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Abstract: The algebraic multigrid (AMG) method is used to solve linear systems of equations on
a series of progressively coarser grids and has recently attracted significant attention for image
segmentation due to its high efficiency and robustness. In this paper, a novel spectral-spatial
classification method for hyperspectral images based on the AMG method and hierarchical
segmentation (HSEG) algorithm is proposed. Our method consists of the following steps. First, the
AMG method is applied to hyperspectral imagery to construct a multigrid structure of fine-to-coarse
grids based on the anisotropic diffusion partial differential equation (PDE). The vertices in the
multigrid structure are then considered as the initial seeds (markers) for growing regions and are
clustered to obtain a sequence of segmentation results. In the next step, a maximum vote decision
rule is employed to combine the pixel-wise classification map and the segmentation maps. Finally,
a final classification map is produced by choosing the optimal grid level to extract representative
spectra. Experiments based on three different types of real hyperspectral datasets with different
resolutions and contexts demonstrate that our method can obtain 3.84%–13.81% higher overall
accuracies than the SVM classifier. The performance of our method was further compared to several
marker-based spectral-spatial classification methods using objective quantitative measures and a
visual qualitative evaluation.

Keywords: algebraic multigrid methods; classification; hyperspectral images; marker selection;
spectral-spatial; hierarchical segmentation

1. Introduction

Hyperspectral imaging systems can acquire numerous contiguous spectral bands throughout the
electromagnetic spectrum. Therefore, hyperspectral imaging techniques are widely used for many
applications, including environmental monitoring, mineralogy, astronomy, surveillance and defense [1].
Nevertheless, the high dimensionality of the pixels, undesirable noise, high spectral redundancy
and spectral and spatial variabilities, in conjunction with limited ground truth data, present
challenges for the analysis of hyperspectral imagery. In recent decades, many intensive hyperspectral
image classification methods have been proposed, including ensemble learning [2–4], Bayesian
approaches [5–7], kernel-based methods [8,9], neural networks [10], sparse representations [11,12] and
manifold learning [13].

To further improve classification performance, many contributions have been dedicated to
spectral-spatial classification, which combine spatial contextual information with spectral information
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for hyperspectral image classification; the approaches include using co-occurrence [14], extended
morphological profiles [15,16], extended morphological attribute profiles [17], Gabor filtering [18] and
multihypothesis prediction [19] to extract spatial features and Markov random fields [20,21], graph
kernels [22] and composite kernels [23] to perform spectral-spatial classification.

Alternatively, spatial information can also be integrated into the spectral-spatial classification
process by performing image segmentation. For that purpose, many segmentation techniques have
been proposed, including watershed, partitional clustering, the HSEG algorithm, and minimum
spanning forest (MSF), to segment hyperspectral imagery into homogeneous regions according
to a homogeneity criterion. A maximum vote decision rule is then employed to classify all the
homogeneous regions according to a pixel-wise classification result. Because the technique can
define large-scale neighborhoods for large homogeneous regions without missing small regions, more
accurate classification results can be achieved than by traditional spectral-spatial methods. However,
the automatic segmentation of hyperspectral imagery is still an continuing problem. To remedy this
problem, a marker-controlled segmentation method was proposed to automatically select a single
hierarchical segmentation level [24]. The idea behind this approach is to select at least one pixel for
each spatial object and to grow regions from the selected seeds (also called markers) to guarantee that
each region is associated with one marker in the segmentation maps. Meanwhile, the experimental
results in [24,25] demonstrated that the classification accuracies of the HSEG algorithm and MSF
segmentation algorithms using automatically selected markers can greatly outperform the SVM
classifier. Nevertheless, the drawbacks of these approaches are twofold. First, the marker selection
methods are based on the performance of pixel-wise classifiers, i.e., the performance of different
pixel-wise classifiers leads to different markers and uncertainties in the classification results. Even if
the same classifier is applied, using different parameter settings may cause a similar problem. Second,
the randomness of the training samples in the pixel-wise classification procedure always generates
stochastic markers, which results in unstable classification accuracies.

To solve these problems, a novel spectral-spatial classification method for hyperspectral imagery
based on the AMG method and HSEG algorithm is presented. Our method includes four main steps.
First, a multiscale representation of the hyperspectral imagery is obtained using the AMG method
to solve an anisotropic diffusion PDE. Recently, PDE-based techniques have been applied to image
processing and computer vision due to their outstanding edge-preservation smoothing properties and
explicit accounting of intrinsic geometries. The scale-space representation of hyperspectral imagery
can be obtained by solving a classical anisotropic diffusion PDE using the AMG method for higher
accuracies, efficiencies and scalability. Following this idea, we applied the AMG method to construct
a multigrid structure with different grid levels, starting with the finest grid (which corresponds to
the original image) to the coarsest one. The vertices in the multigrid structure are then considered
as markers for region growing and are clustered to obtain a sequence of segmentation results with
different numbers of homogeneous regions. It should be remarked that the markers that are extracted
from the multigrid structure are only determined by the structures of the hyperspectral imagery
rather than training samples or the performance of pixel-wise classifiers, which is more robust than
the traditional methods. In addition, by combining the pixel-wise SVM classification map and the
unsupervised segmentation maps using a maximum vote decision rule, a series of spectral-spatial
classification maps are obtained. Finally, a final classification map is produced by choosing the
optimal grid level to extract representative pixels for our segmentation and classification. Multiscale
representations for hyperspectral imagery using the AMG method always contain series of grid levels.
In fact, each grid level can be utilized to extract the required representative pixels. As a consequence, a
sequence of segmentation maps is produced for the subsequent classification process. In this paper,
we will discuss an optimization problem to automatically select an optimal grid level to achieve the
best classification accuracies.

The remainder of this paper is organized as follows. Section 2 presents the proposed
spectral-spatial classification of hyperspectral imagery based on the AMG method and HSEG algorithm.
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Section 3 describes the experimental results, Section 4 is a discussion of our method, and Section 5
presents our concluding remarks.

2. Materials and Methods

A flow-chart of the proposed classification method is illustrated in Figure 1. Because the AMG
method is more robust for PDE-based image analysis [26], we utilized it to solve the hyperspectral
anisotropic diffusion PDE. First, the hyperspectral anisotropic diffusion PDE is briefly discussed in this
section. The AMG method should construct a multigrid structure, which is visualized in Figure 1 as a
pyramid, starting with the finest grid (which corresponds to the original image) on its base and the
coarsest grid on its top. The detailed introduction of the AMG algorithm is then presented. Once the
multigrid structure based on the AMG method is constructed for the hyperspectral image, we used the
representative spectra in Figure 1 as markers for region growing in the HSEG algorithm. A step-by-step
procedure of the AMG-derived M-HSEG method is also provided. As shown in Figure 1, a multiscale
representation of hyperspectral imagery using the AMG method always contains a series of grid levels,
each of which can be utilized to extract the required representative pixels. The selection of an optimal
grid level to achieve the best classification accuracies is finally introduced.
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2.1. Hyperspectral Anisotropic Diffusion PDE 

It is well known that the linear scale-space can be represented by the heat diffusion equation. 
However, the disadvantage of the equation is that the edge features are smeared and distorted after 
a few iterations of the diffusion evolution. To overcome the problem of the linear scale-space, Perona 
and Malik [27] presented an anisotropic diffusion PDE to encourage intraregional smoothing while 
preventing interregional smoothing. Let ⊂u 0 2: Ω R  denote an original grey-level image, and Ω is 
the image domain. The anisotropic diffusion PDE is 
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Figure 1. Spectral-spatial classification of hyperspectral images based on the AMG method and
marker-based HSEG algorithm (M-HSEG). The original Indian Pines data set is visualized by an RGB
composite of bands 47, 23, and 13; the marker maps are visualized by an RGB composite of bands
47, 23, and 13 using the representative spectra, which are used as the initial seeds (markers) for the
HSEG algorithm. The segmentation maps correspond to the marker maps, and the different grey levels
represent different region labels.

2.1. Hyperspectral Anisotropic Diffusion PDE

It is well known that the linear scale-space can be represented by the heat diffusion equation.
However, the disadvantage of the equation is that the edge features are smeared and distorted after a
few iterations of the diffusion evolution. To overcome the problem of the linear scale-space, Perona
and Malik [27] presented an anisotropic diffusion PDE to encourage intraregional smoothing while
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preventing interregional smoothing. Let u0 : Ω Ă R2 denote an original grey-level image, and Ω is the
image domain. The anisotropic diffusion PDE is

Bu
Bt
“ div pg p|∇u|q∇uq (1)

where u is the smoothed image at time t, and ∇ and div are the gradient and divergence operators,
respectively. g(s) is the diffusion coefficient, which is defined as a non-negative monotonically
decreasing function of the local gradient magnitude s “ |∇u|, and several forms of g p¨q have been
widely exploited for Equation (1) [28–30]. We can obtain a series of smoothed images by iteratively
evolving Equation (1) starting from the observed image at t = 0, which constitutes a nonlinear
scale space. To construct a scale-space representation of the hyperspectral imagery, a vector-valued
anisotropic diffusion PDE is used:

Bui
Bt
“ div pg pθ p∇uσqq∇uiq, i “ 1, 2, . . . , N (2)

where N is the number of bands, u = (u1, u2, . . . , uN), and uσ is obtained by convolving u with a
Gaussian kernel of standard deviation σ. g p¨q is the diffusion function of |∇uσ| . In our computations,
the diffusion coefficient proposed in [31] is utilized because it can produce segmentation-like images:

g pθq “

$

’

&

’

%

1, θ “ 0

1´ e
´

3.31488

pθ{Kq8 , θ ą 0
(3)

where θ is a measure of the image edge strength and can be discretized as the Euclidean distance (ED)
or the spectral angle mapper (SAM) between two pixel vectors. K denotes a threshold that modulates
the amount of diffusion with respect to θ. A simple example of the hyperspectral anisotropic diffusion
process is illustrated in Figure 2. It can be observed that sensor noise in the hyperspectral image is
effectively removed, and edge features are better preserved. In addition, the homogeneous regions are
very smooth, which is greatly preferable for segmentation and classification.
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Figure 2. Example of the hyperspectral anisotropic diffusion PDE process for the Indian Pines data set:
(a) original noisy band 185; and (b) diffused result.

To solve PDE Equation (2), a first order discretization in time is used to approximate Bui{B t by
´

un`1
i ´ un

i

¯

{τ, where τ is the time step size, and un
i is the solution of Equation (2) at time tn “ n ¨ τ.
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An explicit (or Euler forward difference) scheme is widely used to solve Equation (2) and control the
diffusion by the diffusion coefficients computed from the previous time step using

un`1
i ´ un

i
τ

“ div pg pθ p∇un
σqq∇un

i q (4)

The solution un` 1 is obtained explicitly from un by simply rearranging Equation (6) as

un`1
i “ un

i ` τ ¨ div pg pθ p∇un
σqq∇un

i q (5)

Using space discretization, the explicit scheme can be given by

un`1
i “ pI` τA pun

σqq un
i (6)

where I and A are the identity matrix and the matrix of diffusion coefficients, respectively. However,
this scheme requires a maximum possible time step size τ ď 1{4 to ensure its stability, which means the
computation efficiency is very low. An alternative discretization of Equation (2) employs semi-implicit
schemes, which are stable for all time step sizes. The traditional semi-implicit scheme of the diffusion
PDE can be calculated by a series of linear equations,

pI´ τA pun
σqq un`1

i “ un
i (7)

The tridiagonal matrix I´ τA pun
σq can be inverted using the Gauss-Seidel or preconditioned

conjugate gradient method. However, it is necessary to solve large linear systems at each iteration step.
As shown in [32], semi-implicit schemes such as additive operator splitting (AOS) and alternative
direction implicit (ADI) schemes can significantly speed up the evolution of the PDE Equation (2).

2.2. Multiscale Representation of Hyperspectral Imagery

Following the work of [33], we construct a multigrid structure that is obtained by applying the
AMG method to solve Equation (7). The multiscale representation for hyperspectral imagery by the
AMG method is based on graph theory. Initially, the first graph pV0, E0q is built from the original
hyperspectral image, where V0 denotes the set of vertices and has the same size as the hyperspectral
image, and E0 represents the set of edges that connect each vertex to its four neighborhoods with
weights. In our method, the initial weights g0

ij of pi, jq Ă E0 are computed using the diffusion coefficient
Equation (3). To build an AMG multigrid structure, the authors of [33] introduced a mass mi for each
vertex, which is a measure of the number of pixels assigned to a given vertex selected for the next grid
and can be initialized as m0

i “ 1.
The construction of the multigrid structure mainly consists of the two following steps.

‚ The first step is the consecutive selection of a new set of Vl` 1 from Vl , where l is used to denote
the current grid level with 0 ď l ď S, where S is the coarsest grid. The set of vertices Vl is sorted
in decreasing order according to ml

i . Then, the first vertex of Vl`1 is initialized as the vertex in Vl

that has the highest mass. Finally, the set of vertices at grid l+1 can be obtained:

ř

jPVl`1
gl

ij

ř

pi,jqPEl
gl

ij
ď υ ñ Vl`1 “ Vl`1 Y tiu , for each i P VlzVl`1 (8)

where 0 ă υ ă 1 is a threshold value, and VlzVl`1 denotes the set difference between Vl and
Vl`1. Note that m0

i , g0
ij and E0 in the finest grid are initialized as before, and we can compute the

coarser grid according to the previous algorithm. Once the vertices of the finest coarse grid are
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constructed, we compute the masses in the next grid and the dependence degrees of the vertices
in VlzVl`1 to the vertices in Vl as

@i P Vl`1 : ml`1
i “ ml

i `
ÿ

jPVl`1

wl
ij and (9)

and

@i P VlzVl`1, j P Vl`1 : wl
ij “ wl

ji “
gl

ij
ř

kPVl`1
gl

ik
(10)

where wl
ij is a measure of how much vertex i P VlzVl`1 depends on vertex j P Vl`1.

‚ The second step is performed by connecting the vertices in Vl` 1 to obtain El`1, which can be
realized first by computing gl`1

ij for all the vertices in grid level l ` 1 and then connecting the

vertices to obtain El`1. Based on the Garlekin principle [34], the matrix of diffusion coefficients
can be defined as the Garlekin operator Gl`1 “ Ic

f Gl I f
c , where Ic

f denotes the restriction operator
that maps vectors in a fine grid into a coarser one and is given by

”

Ic
f

ı

ij
“

wl
ij

1`
ř

jPVlzVl`1
wl

ij
(11)

where I f
c is the interpolation operator, which is used to interpolate the intensity back to the finer

grids and is given by
”

I f
c

ı

ij
“ wl

ij (12)

By combining Equations (11) and (12) into the Garlekin operator, we obtain

gl`1
ij “

1
1`

ř

jPVlzVl`1
wl

ij

ÿ

p,qPVl

wl
ipgl

pqwl
qj (13)

We can then connect the vertices to obtain El` 1:

l`1 “
!

pi, jq : i, j P Vl`1 ^ gl
ij ą 0

)

(14)

Finally, the set of vertices and edges in grid level l ` 1 are constructed. Therefore, the
representative spectra in the coarse grid are determined by the position of the vertices that correspond
to grid level l ` 1.

Anisotropic diffusion PDEs are always used for multiscale image analyses to construct nonlinear
scale spaces. As time elapses, noise in the hyperspectral image is effectively removed, and edge
features are better preserved. In addition, homogeneous regions become very smoothed, which is
greatly preferable for segmentation and classification, as shown in Figure 2. However, the solution of
the hyperspectral anisotropic diffusion PDE imposes a heavy computation burden. The AMG method
can construct a hierarchical representation of the PDE solver from the finest grid (which corresponds
to the original image) to the coarsest grid, i.e., the linear system can be solved in the coarser grid
with higher accuracy, efficiency and scalability. On the other hand, with respect to graph pVl , Elq,
the diffusion coefficient Equation (3) is used as a similarity function to assign a weight to each edge
in El . According to the definition of the diffusion coefficient, if gij is close to 1, the pixel is inside a
homogeneous region, whereas if gij is close to 0, the pixel is near the edges. As a consequence, when
the set of vertices Vl is sorted in decreasing order of mass, the first vertex can correspond to a pixel
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inside a spectrally uniform region. Therefore, the anisotropic diffusion PDE is suitable for marker
selection, and the acquired representative spectra is more reliable for the HSEG algorithm.

In the multigrid structure, each vertex selected by the AMG method can be exploited as a pioneer
for a certain area in the hyperspectral image. The main problem is the use of the selected vertices
for marker-based segmentation. In fact, we can use vertices in any grid level as the initial seeds for
region growing. In [24], two automatic marker selection techniques were introduced to obtain the most
reliable classified pixels as markers, i.e., marker selection approaches using morphological filtering
(Morpho-MS) and probabilistic SVM (Proba-MS). To compare those two classification-derived marker
selection methods with ours, flow-charts of the two schemes are illustrated in Figure 3. It can be
observed in Figure 3a that the choice of markers in the classification-derived methods is always strongly
dependent on the performance of the pixel-wise classifiers. Even if the same classifier is used, using
different parameter settings can also produce different classification maps, which impacts the final
markers. In addition, the selected markers can be very different due to the randomness of the training
samples, which causes uncertainty in the classification maps. However, the final markers produced by
our method are only determined by the structure of the hyperspectral image, as shown in Figure 3b,
which is more robust than the traditional marker selection methods. Furthermore, the AMG-derived
marker selection method requires fewer adjustment parameters than classification-derived marker
selection techniques.
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2.3. AMG-Derived M-HSEG Method

Once the multigrid structures are constructed by the AMG method, we integrate the multiscale
representation with the HSEG algorithm to obtain unsupervised segmentation maps. The basic idea
of our segmentation method is that vertices in the multigrid structure can be considered as initial
seeds (markers) for region growing and are clustered to obtain a sequence of segmentation results.
The AMG-derived M-HSEG segmentation algorithm is briefly described as follows.
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Algorithm 1: AMG-derived M-HSEG Segmentation Algorithm

Input: An original hyperspectral image u and the coarsest grid level S.
Output: Segmentation maps

1. Input a hyperspectral image and construct an undirected graph as the finest grid.
2. AMG Relaxation

‚ At the finest grid level, perform a Gauss-Seidel relaxation to solve
`

I´ τG0˘X0 “ u with
an initial guess image u and compute the error X0 “

`

I´ τG0˘X0 ´ u.
‚ At the coarser grid level l (0 ă l ď S), perform a Gauss-Seidel relaxation to solve the

residual equation
´

I´ τGl
¯

Xl “ Fl with an initial guess 0, and compute the error

Xl “ Fl ´
´

I´ τGl
¯

Xl and then the residual Fl “
´

I´ τGl
¯

Xl .

1. AMG Coarse-Grid Correction: Select the set of vertices in Vl for Vl` 1 to obtain Fl`1 for the
coarser grid level l ` 1.

2. Compute Gl` 1 and connect the nodes in Vl`1 to obtain El`1.
3. If l ď S, go to step 2; otherwise, go to the next step.
4. Initialize the vertices in grid l as markers for the subsequent HSEG algorithm by assigning

each vertex a non-zero marker label and each pixel as a separate region.
5. Perform the M-HSEG algorithm by using the markers obtained from grid l of the

hyperspectral image:

(a) Calculate the dissimilarity criterion (DC) values between all pairs of spatially adjacent
regions. It should be noted that we only calculate the DC value between a markered
pixel and a non-markered pixel and merge the pair of adjacent pixels that has the
smallest DC value.

(b) Merge the pair of adjacent pixels that has the smallest DC value.
(c) Stop when there is no more merging, which means that the DC value is NaN.

3. Obtain the resultant segmentation maps for the subsequent classification.

The AMG-derived M-HSEG algorithm can be divided into three procedures. (i) In the coarsening
grid procedure, the error Xl (0 ă l ď S) is first estimated by solving

´

I´ τGl
¯

Xl “ Fl using the

Gauss-Seidel relaxation, where Fl is the residual. The masses, the matrix of diffusion coefficients and
the set of edges are then updated for grid level l ` 1. We perform this procedure until the S-level
multigrid structure is constructed; (ii) In the marker selection procedure, all the vertices in grid l are
considered as the initial seeds (markers) for region growing. Because the scale-space can provide
several coarse grid levels, we can obtain a series of segmentation maps; (iii) In the HSEG algorithm
procedure, we only compute the DC value between a markered pixel and a non-markered pixel and
merge the pair of adjacent pixels that has the smallest DC value, which can reduce the computational
burden. To further improve the computational efficiency, the RHSEG strategy [35] is also employed.
As a consequence, the number of regions in the resultant segmentation map is equal to the number of
marker sets.

2.4. Selection of the Optimal Grid Level

With respect to the AMG-based scale space, if we choose the finest grid for marker extraction, a
large number of representative spectra will be selected. Consequently, a segmentation map is produced
with many small regions, which is very difficult to extract in large homogeneous areas. On the contrary,
if we choose the very coarse grid, the number of markers is very small, and only a few large regions
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exist in the segmentation map. The key problem is choosing the optimal grid level from the multigrid
structure for classification. According to the above analyses, we can achieve the best classification
accuracies by choosing a certain grid level l (0 ď l ď S) for marker extraction from the AMG multigrid
structure. All of our experiments on hyperspectral imagery, including those not reported here, confirm
that the classification accuracy achieved by our method can be considered as a concave function of the
number of markers. Inspired by this rule, we can provide a strategy for automatically selecting an
optimal value of l. Therefore, the parameter tuning can be converted into an optimization problem:

lopt “ argmax
l

OA plq (15)

where lopt is the index of the optimal grid level, and OA denotes the overall accuracy of our
classification. It is possible to compare the resultant images by different values of l to obtain a
solution to Equation (11) with the best OA value, which corresponds well with a parameter tuning
procedure for marker selection.

3. Results

3.1. Parameter Settings and Evaluation Measures

To enable a better understanding of the maximum vote decision rule in our method, an illustrative
example of the integration process using the majority voting step is depicted in Figure 4. As mentioned
in Section 2.3, the AMG-derived M-HSEG algorithm is used to segment the hyperspectral image into
different regions with region labels, as shown in Figure 5b. To assign each region an information
label, we integrate the unsupervised segmentation map and the pixel-wise SVM classification map by
applying majority voting within this region in the segmentation map. For each region in Figure 5b, its
class label is assigned to the most frequent class in the pixel-wise classification map in Figure 5a within
this region. In this way, the advantages of both the pixel-wise SVM classification and the AMG-derived
M-HSEG algorithm are combined; the resultant classification map is shown in Figure 5c. It should be
noted that a marker may be assigned to the wrong class by most of the marker-based classification
methods. Therefore, all pixels within the region grown from this marker are at risk of being wrongly
classified. To tackle this problem, the majority voting step is widely used. Nevertheless, the purpose of
the step in our method is to perform spectral-spatial classification on all the homogeneous regions in
the unsupervised segmentation map by combining spectral and spatial information because we have
no idea which class a marker should belong to with respect to the ground truth.
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In this section, several hyperspectral classification methods are compared to the proposed
AMG-derived M-HSEG (AMG-M-HSEG) classification method. (1) In the pixel-wise SVM classification
method, the parameters are optimally set for each data set. (2) Two marker-based spectral-spatial
classification methods proposed by Tarabalka et al. [36] used a HSEG algorithm following the
classification-derived marker selection methods; these methods were used both without and with
the optional majority voting under the rule that the class label of each region is given to the
class with the maximum pixels within this region in the classification map. These methods are
named “Morph-M-HSEG”, “Morph-M-HSEG + MV”, “Proba-M-HSEG” and “Proba-M-HSEG +
MV”, respectively. (3) Another marker-based spectral-spatial classification method proposed by
Tarabalka et al. [25] uses an MSF construction following the Proba-MS marker selection method,
which are also used without and with the optional majority voting step. These methods are named
“Proba-M-MSF” and “Proba-M-MSF + MV”, respectively.

(1) Because the merging of spatially non-adjacent regions always creates a large computational
burden, the optional parameter Swght is set as Swght = 0.0 to improve the computational efficiency for
all the hyperspectral images in our experiments, which means that only spatially adjacent regions are
merged in the HSEG step.

(2) To increase the computational efficiency, four-neighborhood connectivity is exploited in the
HSEG algorithm and the MSF construction algorithm.

(3) Because two different similarity metric measures are commonly used for hyperspectral images
to discretize θ in Equation (3), i.e., the ED and the SAM between spectral vectors, we apply those two
measures for computing the DCs between the regions for the HSEG and the weights of the edges for
the MSF construction, respectively. It should be remarked that our experiments on the images used
in the paper demonstrate that both the Proba-M-HSEG (+MV) and Morph-M-HSEG (+MV) methods
using the ED measure always result in inaccurate or false segmentation and classification maps because
the ED measure cannot provide a satisfactory dissimilarity measure between the region mean vectors
for the M-HSEG algorithm. Therefore, these two classification methods using the ED measure, both
without and with the optional majority voting step, are not considered in our following experiments
for comparison. In addition, other similarity metric measures such as the L1 vector norm and the
spectral information divergence (SID) can be used as well.

(4) The parameters for our method are set according to former research on the AMG method [33].
In our experiments, we set τ = 1, υ = 0.2, and K = 0.01. In addition, we used the method described
in [33] to determine the coarsest grid S, i.e., if the number of vertices in any grid starting with the finest
grid is equal or less than log2U (U is equal to the original image size), the construction of the multigrid
structure stops, and the coarsest grid S can be automatically obtained.
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(5) The multiclass one-vs.-one SVM classifier with a Gaussian radial basis function (RBF) kernel
is used on the hyperspectral data sets. SVM has been the most frequently used method and
can achieve higher classification accuracies than traditional pixel-wise techniques when a limited
number of training data sets are available. Refer to [37–39] for details on SVM. As a consequence,
information classes are defined for the hyperspectral image, and each pixel is given a unique class label.
The performance of the methods is objectively evaluated in terms of global accuracy (GA) measures
that include the OA, average accuracy (AA), the kappa coefficient κ [40], and class-specific accuracy
(CA). Note that these objective measures can be obtained from the confusion matrix.

3.2. The Indian Pines Image (AVIRIS)

The first Indian Pines hyperspectral image, which was acquired with the AVIRIS sensor,
has 145 ˆ 145 pixels and 220 bands in the 400–2500 nm range, which represent a 2 mile by 2 mile
area with a spatial resolution of 20 m. A spectral subset of 185 bands was used for our experiments.
Sixteen classes of interest, which are shown in Table 1, were used in our experiments. To perform
the supervised classification, 10% of the labeled pixels in each class in the ground truth data were
randomly selected as training samples, and the remaining 90% were used as test samples. It can be
observed from the ground truth data that some classes only include a very small number of samples,
such as Alfalfa, Grass/pasture-mowed and Oats. For each of those classes, we randomly selected 10
training samples, and the remainder of the samples were used for testing. In addition, the SVM
classifier parameters C and γ were optimally obtained using a five-fold cross-validation, and C = 8192,
γ = 0.5.

Table 1. Number of training and test samples and the GAs and CAs (percent) for all the hyperspectral
data sets using the SVM classification method.

Class
Indiana Pines Washington DC Centre of Pavia

Name Training Test SVM Name Training Test SVM Name Training Test SVM

1 Alfalfa 10 44 81.82 Grass 52 1000 93.00 Water 39 1940 100
2 Corn-no till 143 1291 76.61 Street 76 1463 94.05 Road 80 3968 90.93
3 Corn-min till 83 751 72.7 Roofs 129 2468 88.29 Trees 64 3145 89.41
4 Corn 23 211 46.45 Shadow 38 741 74.63 Grass 54 2659 92.59
5 Grass/pasture 49 448 86.16 Path 42 812 88.67 Soil 67 3293 98.45
6 Grass/trees 74 673 89.75 Trees 44 840 98.57 Bricks 40 1984 90.57
7 Grass/pasture-mowed 10 16 87.50 Bitumen 49 2421 88.76
8 Hay-windrowed 48 441 97.28 Shadow 30 1503 95.94
9 Oats 10 10 100 Roof-1 39 1959 93.72

10 Soybeans-no till 96 872 83.03 Roof-2 77 3817 74.33
11 Soybeans-min till 246 2222 87.62
12 Soybeans-clean till 61 553 66.55
13 Wheat 21 191 96.34
14 Woods 129 1165 93.30
15 Bldg-Grass-Trees-Drives 38 342 61.40
16 Stone-steel towers 10 85 63.53

Total 1051 9315 Total 381 7324 Total 539 26,689
OA 82.51 OA 89.92 OA 90.39
AA 80.63 AA 89.54 AA 91.47
κ 79.96 κ 87.31 κ 89.23

In the Proba-MS method, there are three adjustable parameters (M, P and T). Because the
maximum size of the connected components for oats in the SVM classification map was 19, we set
M = 19 for the Proba-MS procedure in the Proba-M-MSF (+MV) and Proba-M-HSEG (+MV) methods.
In addition, in the Proba-M-MSF (+MV) method, the parameter P was computed as P = 6%, given the
condition that each marker for a large region should have at least one pixel. The last parameter, T, was
set equal to the lowest probability within the highest 2% of the probability estimates, whereas in the
Proba-M-HSEG (+MV) method, the parameter settings were set to P = 40% and T = 50%. In addition,
the size of the structuring element in the Morph-M-HSEG (+MV) method was 3 ˆ 3.

To build the multigrid structure, 10 coarse grid levels (S = 10) were constructed according to
Section 3.1. Figure 6 shows the impact on the objective quantitative assessments of the GAs caused
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by varying l from 0 to 10. We can observe from these plots the high robustness of the results with
respect to values of l from 1 to 5 when compared to the SVM classification result (l = 0). In addition, it
can be observed that the shapes of the plots share a similar global behavior. As l is increased, all the
GAs rise gradually until reaching a peak. After the maximum, the OA and κ values drop from 96.32%
and 95.80% (l = 5) to 51.05% and 42.61% (l = 10), respectively. However, the AA value drops more
quickly than the other two measures, from a high value of 95.95% to 28.6%. This can be explained
because for l ě 6, all the pixels in the classification maps, which should belong to Grass/pasture-mowed
in the ground truth data (refer to Figure 7b), are assimilated with their neighboring structures. As a
consequence, the CA of this class is 0, and the corresponding AA is lower. In this experiment, which
had a coarse grid level of l = 5 estimated using Equation (15), 397 vertices, which occupy 1.9% of the
total number of pixels in the image, are used as markers. It is worth noting that other GAs such as AA
and κ can also be used in Equation (15), and the same value of lopt (lopt = 5) will be obtained.
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Figure 7. Classification maps for the Indian Pines image: (a) RGB composite (bands 47, 23, and 13); 
(b) Ground truth data; (c) SVM; (d) Proba-M-HSEG; (e) Proba-M-HSEG +MV; (f) Morph-M-HSEG; 
(g) Morph-M-HSEG +MV; (h) Proba-M-MSF using ED; (i) Proba-M-MSF using SAM; (j) Proba-M-MSF 
+MV using ED; (k) Proba-M-MSF +MV using SAM; (l) AMG-M-HSEG using ED; and (m) AMG-M-
HSEG using SAM. 

Table 1 lists the number of training and test samples for each class in the ground truth data and 
the classification accuracies of the SVM classification, and Table 2 lists the classification accuracies of 
all the marker-based classification methods used here. The RGB composite map from bands 47, 23 
and 13 of the AVIRIS image and its ground truth data are depicted in Figure 7a,b, respectively. Figure 
7c–m illustrates the corresponding classification maps. From those results, we reached the following 
conclusions. 

(1) The Morph-M-HSEG and Proba-M-HSEG methods, both with or without the optional 
majority voting step, can achieve better GAs when compared with the SVM classification. 
Meanwhile, the highest CAs for 6 of the 16 classes were achieved when using those four methods, 
including Corn-min till, Grass/trees, Grass/pasture-mowed, Hay-windowed, Soybeans-clean till and Stone-
steel towers. However, those methods always resulted in a slight under-segmentation in the HSEG 
step. For example, it can be observed in Figure 7 that some small regions of the Corn-no till, Oats and 
Grass/pasture classes were merged by their adjacent regions that belonged to the other classes, or some 
small regions of the other classes were merged by large regions of the Corn-min and Soybean-clean 
classes. In contrast, in the results of our method shown in Figure 7l,m, most of the small regions that 

Figure 7. Classification maps for the Indian Pines image: (a) RGB composite (bands 47,
23, and 13); (b) Ground truth data; (c) SVM; (d) Proba-M-HSEG; (e) Proba-M-HSEG +MV;
(f) Morph-M-HSEG; (g) Morph-M-HSEG +MV; (h) Proba-M-MSF using ED; (i) Proba-M-MSF using
SAM; (j) Proba-M-MSF +MV using ED; (k) Proba-M-MSF +MV using SAM; (l) AMG-M-HSEG using
ED; and (m) AMG-M-HSEG using SAM.

Table 1 lists the number of training and test samples for each class in the ground truth data and
the classification accuracies of the SVM classification, and Table 2 lists the classification accuracies
of all the marker-based classification methods used here. The RGB composite map from bands 47,
23 and 13 of the AVIRIS image and its ground truth data are depicted in Figure 7a,b, respectively.
Figure 7c–m illustrates the corresponding classification maps. From those results, we reached the
following conclusions.
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Table 2. The GAs and CAs (percent) for the Indian Pines image using all the spectral-spatial classification methods for comparison. The highest accuracies are
indicated in bold in each category.

AMG-M-HSEG Proba-M-HSEG Proba-M-HSEG + MV Morph-M-HSEG Morph-M-HSEG + MV Proba-M-MSF Proba-M-MSF + MV

DC ED SAM SAM SAM SAM SAM ED SAM ED SAM
OA 95.16 96.32 94.49 94.86 95.04 95.04 93.17 91.44 93.33 94.04
AA 95.21 95.97 93.16 93.35 86.88 86.88 92.95 91.46 86.26 93.91
κ 94.48 95.80 93.71 94.13 94.33 94.33 92.21 90.24 92.37 93.20

Alfalfa 86.36 86.36 86.36 86.36 86.36 86.36 88.64 88.64 88.64 88.64
Corn-no till 92.10 92.33 87.06 87.06 86.91 86.91 94.42 87.61 87.76 87.61

Corn-min till 93.74 96.67 92.81 95.07 97.74 97.74 82.96 77.23 94.54 94.67
Corn 91.47 99.33 82.46 82.46 79.15 79.15 79.15 97.16 79.15 97.16

Grass/pasture 95.76 96.43 94.64 94.64 93.75 93.75 93.75 93.75 92.41 93.75
Grass/trees 97.18 96.43 95.99 95.99 98.07 98.07 96.88 92.27 96.88 96.43

Grass/pasture-mowed 93.75 93.75 93.75 93.75 75.00 75.00 93.75 93.75 93.75 93.75
Hay-windrowed 99.55 93.42 99.77 99.77 99.77 99.77 99.77 99.55 99.55 97.51

Oats 100 100 90.00 90.00 0 0 100 100 0 100
Soybeans-no till 85.44 91.97 88.76 88.76 89.33 89.33 91.86 91.06 85.21 90.25

Soybeans-min till 96.22 98.51 98.92 99.68 99.01 99.01 93.43 94.82 98.47 97.70
Soybeans-clean till 98.73 95.3 97.29 97.29 97.11 97.11 86.44 97.29 90.78 85.35

Wheat 100 98.95 99.48 99.48 99.48 99.48 99.48 100 99.48 100
Woods 99.48 98.88 99.66 99.66 99.83 99.83 99.57 100 99.31 100

Bldg-Grass-Tree-Drives 97.08 98.83 84.80 84.80 89.77 89.77 89.47 52.63 76.61 82.16
Stone-steel towers 96.47 97.65 98.82 98.82 98.82 98.82 97.65 97.65 97.65 97.65
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(1) The Morph-M-HSEG and Proba-M-HSEG methods, both with or without the optional majority
voting step, can achieve better GAs when compared with the SVM classification. Meanwhile, the
highest CAs for 6 of the 16 classes were achieved when using those four methods, including Corn-min
till, Grass/trees, Grass/pasture-mowed, Hay-windowed, Soybeans-clean till and Stone-steel towers. However,
those methods always resulted in a slight under-segmentation in the HSEG step. For example, it can
be observed in Figure 7 that some small regions of the Corn-no till, Oats and Grass/pasture classes were
merged by their adjacent regions that belonged to the other classes, or some small regions of the other
classes were merged by large regions of the Corn-min and Soybean-clean classes. In contrast, in the
results of our method shown in Figure 7l,m, most of the small regions that belonged to different classes
were better preserved. In addition, the majority voting step did not improve the GAs and CAs of
the Morph-M-HSEG method using the SAM distance because almost all the pixels in each region in
Figure 7f have the same class label.

(2) The Proba-M-MSF method, both with or without the optional majority voting step, can obtain
better GAs than the SVM classifier. However, the highest OA by our method is 2%–5% higher when
compared with this method. To clearly demonstrate the difference between the two methods, one
region at the top-middle of the image was used for comparison. This region should be classified
as Bldg-Grass-Trees-Drives according to the ground truth data, but a large number of pixels in that
region were classified as Woods by the Proba-M-MSF method, as shown in Figure 7j,k. By comparison,
our method can achieve more accurate classification maps. Apart from these observations, another
small region in the top left of the image was used for comparison. It can be observed that this region
was correctly classified as Grass/pasture by our method, which is consistent with the ground truth
data. Nevertheless, the entire region was merged by its spatial adjacent region, which belonged to
Bldg-Grass-Trees-Drives, by the Proba-M-MSF method.

(3) The GAs achieved by our method using the SAM distance were the best among all the
classification methods used for comparison. In this case, the OA and κ increased by 13.81% and
15.84%, respectively. Meanwhile, the highest CAs for 8 of the 16 classes were achieved when using our
method. On that occasion, the AA was improved by 15.34%. It is very important to preserve material
boundaries and edge structures in classification maps. From the classification maps, we can observe
that our method was better than the other marker-based classification methods in terms of region
homogenization and edge preservation.

3.3. The Washington DC Image (HYDICE)

In the next example, the benchmark Washington DC image from the HYDICE sensor contains
1208 scan lines with 307 pixels in each scan line and 224 bands, and it has a spatial resolution of
approximately 2.8 m. A sub-image was produced for our experiments by spatially and spectrally
subsetting to include 200 ˆ 225 pixels and 191 bands. Because the image also has a high spatial
resolution, we obtained a ground truth image with six labeled classes by identifying the different
materials. In the SVM classification algorithm, 5% of the labeled pixels for each class in the ground
truth data were randomly chosen for training, and the remaining labeled pixels were used for testing.
The optimal parameters for the SVM classifier were estimated as C = 2084 and γ = 2 by five-fold
cross-validation. The GAs and CAs of the classification of the data set using the SVM classification
are listed in Table 1. The parameters for the Proba-MS algorithm were fixed as follows: M = 20,
P = 5% and T = 2% for the Proba-M-MSF (+MV) method and M = 20, P = 40% and T = 50% for
the Proba-M-HSEG (+MV) method. Additionally, a 3 ˆ 3 structuring element was used in the
Morph-M-HSEG (+MV) method.

In our method, 12 coarse grid levels were constructed in the AMG structure, and the optimal
coarse grid level l = 5 can be obtained from Figure 8 using Equation (15). In this grid, 1125 vertices,
which occupy 2.5% of the total number of pixels in the image, were utilized as markers. To objectively
compare the classification results, the GAs and CAs of the Washington DC image are shown in Table 3,
and all the corresponding classification maps are illustrated in Figure 9. As can be observed from
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these results, we can obtain similar conclusions as for the Indian Pines image. In particular, it can be
observed from Table 3 that the GAs can be better than the pixel-wise SVM by most of the spectral-spatial
classification methods used here, except for the Proba-M-MSF method, which could not effectively
differentiate the Street, Roofs and Path classes. Furthermore, the best GAs among all the classification
methods were obtained by our method with the SAM distance. In this case, the OA and κ were better
by 3.84% and 4.83%, respectively, compared with the SVM results. In addition, the highest CAs for 3 of
the 6 classes were achieved by our method. In this example, the increase in AA values was as large as
3.58%.
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Figure 9. Classification maps for the Washington DC data set: (a) RGB colour composite (bands 63, 
52, and 36); (b) Ground truth data; (c) SVM; (d) Proba-M-HSEG; (e) Proba-M-HSEG +MV; (f) Morph-
M-HSEG; (g) Morph-M-HSEG +MV; (h) Proba-M-MSF using ED; (i) Proba-M-MSF using SAM; (j) 

Figure 9. Classification maps for the Washington DC data set: (a) RGB colour composite (bands
63, 52, and 36); (b) Ground truth data; (c) SVM; (d) Proba-M-HSEG; (e) Proba-M-HSEG +MV;
(f) Morph-M-HSEG; (g) Morph-M-HSEG +MV; (h) Proba-M-MSF using ED; (i) Proba-M-MSF using
SAM; (j) Proba-M-MSF +MV using ED; (k) Proba-M-MSF +MV using SAM; (l) AMG-M-HSEG using
ED; and (m) AMG-M-HSEG using SAM.
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3.4. The Centre of Pavia Image (ROSIS)

The third hyperspectral data set was the Centre of Pavia image, which was acquired by the
ROSIS-03 optical sensor. The image has 400 ˆ 400 pixels, 102 spectral channels and a spatial resolution
of 1.3 m. To evaluate our method, we manually generated a ground truth data for the image by visual
interpretation that included ten material classes of interest, and 2% of the labeled pixels of each class
from the ground truth data were selected as training samples. The remaining ones were used for
testing. A pixel-wise SVM classification was performed on the image, and the following parameters
were chosen by five-fold cross-validation: C = 1.31072 ˆ 105 and γ = 2. The training and test samples
for each class and the corresponding classification accuracies by the SVM classifier are reported in
Table 1. The Proba-MS algorithm parameters for the Proba-M-MSF (+MV), Proba-M-HSEG (+MV) and
Morph-M-HSEG (+MV) methods were the same as the second hyperspectral data set.

To obtain accurate markers for the following segmentation, 14 coarse grid levels of the Centre
of Pavia image were constructed for building the AMG structure, in which 3105 vertices, which
occupied 1.9% of the total number of pixels in the image for the optimal grid level of l = 6 , were
utilized as markers, as shown in Figure 10. For comparison, we show the GAs and CAs of the applied
classification methods used here in Table 4, and the corresponding classification maps are displayed in
Figure 11. It can be observed that almost all the spectral-spatial classification methods achieved higher
GAs when compared with the pixel-wise SVM classification, except for the Proba-M-MSF method
with the SAM distance. As shown in Figure 11i, most of the building shadows were not appropriately
recognized by the Proba-M-MSF method with the SAM distance, and the CAs of this method confirm
that conclusion. For example, the Shadow CA was only 27.15%, which was much lower than the
95.94% achieved by the SVM classifier. In addition, the best GAs were achieved using our method. For
example, the increases in OA and κ were as large as 7.06% and 7.91%, respectively, compared with the
SVM results. Apart from that, the highest CAs for 5 of the 10 classes were achieved by our method,
and the improvement in AA was as large as 5.96%.
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generating different segmentation maps to satisfy various applications. 

Figure 11. Classification maps for the Centre of Pavia data set: (a) CIR colour composite (bands
63, 52, and 36); (b) Ground truth data; (c) SVM; (d) Proba-M-HSEG; (e) Proba-M-HSEG +MV;
(f) Morph-M-HSEG; (g) Morph-M-HSEG +MV; (h) Proba-M-MSF using ED; (i) Proba-M-MSF using
SAM; (j) Proba-M-MSF +MV using ED; (k) Proba-M-MSF +MV using SAM; (l) AMG-M-HSEG using
ED; and (m) AMG-M-HSEG using SAM.
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Table 4. The GAs and CAs (percent) for the center of the Pavia image using all the spectral-spatial
classification methods for comparison. The highest accuracies are indicated in bold in each category.

AMG-M-HSEG Proba-M-
HSEG

Proba-M-
HSEG + MV

Morph-M-
HSEG

Morph-M-
HSEG + MV Proba-M-MSF Proba-M-

MSF + MV

DC ED SAM SAM SAM SAM SAM ED SAM ED SAM
OA 96.06 97.45 95.32 95.64 95.32 95.64 90.98 87.14 95.29 92.74
AA 96.58 97.43 95.42 95.92 95.42 95.92 90.38 83.88 95.87 92.63
κ 95.58 97.14 94.74 95.1 94.74 95.1 89.87 85.49 94.2 91.86

Water 99.85 100 100 100 100 100 100 100 99.18 99.85
Road 95.79 98.36 93.37 92.67 93.37 92.67 97.43 91.94 91.68 87.15
Trees 93 98.12 93.83 89.35 93.83 89.35 74.15 84.61 85.79 89.57
Grass 98.5 96.8 85.41 93.23 85.41 93.23 99.14 78.9 98.91 89.51
Soil 99.97 100 100 100 100 100 99.94 100 99.79 100

Bricks 97.53 96.88 97.23 99.5 97.23 99.5 81.85 94.71 95.21 98.44
Bitumen 95.95 93.27 96.61 96.28 96.61 96.28 90.62 96.86 95.46 94.96
Shadow 99.07 96.14 92.88 93.15 92.88 93.15 99.07 27.15 98.27 74.52
Roof-1 96.32 99.29 98.11 98.11 98.11 98.11 67.79 70.04 99.08 99.29
Roof-2 89.83 95.44 96.75 96.91 96.75 96.91 93.82 94.63 95.34 93

4. Discussion

In our method, the coarse grid level l critically determines the AMG-M-HSEG classifier. In this
section, the influence of this parameter on the classification accuracies of our method is investigated
experimentally for the Indian Pines image. To clearly demonstrate the difference in the visual
interpretation, the segmentation and corresponding classification maps with respect to l from 4
to 6 are shown in Figure 12. The GAs and CAs are also listed in Table 5. From these results, we can
draw the following conclusions.

(1) At the coarse grid level of l = 5, our algorithm achieved the best GAs.
(2) As the coarse grid level l increased, the number of regions in the HSEG maps was reduced

mainly due to the decrease of the selected markers. In addition, the CAs of classes with large
connected regions were improved, such as the Bldg-Grass-Tree-Drives and Oats classes (refer to
the red solid line rectangles in Figure 12). On the other hand, the CAs of the classes with small
connected regions were greatly reduced, such as the Grass/pasture-mowed, Soybeans-no till and
Alfalfa classes (refer to the green solid line ellipses in Figure 12). It is very interesting that different
values of l produced homogeneous regions with different sizes. From this point of view, the
adjustability of the grid level in the multigrid structure can provide flexibility for generating
different segmentation maps to satisfy various applications.

Table 5. The GAs and CAs (percent) produced by our method using different values of l from 4 to 6 for
the Indian Pines image. The highest accuracies are indicated in bold in each category.

Class l = 4 l = 5 l = 6

OA 95.35 96.32 95.81
AA 94.59 95.97 88.99
κ 94.70 95.80 95.22

Alfalfa 86.36 86.36 70.45
Corn-no till 87.14 92.33 91.94

Corn-min till 93.74 96.67 96.94
Corn 96.21 99.33 97.63

Grass/pasture 98.21 96.43 93.08
Grass/trees 97.77 96.43 97.62

Grass/pasture-mowed 93.75 93.75 0
Hay-windrowed 99.77 93.42 99.77

Oats 80.00 100 100
Soybeans-no till 91.17 91.97 85.44

Soybeans-min till 96.98 98.51 99.01
Soybeans-clean till 97.65 95.30 96.93

Wheat 100 98.95 99.48
Woods 98.80 98.88 96.93

Bldg-Grass-Tree-Drives 98.25 98.83 99.48
Stone-steel towers 97.65 97.65 99.40
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of l. (a) the segmentation map (l = 4); (b) the classification map (l = 4); (c) the segmentation map (l = 5);
(d) the classification map (l = 5); (e) the segmentation map (l = 6); (f) the classification map (l = 6).

5. Conclusions

In this paper, we proposed a spectral-spatial classification method for hyperspectral imagery
based on the AMG method and the HSEG algorithm. Specifically, a multiscale representation for
hyperspectral imagery is obtained using the AMG method to solve the hyperspectral anisotropic
diffusion PDE. Once the multigrid structure is constructed, vertices in any grid level can be
considered as markers for HSEG and clustered to obtain a sequence of unsupervised segmentation
results. A maximum vote decision rule is then employed to classify all the homogeneous regions
in the segmentation maps according to a pixel-wise classification result. Finally, to obtain the best
classification accuracies, a final classification map is developed by choosing the optimal grid level
to extract representative spectra. The major advantage of the proposed method is that it can obtain
reliable markers that are only determined by the structures in the hyperspectral imagery, not the
performance of the pixel-wise classifiers or the training samples in the pixel-wise classification step.
The proposed classification method, i.e., AMG-M-HSEG, was compared with the pixel-wise SVM
classifier and marker-based spectral-spatial classification methods. The results of the experiments
demonstrated that our method can achieve improvements of 13.81%, 3.84% and 7.06% in OA over
the pixel-wise SVM classifier for the Indian Pines, Washington DC and Centre of Pavia datasets,
respectively. Furthermore, for all three datasets, the OA and κ by our method were the best among
all the traditional spectral-spatial classification methods. It can be concluded that the proposed
method can effectively improve classification accuracy for real hyperspectral datasets with different
resolutions and contexts. Therefore, our method is useful in real-world applications. In the future, a
further improvement can be achieved by exploring more valuable information from the AMG-based
scale-space of hyperspectral imagery.
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