.993) 0.989 (0.972, 0.995) 0.993 (0.979, 0.998)

Overall Acc. 0.970 (0.952, 0.981) 0.983 (0.968, 0.991) 0.983 (0.968, 0.991) 0.985 (0.970, 0.992 0.990 (0.977, 0.995)
Kappa 0.922 0.956 0.956 0.960 0.973
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panel. The probability of actively growing crops (legend as in Figure 7) for summer and winter 
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Figure 9. Variable importance in the classification approach (RF + landuse) with the MeanDecreaseGini
metric for the 10 most important variables [60].

In the NW subzone, for summer and winter, there are 6 temporal metrics within the 10 most
important variables; in the SW subzone 5 out of the 10 most important were temporal metrics. It is
also revealed that, in summer, prior knowledge of land use is an important aspect of the classification.

The (RF + landuse) classification was applied to all seasons and years. Figure 10 shows an example
of the crop probabilities predicted for the WCZ for the summer and winter growing season of 2014.

The classified surfaces are available for all season and years (1988–2015) for download via the
Terrestrial Ecosystem Research Network website ([67,68]).

Summarising the active crop history over a defined period of time can give an insight of the
spatial distribution of the crop activities and intensities of use over last 27 years. This is visualised in
an image subset in Figure 11, where the intensive use in the summer irrigation near a river stands out
in the long-term cropping count (Figure 11f).

Figure 11 also indicates the different land use interests with the open-cut coal mine Acland mining
lease of stage 1 in 2005 outlined in blue and subsequent extension leases including a rail line. The stage
3 extension was approved (with conditions) in 2012 and is currently under review by the Queensland
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Department of State Development Infrastructure and Planning [69] which entails an environmental
impact assessment. The use of the historic imagery and in particular the active crop frequency layers
will be investigated for updating the existing land use data.
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Figure 11. (a) Mid-season synthetic image for winter 2004 R/G/B (Landsat TM bands 4/3/2) and
summer 2005 (b). The 10 year cropping history (2005–2014) is shown for winter (c) and summer (d);
(e) and (f) show the 27 year (e) cropping history (1988–2014), respectively. Stage 1 of the Acland mine
lease in blue with the expansion of the lease for stages 2 and 3 in the black outline (orange background)
near the township of Oakey (–27˝26’/151˝43’).

A field that was not part of the most recent land use layer as outlined in Figure 12 was captured
as cropped multiple times in the 20-year period of 1995–2014.
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Figure 12. (a) Landsat 7 true-colour image from 3 July 2001 superimposed with the most recent land
use map vector layer (black outline) where ploughed fields are visible in winter and one ploughed
field appears to be missed; and (b) showing the winter crop frequency for 20 years (1995–2014) where
the same field is mapped as frequently cropped (red outline). The legend for the crop frequency is the
same as for Figure 11.

The image segments for the cropped field may not always be sharp on the field boundaries so
that some discrepancies with the true field outlines are apparent. This may especially be the case when
viewing the classifications over time, resulting in some fuzziness at the borders.

4. Discussion

4.1. Synthetic Image Generation and Segmentation

The synthetic image generation step is vital for the subsequent analysis as the image segments
and some of the indices used in the classification are based on this. For the majority of seasons there
are 10 or more Landsat images with less than 60% cloud cover. The threshold was applied to reduce
the risk of image artefacts from imperfect cloud and cloud-shadow masking, thin undetected clouds
and water vapour variations which can influence an individual pixel’s reflectance values. Only a few
footprints in a specific growing season have fewer than five images available. Too few images per
season may lead to artefacts in the synthetic image generation and unrealistic temporal metrics and
thus reduce the overall accuracy. This could only be overcome in some regions by carefully selecting
and including additional scenes with higher cloud cover, or if further Landsat imagery would be
available from yet unknown Landsat archives.

The GEOBIA used here is well-suited to both the broadacre cropping areas and the smaller,
more heterogeneous fields (Figure 7). Over-splitting of the segments can occur due to within-field
spatial heterogeneity, or in cases where the base image displays stripes originating from ETM+ SLC-off
data. The over-splitting, however does not pose a problem to the classification as these polygons are
attributed and classified separately. Under-splitting may occur, if the field sizes due to strip-cropping
become small (e.g., a few pixels in width) or, e.g., if field boundaries are diffuse [33]. A more detailed
segmentation could help to separate these strips further. This could include a regionally adapted
parameter setting (e.g., for the minimum segment size), but would most likely require higher spatial
resolution imagery. This may become important for a crop type classification, but in our case for a
binary Crop/No-Crop classification this is not as relevant, so one setting with a large number of clusters
per Landsat footprint was used in the segmentation. The authors of [32] performed an “individual crop
field” accuracy assessment with reference polygons while using a five-year composited image product
to gain more defined image boundaries on repeatedly cropped fields. Accurate field delineation is not
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a primary focus of this study, but outputs of this classification are envisaged to feed into the QLUMP
system to aid the updating of land use and potentially field boundaries.

The approach applied here is designed for large-area mapping and our results indicate that
mapping at field-scale works with acceptable accuracy. In the spatial aggregation step, spatial median
values have been calculated, making the approach more robust against spatial outliers such as pixels
affected by imperfect cloud or cloud-shadow masking. One of the benefits of the GEOBIA is that there
is no removal of “salt and pepper” effects required [33,37].

4.2. Classification Performance and Map Accuracies

NDVI was used as the primary vegetation index for the temporal metrics. The Enhanced
Vegetation Index (EVI) is commonly used for vegetation studies [70] to reduce the effect of soil.
As we are not comparing absolute values of a vegetation index across large spatial extents, rather
the temporal signal in a relative manner over time, NDVI is just as useful, as the soil is not changing
drastically over time for each location (three decades). A similar argument applies for a potential
cross-calibration of the Landsat 5/7 with Landsat 8 NDVI, which was discarded in this case: the authors
of [46] investigated the difference in NDVI and found an up-to-5% discrepancy between Landsat 7 and
8. When applying a correction factor the difference was reduced to 1% across all Australian natural
landscapes. This suggests that for NDVI estimates, the difference between the two instruments is small.
The difference may yet be smaller in the cropping systems with different biophysical properties so that
an improvement is not guaranteed at this stage, but should be investigated in the future.

A vegetation cover description with an entire different approach, such as spectral mixture
analysis [71] may add additional information and will be investigated further. The temporal metrics
are, however, among the most important variables in the classification.

The comparison of classification algorithms revealed that the SVM classifier and the RF
classifier perform similarly. This is supported in the findings of Reference [59] and, following their
recommendation and the results obtained from the classification, the RF classifier was used. While
a particular classifier may perform slightly better (i.e., SVM) for a season or year, one classifier was
chosen for all cases for the purpose of processing speed, comparability and consistency, given the large
areas and longer time series over which the approach was to be applied.

We found that, in the absence of land use information, it was difficult to predict Crop with
adequate accuracy in summer. This is because annual pastures tend to grow with summer rainfall
events, resulting in increased greenness, and hence classification confusion. Similarly, in years with
unusually high rainfall (e.g., the winter growing season of 2007), an overestimation of cropping
activity occurs as pastures can show a rapid vegetative response. Actively growing crops can
therefore be confused with pastures or improved pastures, particularly where the pasture growth is
further promoted by irrigation (e.g., for hay production). This is reflected in the improvement in the
(RF + landuse) model in the users accuracy for the class Crop in summer for both regions (about 14%
in NW and 3% in SW). The class probabilities for the class Crop were mapped and colour-coded. A
probability threshold of 0.5 was applied globally as a demarcation in the binary classification. In some
areas a local adjustment of the probabilities might result in a better crop differentiation. The inclusion
of land use as an explanatory variable comes at no real cost to the model and, with the exception of the
NW winter (where the producers accuracy is reduced by 2%), the overall accuracies are improved,
especially in the summer season (Table 3) i.e. user’s acc. in NW summer. In the case of a large time
difference between the land use mapping and the crop-mapping date, a false weighting may result
in mis-classification. Incorporating historic land use maps, where they exist, may reduce this effect,
although historic maps may differ in scale and accuracy compared with more recent mapping. It could
be argued that an accuracy improvement of about 1% in NW winter or in SW winter does not warrant
the (RF + landuse) model over RF, however for consistency, the same model was used for each region
and season. While the land use mapping was included here as a variable, the classification results
suggest that in the absence of a land use map, the RF approach would still achieve reasonable results.
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The classification accuracies based on the Kappa statistic are between 0.88 and 0.97 suggesting
that a good separation between the grazing land and active cropping can be achieved. More validation
data are desirable, especially for the class Crop, where the data set is unbalanced due to the small
proportion of the cropping in the study area (9.7% according to the land use map). The statistics reveal
that in the NW sub-zone the producer’s accuracy for the class Crop in the summer growing season is
the lowest at 0.88, while for NW and SW summer the user’s accuracies for Crop are the lowest with
0.90 and 0.91 (Table 3).

4.3. Future Applications

Based on our mapping of cropping activity, further developments are planned. This includes
testing a crop-type classification, and then extending that to yield mapping and forecasting through the
incorporation of climate information and other sources of Earth-observation data, such as Sentinel-1
and 2. Gaps in the image archive can pose a problem for the procedure, particularly when the 16-day
gap between Landsat observations coincides with a period of dense cloud cover. Regularly spaced
observations would allow for a phenology-based approach that also has the potential for crop-type
differentiation [43], but might require an image-fusion step to be applicable at field-scale—for example
Landsat with MODIS data [72]; [73] or Rapideye and MODIS [74]. The authors of [75] demonstrated
the use of multispectral Landsat information combined with temporal MODIS information for crop
mapping. The authors of [76] used a MODIS- and Landsat-fused time series to investigate tillage
management practices in agricultural systems. A potential drawback can be the loss in spectral
“sharpness” [76,77] in the fused data and the large data volume. The maps produced are available
online an can be used as independent data to validate coarse-resolution crop mapping approaches at a
continental or global scale [16].

The advent of the European Space Agency’s Sentinel-2 imagery is expected to increase the
classification accuracy, as more observations per season are expected combined with a finer spatial
resolution. The classification procedure is based on simple vegetation indices and band ratios so that
data from different sensors can easily be integrated and new seasonal crop maps can be generated.
Further, the integration of Landsat Multi Spectral Scanner data would extend the crop mapping
approach back to 1972, but larger temporal gaps in the data may require a different approach [78].

The data generated and the framework as such could be considered for crop mapping approaches
within GEOGLAM (Group on Earth Observations Global Agricultural Monitoring Initiative).

5. Conclusions

The full Landsat data archive from 1987–2015 of TM/ETM+/OLI imagery were used to create
maps of cropping activity for the summer and winter growing seasons for each year (starting in the
southern winter of 1988) in the Western Cropping zone of Queensland, Australia. The approach is
based on a flexible, per-season image segmentation, followed by a classification that uses temporal
metrics, spectral indices and land use mapping as explanatory variables. Several machine-learning
techniques were compared, and random forest was generally superior. The most important variables
in the classification were NDVI range, NDVI coefficient of variation and land use. The Classification
accuracies (Kappa statistic) for this binary Crop/No-Crop classification were 0.88 and 0.91 in northern
part of our study area during the summer and winter growing seasons, respectively. In the southern
part of the study area, the Kappa statistic was 0.91 and 0.97 for summer and winter, respectively.
The results suggest that, with appropriate training and validation data, the approach developed and
applied here is suitable for large-area mapping of cropping activity using the Landsat archive. It is
also expected that the approach would be transferable to other satellite imagery with sufficient spatial,
spectral and temporal resolution to generate the explanatory variables used in this study.

The resulting classified imagery and crop frequency maps for the period of 1988 to 2015 for both
summer and winter season are available online via: References [67,68].
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Figure A1. Full time series example within the SW subzone (480 ˆ 500 pixel) for the classification
model chosen (RF + landuse). The columns display an R/G/B (Landsat TM bands 6/4/3, i.e., green
represents green vegetation) and the associated (RF + landuse) classification for summer and winter
season. In orange are predicted crop probabilities <50%; from yellow to green the predicted crop
probabilities >50%, the black areas are mainly masked out water bodies or farm buildings.
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