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Abstract: Due to 4000 m elevation variation with temperature differences equivalent to 50 degrees
of latitudinal gradient, exploring Taiwan’s spatial vegetation trends is valuable in terms of diverse
ecosystems and climatic types covering a relatively small island with an area of 36,000 km2. This
study analyzed Taiwan’s spatial vegetation trends with controlling environmental variables through
redundancy (RDA) and hierarchical cluster (HCA) analyses over three decades (1982–2012) of monthly
normalized difference vegetation index (NDVI) derived from the Advanced Very High Resolution
Radiometer (AVHRR) NDVI3g data for 19 selected weather stations over the island. Results showed
two spatially distinct vegetation response groups. Group 1 comprises weather stations which
remained relatively natural showing a slight increasing NDVI tendency accompanied with rising
temperature, whereas Group 2 comprises stations with high level of human development showing a
slight decreasing NDVI tendency associated with increasing temperature-induced moisture stress.
Statistically significant controlling variables include climatic factors (temperature and precipitation),
orographic factors (mean slope and aspects), and anthropogenic factor (population density). Given the
potential trajectories for future warming, variable precipitation, and population pressure, challenges,
such as land-cover and water-induced vegetation stress, need to be considered simultaneously for
establishing adequate adaptation strategies to combat climate change challenges in Taiwan.

Keywords: NDVI; spatial vegetation trend; environmental variables; adaptation strategy; climate
change; Taiwan

1. Introduction

The terrestrial ecosystem is subject to the unprecedented speed of global climate change and
must be carefully monitored because of its central role in maintaining a healthy and sustainable planet.
Because of the close relationship between vegetation phenology and the terrestrial ecosystem [1–3],
vegetation is commonly used to determine the ecological response to environmental changes [4–7],
such as climate change [8–11], land cover and land use change [12–19], drought [20,21], and changes
in net primary productivity [22]. Satellite remote sensing vegetation indices offer opportunities to
monitor vegetation phenology and environmental changes in a repeatable manner [22]. The normalized
difference vegetation index (NDVI) is one of the most widely accepted vegetation indices based on
a mechanism that chlorophyll in vegetation absorbs more strongly in the red light spectrum (RED)
whereas the cell structures of leaves reflect and scatter light in the near-infrared spectrum (NIR). The
NDVI value is calculated by (NIR ´ RED)/(NIR + RED) and expressed on a scale from ´1 to +1,
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in which positive values correspond to the presence of vegetation and negative values correspond to
the absence of vegetation [23].

Time series of NDVI data have proven to be an effective tool in assessing the phase of climate
variability, and has been applied to worldwide geographical locations [3,24–29]. NDVI data derived
from the Advanced Very High Resolution Radiometer (AVHRR) onboard the National Oceanic and
Atmospheric Administration’s (NOAA) satellite series are widely used and have been considered
as the best dataset available for long-term analysis of vegetation dynamics at reasonable spatial and
temporal scales [30]. A number of studies investigating changes in AVHRR NDVI data found that
regional climate variability differentially regulated vegetation phenology across different ecosystems at
various spatial scales [31–35]. For instance, Yu et al. (2003) [36] revealed that the response of vegetation
photosynthetic activities to climate variations depends on season while other studies showed that
climate warming is asymmetric among different seasons and continents [37,38].

In order to maintain a livable planet, the United Nations Development Programme Global
Environment Facility developed the Adaptation Policy Framework (APF), which aimed to reduce
negative impacts and enhance any beneficial consequences of a changing climate [39]. Additionally,
an Ecosystem-based Adaptation (EbA) approach has emerged in the international climate change arena,
which has proved to provide flexible, cost effective and broadly applicable alternatives for reducing
the impact of climate change in many countries, such the United States [40]. For the major concept in
APF and EbA, an understanding of the target natural terrestrial ecosystem pattern is required for a
successful implement.

Located in East Asia, Taiwan is a unique island with relatively small land area of 36,000 km2 and
a variable topography ranging from sea level to nearly 4000 m. Due to the 4000 m elevation variation
with temperature differences of 24 ˝C that could occur equivalent to 50 degrees of latitudinal gradient,
Taiwan has high levels of species richness and biodiversity across various ecosystems and climatic
types [41,42]. As such, the vegetation trends in Taiwan could represent the typical plant communities
across various ecosystems equivalent to 50 degrees of latitudinal gradient. Additionally, Taiwan
regularly encounters many natural challenges, such as earthquakes, typhoons, mudslides, and flash
floods. Based on numerous evidences around the world, those natural challenges would be highly
possible exacerbated by global climate change [43]. Besides natural challenges, Taiwan’s landscape has
been transformed extensively by human developments and the pressure from an increasing population
density continues to grow. The compacted population coupling with exacerbated natural challenges,
the ecosystems and the safety of people’s life in Taiwan are vulnerable with great risk. Therefore,
the need to establish adequate adaptation strategies based on a comprehensive understanding of
Taiwan’s natural ecosystems has never been greater [44–46].

Taiwan’s government adapted the concepts of APF, and a series of comprehensive strategies
was established since 2012. With considering and understanding the natural terrestrial ecosystems of
Taiwan, the effectiveness of the current adaptation strategies would be improved in terms of their ability
for handling emerging large-scale climate change challenges. NDVI data have been applied in Taiwan
on many short-term land cover change detection cases [18], forest coverage evaluation [47], and crop
yield evaluation [3]. However, a long-term assessment of NDVI patterns remains unexplored. With
the longest available NDVI series data, the present study intends to assess the long-term vegetation
patterns in Taiwan by analyzing NDVI as a vegetation surrogate with associated environmental
variables. The main objectives of this study are to resolve: (1) the spatial characteristics of the NDVI in
Taiwan, (2) the environmental variables that control the spatial characteristics of NDVI variation; and
(3) the current vulnerabilities and future climate risks in Taiwan. Consequently, proper adaptation
strategies can now be established to improve Taiwan’s adaptive capacity and avoid compounding the
costs and damages resulting from climate change challenges [43].
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2. Materials

2.1. Study Area

Taiwan straddles the Tropic of Cancer (22˝–25˝N, 120˝–122˝E, Figure 1) and is an island located
on the northwestern edge of the Pacific Ocean. The annual average temperature is approximately
22–25 ˝C [48] and the annual precipitation is approximately 2500 mm. Taiwan is mainly dominated
by the north-south trending Central Mountain Range (CMR) with the highest point at Yu Mountain
(3952 m) and an average height of 3000 m [49]. The climate of Taiwan is primarily influenced by lofty
mountains and alternating monsoons [50,51]. In addition, the low pressure system, which causes
summer typhoons and the winter monsoon [49], has a large influence on the island’s climate during the
course of the year. Topographic factors such as the land-sea distribution further amplify the complexity
of Taiwan’s precipitation mechanism [52]. For this study, 19 weather stations were selected on the basis
of two criteria: complete records for NDVI and environmental variables from 1982–2012 and spatially
even distribution across the island to ensure a general representation. Of the 19 weather stations, there
are five, six, three, and five stations located in the northern, central, southern, and eastern counties,
respectively. According to a detailed national vegetation community survey [53], nearly 60% of the
land area in Taiwan is covered by forest and the majority vegetation formation for each station is
provided in Figure 1.
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Figure 1. Study area map of Taiwan with the 19 selected weather stations and corresponding
vegetation formation.

2.2. Data Source

2.2.1. NDVI

This study utilizes the third generation of the AVHRR NDVI3g dataset developed by the
Global Inventory Modeling and Mapping Studies group from the National Aeronautics and Space
Administration Goddard Space Flight Center. The long temporal coverage, spanning from July 1981
to December 2012, makes this dataset valuable for assessing long-term vegetation activities at a
reasonable spatial resolution (approximately 8 km). The AVHRR NDVI3g dataset is calibrated using
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the atmospheric Rayleigh-scattering-over-oceans approach by Vermote and Kaufman (1995) [54].
Volcanic stratospheric aerosol periods (1982–1984 and 1991–1994) were established and subjected to
atmospheric corrections. Empirical decomposition reconstruction methods were applied to correct the
satellite orbital drift effect [55]. Further improved cloud masking and sea-viewing wide field-of-view
sensor NDVI data were used to calibrate the AVHRR NDVI3g data using Bayesian methods [56] to
reduce the factors unrelated to changes in vegetation greenness.

To minimize the corruption of vegetation signals [57], the AVHRR NDVI3g data obtained two
maximum NDVI values. The first value was the maximum NDVI value obtained over the first 15 days,
and the second was the maximum NDVI value obtained for the rest of the month. Thus, each month
contained two NDVI images. For this study, the image with the higher NDVI value for each month
was chosen to represent the monthly NDVI. These NDVI values were extracted for 19 selected cells
where weather stations present for further analysis (Figure 2).
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Figure 2. Averaged monthly NDVI value (1982–2012) of weather stations. (a) stations 1–7, 9, 15–19,
(b) stations 8, 10–14.

2.2.2. Environmental Variables

Environmental variables are characterized as natural and anthropogenic variables. Natural
variables can be categorized into climatic and orographic variables. Climatic variables include
temperature, precipitation, cloud amount, and sunshine duration, whereas orographic variables
include mean slope, aspects, and elevation. Population density is the only anthropogenic variable
considered in the present study.

Monthly observational temperature and precipitation data between 1982 and 2012 were derived
from the Taiwan Climate Change Projection and Information Platform (TCCIP). The spatial resolution
of 5 km ˆ 5 km for these data sets was generated by the inverse distance-weighted interpolation
and weighted-average methods suggested by Watson (1992) [58]. Altitude, latitude/longitude,
distance, and azimuth have been involved into the interpolation process by the TCCIP. Cloud
amounts and sunshine duration were collected from first-order weather stations operated by Taiwan’s
Central Weather Bureau. The mean slope, aspect, and elevation data (spatial resolution of 40 km2)
were calculated and extracted from digital elevation model data from the Department of Land
Administration, Ministry of the Interior. Due to the actual population density information for all NDVI
cells are unavailable, the population density data were adopted on a township basis depending on
where each station is located by deriving the latest census records.

For this study, 19 weather stations were selected on the basis of two criteria: they had to have
complete records from 1982–2012, and they needed to be relatively distributed across the island to
ensure a general representation of Taiwan. All environmental variables for each station were extracted
and their basic information can be found in Figure 3.
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3. Methods

3.1. Hierarchical Cluster Analysis (HCA)

To discover the spatial characteristics of NDVI in Taiwan, the extracted NDVI values from the
AVHRR NDVI3g dataset for each of the 19 weather stations were assessed through clustering methods.
Rather than segmentation approaches [59,60], Hierarchical cluster analysis (HCA) is suitable for
clustering targets with an unknown number of groups a prior. An agglomerative HCA was applied to
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group the mean monthly values to reveal natural groupings [61,62]. In the present study, the Ward
linkage method was used with the squared Euclidean distance as the similarity measurement [63].
Detailed calculation processes can be found in a classical paper conducted by Punj and Stewart
(1983) [64]. Initially, the agglomerative HCA starts with individual weather stations. The most
similar stations are first grouped, and these initial groups are merged according to their similarity
measurements. Groups (or clusters) are formed by merging stations one stage at a time, until all
stations are merged in one big cluster. The number of stages is bounded by the number of stations
in the initial partition, which is one less than the total number of stations [65]. The total number
of stations is 19 in this study, so the number of stages is 18. At each stage, the corresponding HCA
coefficient indicates the distance between the two clusters. A large difference between the coefficients
of two consecutive stages indicates that the clusters being merged possess increasing heterogeneity
so to terminate the merging process before the clusters become too different [66]. As the merging
process being terminated, the final number of clusters can be obtained by deducting the value of the
terminated stage from the total number of stations.

3.2. Redundancy Analysis (RDA)

To identify the environmental variables controlling the spatial characteristics of NDVI variation,
Redundancy analysis (RDA) was utilized to explore the relationship between NDVI and environmental
variables. The RDA was first proposed by Rao (1964) [67] and later rediscovered by Van Den Wollenberg
(1977) [68]. Redundancy is often synonymous with explained variance [69]. The RDA is a direct
extension of multiple linear regression by allowing the regression of multiple response variables
(RVs) on multiple explanatory variables (EVs) [70,71]. In addition, an RDA may also be seen as
an extension of a principal component analysis because the canonical ordination vectors are linear
combinations of the RVs. In general, RDA is a method based on canonical multivariate analyses by
assuming a linear response between variables [72–74] to extract and summarize the variation in a set
of RVs that can be explained by a set of EVs [71]. The assumed linear response between variables
can be expressed by the Eigen analysis equation as follows, and be decomposed using a standard
eigenvalue-eigenvector algorithm.

´

SYXS´1
XXS1YX ´ λk I

¯

uk “ 0 (1)

where SYX is the covariance matrix among RVs and EVs, S´1
XX represents the inverse covariance matrix

among standardized EVs, I denotes a unit matrix, λk represents the eigenvalues of the corresponding
axis k, and uk denotes normalized canonical eigenvectors (details can be found in Legendre and
Legendre 2012 [70]).

In this research, the suitability of an RDA was confirmed by a detrended correspondence analysis
with a measured length of turnover units smaller than three. An RDA can assess how much of the
variance in the mean monthly NDVI values (RVs) can be explained by the environmental variables
(EVs). Arcsine transformation was applied for the percentage data, including the cloud amount and
all aspects data. Moreover, the score scaling type of this study was set to focus on RV correlations,
and RV scores were divided by standard deviations. The explanatory power of each environmental
variable was evaluated by their simple term and conditional term effects. The relative relationships
between the weather stations, NDVI, and environmental variables were demonstrated with biplot and
triplot diagrams.

Basic interpretation rules and examples for RDA biplots and triplots are listed as follows and
can be found on page 186–195 in Smilauer and Leps 2014 [75]. The arrows represent RVs and EVs,
and the symbols represent cases. All interpretations of ordination diagrams focus on the concept of
relative relationships, such as the relative distances of symbols, the relative directions of arrows, or the
relative ordering of projection points. In this study, the NDVI values from each month stood for the
RVs, the environmental variables were the EVs, and the 19 weather stations were the cases.
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‚ The arrows point in the direction of maximum increase in the value of the variable across the
diagram, and its length is proportional to this maximum rate of change.

‚ An approximate ordering of the value of one RV or EV across cases is obtained by projecting the
case points perpendicular to the RV or EV arrow.

‚ A case point projecting onto the origin of the coordinate system (perpendicular to an RV or EV
arrow) is predicted to have an average value of the corresponding variable. The cases projecting
further from zero in the direction of the arrow are predicted to have above-average values, and
the case points projecting in the opposite direction are predicted to have below-average values.

‚ The relative directions of arrows approximate the linear correlation coefficients among the
variables. If an EV arrow points in a similar direction to an RV arrow, the values of that RV
are predicted to be positively correlated with the EV values.

‚ The cosine of the angles between any two arrows indicates their respective relationship. If the
arrows meet nearly at a right angle, these two variables are predicted to have a low (near to
zero) correlation.

4. Results and Discussion

To evaluate the relationship between the selected environmental variables, Pearson product-
moment correlation analysis was adapted [76]. Table 1 represents the correlation matrix of all
environmental variables except the aspect variables. The positive correlation (p < 0.01) between
rain and clouds suggested that more clouds would result in more rainfall. In addition, the positively
significant correlation (p < 0.05) between elevation and the mean slope reflected the mountainous
terrain of Taiwan. Moreover, the evidence of orographic lifting effects on precipitation observed in
Taiwan with a positively significant relationship (p < 0.05) was found between rain and mean slopes.

The negative and significant correlation (p < 0.01) between elevation and temperature directly
reflected the lapse rate concept, which is defined as the decrease of atmospheric temperature caused
by an increase in altitude. The degree of the mean slope also increased as altitude increased in Taiwan,
resulting in the significantly negative correlation between the mean slope and temperature (p < 0.01).
The sunshine duration was found to be negatively correlated with rain and cloud amounts (p < 0.01),
when more clouds produced more rain, the length of sunshine duration was reduced. In addition, the
negative correlations between rain and temperature (p < 0.05) can be explained by physical science:
dry conditions favor more sunshine and less evaporative cooling, whereas wet summers are cool [77].

Table 1. Correlation matrix of environmental variables.

Temperature Precipitation Cloud
Amount

Sunshine
Duration Elevation Population

Density
Mean
Slope

Temperature 1
Precipitation ´0.489 * 1

Cloud amount ´0.003 0.620 ** 1
Sunshine duration 0.178 ´0.747 ** ´0.935 ** 1

Elevation ´0.964 ** 0.343 ´0.149 ´0.037 1
Population density 0.352 ´0.188 ´0.056 0.036 ´0.331 1

Mean slope ´0.864 ** 0.570 * 0.049 ´0.188 0.840 ** ´0.454 1

* Correlation is significant at the 0.05 level (2-tailed). ** Correlation is significant at the 0.01 level (2-tailed).

4.1. HCA

HCA coefficients indicating the distance between two clusters joined at each stage can objectively
determine the final number of clusters. A large increase of the HCA coefficient values indicates joining
clusters being less homogeneous so to terminate the merging process. From the result of HCA in
Figure 4, the largest increase in the coefficients is observed between stages 17 and 18, therefore, stage 17
would be the most appropriate stage for terminating the merging process. By deducing the value 17
from the total number of stations, 19, the final cluster number is two. As a result, NDVI patterns in
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Taiwan can be categorized into two groups spatially (Figure 5). Group 1 comprises weather stations
located in the northern, central, and eastern part of Taiwan, whereas Group 2 comprises stations
located in the western, southern, and one station from the northeastern Taiwan (Yilan).Remote Sens. 2016, 8, 290 8 of 19 
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In terms of land cover types (Figure 5), Group 1 comprises 7 stations with forest types, 3 stations
with urban types, and 2 stations with cultivated land types. Group 2 constitutes 4 stations with
urban types and 2 stations with cultivated land types. The different composition of land cover types
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within each group provides possible explanation to the revealed NDVI values. Group 1 stations have
higher average NDVI values than Group 2 stations (Table 2, 0.70 and 0.46, respectively). The stations
located in the CMR area in Group 1 (Yushan, Alishan, and Sun Moon Lake) reveal high average
NDVI values ranging from 0.73 to 0.78 (Figure 3). Land development in the CMR area is restricted
by law in Taiwan so that vegetation in this area maintains its natural condition. In addition, the
relatively high altitude, steep slopes, and low temperatures make these stations inaccessible for large
populations, and thus result in low human intervention so to yield high NDVI. The stations located in
the eastern part of Taiwan in Group 1 (Dawu, Taitung, Hualien, and Su’ao) also reveal high average
NDVI values ranging from 0.67 to 0.84 (Figure 3). Due to blocking effects of the CMR and limited
lowland areas, human development in the eastern part of Taiwan is slower than the western part
so to result in less human disturbance, less infrastructure development, and less land use changes,
which would exert less impact on vegetation and may yield high NDVI. Furthermore, this study
adopted the latest census on a township/district basis depending on where each station is located
due to unavailable population density for all NDVI cells. Group 1 constitutes one densely populated
station in Zhongzheng district (21,478 people/km2) in Taipei city and several sparsely populated sites
in mountainous area, such as Yushan (12 people/km2) and Alishan (13 people/km2). Taipei weather
station locates in a restricted district within 300 m nearby the President Hall of Taiwan so that the
NDVI cell containing Taipei weather station has a great reason to maintain a relatively high NDVI
than other urban areas within Zhongzheng district. Since the population density of Zhongzheng
district cannot represent the population density of Taipei weather station neighborhood, the averaged
population density of Group 1 was obtained as 1796.98 people/km2 by excluding Taipei station.

Table 2. HCA clusters with corresponding average value and standard deviation (provided in
parenthesis) for each variable.

Variable Group 1 Group 2

NDVI 0.70 (0.06) 0.46 (0.08)
Temperature (degree C) 20.68 (4.31) 23.59 (0.89)

Precipitation (mm) 7.51 (2.23) 5.16 (1.22)
Cloud amount (%) 69.83 (7.05) 59.81 (7.92)

Sunshine duration (hour) 133.03 (26.76) 165.60 (22.55)
Elevation (m) 680.38 (1132.47) 32.15 (26.78)

Population density (people/km2) 1796.98 (1867.16) * 9243.00 (6373.49)
Mean slope (degree) 13.06 (10.03) 2.90 (0.89)

Flat (%) 4.55 (3.81) 8.80 (3.84)
North (%) 12.37 (3.14) 8.74 (2.38)

Northeast (%) 12.37 (3.14) 10.72 (3.27)
East (%) 10.93 (4.35) 10.83 (3.43)

Southeast (%) 11.35 (4.93) 12.58 (3.34)
South (%) 12.19 (3.75) 14.04 (2.73)

Southwest (%) 11.72 (3.56) 13.95 (2.39)
West (%) 11.84 (4.14) 14.39 (3.33)

Northwest (%) 12.68 (4.11) 13.67 (2.59)

* Taipei weather station was excluded from the calculation of population density for Group 1.

According to Taiwan’s history, human immigrated into lowlands and forests were gradually
cleared for human settlements [78]. Most of Group 2 stations locate in the western and southern
lowlands of Taiwan (average elevation 32 m) where are easily accessible for human settlements since
the 17th century and nowadays are occupied by approximately 95% of the island’s population [79].
Furthermore, the average population density of Group 2 stations (9243 people/km2) is much higher
than Group 1 (1796.98 people/km2). It is reasonable to assume that human population with
accompanying human activities, such as land clearing, agricultural practices, industrialization, and
urbanization processes, result in a massive landscape modification and a negative effect on vegetation
so to yield low NDVI values. Overall, the result of HCA implies that the level of anthropogenic activity
plays an important role in controlling the variation of NDVI in Taiwan.
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From the annual average NDVI time series (Figure 6a), Group 1 shows a slight increasing tendency
whereas Group 2 expresses a slight decreasing tendency. In addition, both groups illustrate increasing
temperature trends over the period 1982–2012 (Figure 6b). The total precipitation for both groups
represents fluctuated patterns with no discernable trends (Figure 6c). Although these tendencies were
not very strong in terms of low R2 values, the trajectories are extremely critical while facing future
climate change. In a recent study of tropical mountain regions, Krishnaswamy et al. (2014) [25] found
mild greening trends followed by browning trends around the mid-1990s. They also observed strong
associations between vegetation with increasing temperature and temperature-induced moisture
stress from their study period of 1982–2006. In the present study, Group 1 comprising stations
with high altitude possesses a slight increasing tendency from 1982 to early 1990s (Figure 6d) and
a noticeable decreasing tendency from 1991 to 1994 and 1994 to 2006 (Figure 6e,f) that agrees well
with Krishnaswamy et al. (2014) [25]. Therefore, it is reasonable to assume that the observed rising
temperature plays an important role in vegetation trends for Group 1. Furthermore, based on a
century of precipitation data, Chen et al. (2009) [80] found the incidence of meteorological drought has
increased in the central and southern Taiwan. Because water is naturally associated with vegetation
state and cover, the increasing incidence of meteorological droughts would negatively correlate with
NDVI [81]. Therefore, the decreasing NDVI tendency found in Group 2 may associate with the
increasing incidence of meteorological droughts. In short, both groups illustrate significant influence
of climate variability.

The scatterplots of NDVI, temperature, and precipitation for each group are shown in Figure 7a–d.
None of the scatterplots show significant correlations. However, both temperature and precipitation
illustrate positive associations with NDVI for Group 1 and negative associations for Group 2. This
may imply that these two groups respond to temperature and precipitation differently.
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4.2. RDA

In addition to climatic factors represented by temperature and precipitation, other environmental
variables, including cloud amounts, sunshine duration, elevation, mean slope, aspects, and population



Remote Sens. 2016, 8, 290 12 of 20

density, were explored to explain the NDVI variations in the last three decades. The variance in NDVI
values explained by the environmental variables was fairly high, as indicated by the eigenvalues
obtained from the first two canonical axes in the RDA ordinations (Figure 8). In a direct ordination
with the RDA, the first axis (RDA Axis 1) and the second axis (RDA Axis 2) explained 90.06% of the
variation in NDVI values. For each month’s NDVI variations (Table 3), Axis 1 explained over 80% of
the NDVI variation. With all axes together, more than 96% of the NDVI variations could be explained.
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In Figure 8a, the length of May’s NDVI was the shortest, indicating that May’s NDVI had the
smallest standard deviation. Furthermore, the angles between each month’s NDVIs were less than
90 degrees, which indicated that each month’s NDVIs were positively correlated. An approximate
NDVI value for each weather station could be inferred by projecting the station points perpendicularly
onto the NDVI arrow. By comparing the perpendicular projections of weather stations 1 and 3 onto the
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line overlaying the arrow for December’s NDVI, we deduced that the NDVI value in Yushan (0.86)
was higher than that of Sun Moon Lake (0.81) in December. Furthermore, weather stations 4 and 5
(Anbu and Zhusihu) located closer to the coordinate origin indicates that their December’s NDVI
values were closer to the average of NDVI value in December of all 19 stations. The angle between
rain and sunshine duration was larger than 90 degrees and indicated a negative correlation between
these two variables (Figure 8b). Likewise, a positive correlation between the mean slope and elevation
could be discerned from the in-between small angle (Figure 8b).

Table 3. Cumulative fraction of variation in individual monthly NDVI explained by the first, the first
two, and all RDA axes.

NDVI Axis 1 Axis 1 and 2 Total

January 84.37 95.39 97.06
February 87.75 96.60 97.16

March 86.10 93.86 98.36
April 93.05 93.33 99.48
May 70.01 75.27 97.76
June 68.86 91.68 96.65
July 79.79 84.39 93.07

August 79.46 86.39 92.78
September 79.54 88.33 92.39

October 85.97 86.41 97.28
November 90.97 94.08 96.79
December 85.89 94.99 95.74
Average 82.65 90.06 96.21

Figure 8c is a triplot presenting the overall relationship among weather stations, NDVIs, and
environmental variables. The correlation between each month’s NDVI and environmental variables
can be depicted from the cosine of the angle between them. For instance, population density and
sunshine duration showed a negative correlation with NDVI (the cosine of the angle being larger
than 90 degrees), whereas rainfall, cloud amount, the mean slope, and elevation displayed positive
relationships with NDVI (the cosine of the angles being smaller than 90 degrees). The effects of each
environmental variable on weather station clusters can be inferred from Figure 8d. The NDVI values
are generally higher for Group 1 than for Group 2 stations. The values for mean slope, elevation,
rain, and cloud amounts are higher in Group 1 stations. For Group 2 stations, the population density,
sunshine duration, and temperature are higher. Focusing on the characteristics of aspect, Group 1
stations have higher percentages in north- and northeast-facing slopes, whereas Group 2 stations show
higher percentages in west-facing, southwest-facing, and flat slopes.

Table 4 summarizes the explanatory power of all variables to the NDVI variations, which were
evaluated by their simple and conditional term effects. The simple term effect is the amount of
variability in the response data that could be explained by a constrained ordination model using that
variable as the only EV. Hence, the conditional term effect of the variable tested is dependent on the
variables already being selected and the size and significance is influenced by previously selected
variables. The explanatory power of each variable needs to be interpreted with caution and discussed
as follows.

The mean slope had the highest explanatory power (34.4%, p < 0.01) in both simple and conditional
term effects, which may be explained by the inverse relationship between mean slopes and human
disturbances (Table 4). As the lowland areas of Taiwan have been developed and urbanized, most
of the pristine forests have been eliminated, whereas the steeper slope areas may have maintained
their original habitats. Thus, the NDVI increases with the slope. Moreover, the population and flat
aspect represent a certain level of human disturbance. The explanatory power of the flat aspect and the
population density to the NDVI was 30.2% (p < 0.01) and 17.7% (p < 0.10), respectively, thus, the level
of human disturbance played a key role in determining the NDVI (see Table 4). In addition, southwest-,
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west-, and southeast-facing slopes were significant contributors in terms of the explanatory power
of southwest- and west with 25.1% and 21.7% for their simple term effect (p < 0.05), respectively,
and 10.1% of southeast for its conditional term effect (p < 0.05). The effect from these aspects can be
explained by the received amount of solar radiation and climate phenomena, such as monsoon systems
with the effects on local microclimate, microenvironment, and corresponding local phenology [82,83].

Table 4. Explanatory power of each environmental variable to the NDVI variations.

Simple Term Effect Conditional Term Effect

Name of variable Explains % Explains %
Mean Slope 34.4 *** 34.4 ***

F 30.2 *** 1.3
SW 25.1 ** 0.7
W 21.7 ** 27.4 ***

Temperature 18 * 6.6
Population density 17.7 * 1.4

Rain 16.3 * 1.1
Elevation 14.2 0.4

N 14.1 1.6
Cloud amount 12.4 1.6

Sunshine duration 10.1 2.7
NW 7.2 1.1

S 5 2.7
NE 3.6 1
E 3.2 2.2

SE 2.6 10.1 **

*** p < 0.01; ** p < 0.05; * p < 0.10.

In the present study, temperature had an 18% explanatory power (p < 0.10) in its simple term effect
(Table 4). Under the global warming trend [84], Hsu and Chen (2002) [85] estimated that the mean
temperatures near Taiwan will likely increase between 0.9 and 2.7 ˝C relative to the 1961–1990 average.
Additionally, Guan et al. (2009) [86] predicted the monthly mean temperatures for the mountain
regions in the central and southern of Taiwan could be more vulnerable to future winter temperature
increases than the northern region because of the chilling requirements of plant species. In this study,
Group 1 stations located in the CMR area were expected to experience a more pronounced change
because the vegetation status of those stations was relatively undisturbed by human activities and the
response of vegetation would reveal relatively pure influences from climate variability. Biologically,
some plant species need a minimum period of cold weather to ensure that vernalization occurs,
a strong warming of winter temperatures could slow the fulfillment of chilling requirements and
thus postpone spring phenology [87]. Because the mountain systems in Taiwan harbor high levels
of biodiversity and are often rich in endemic species, the changes in temperature are expected to
represent a significant threat to the plant diversity of Taiwan [41]. Group 1 stations in Northern Taiwan
would need further investigation because the evidence shows that Northern Taiwan exhibited an
increase in annual rainfall [88] and a decrease in meteorological droughts [80]. This increasing trend of
precipitation can be associated with other weather phenomena such as monsoon systems [89], and
could be exaggerated by the topographic effect of Taiwan’s lofty terrain [90]. Group 2 stations, located
in the western, central, and southern parts of Taiwan, may reflect part of the vegetation responses of
common paddy fields. Yu et al. (2002) [91] revealed that evapotranspiration will be greatly influenced
by temperature and relative humidity and would pose additional stress on agricultural water demand
and associated primary productivity in Taiwan. However, further information on the detailed plant
species in each group is needed to distinguish highly temperature-responsive vegetation, this is out of
the scope of this research.
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Besides temperature, precipitation had a 16.3% explanatory power (p < 0.10) in its simple term
effect (Table 4). Because several studies delineated a drier future of the earth [92,93], many scholars
declared that Taiwan is experiencing a more variable precipitation pattern. Shiu et al. (2009) [94], using
45 years (1961–2005) of hourly meteorological data in Taiwan, found a reduction in light precipitation
and an increase in heavy precipitation. Another study conducted by Tu and Chou (2013) [95] also
found a pattern of decreased lighter rain corresponding with an increase in heavier rain. Moreover,
Chu et al. (2014) [96] observed an upward trend in precipitation intensity during the typhoon season
in Taiwan contributed by the increased precipitation induced by typhoon and monsoon systems.
Chu et al. (2014) [96] also noticed longer drought durations in Southern Taiwan, in agreement with
Yu et al. (2002) [91]. In the present study, stations in Group 2 received relatively lower amounts
of precipitation, whereas stations in Group 1 received more rain. With an increasing variability in
precipitation, the influence on the NDVI is expected to be varied depending on direct effects such as
typhoons, extreme drought, and extreme rainfall events, and indirect effects such as rainfall-induced
landslides. For instance, the severe drought in 2002–2004 directly caused an island-wide water
shortage that resulted in tremendous impacts on agriculture and primary productivity in Central and
Southern Taiwan (Group 2), where major agricultural activities take place [78,97]. As such, establishing
adaptation strategy based on the characteristics of these two groups with consideration of climate
variability effects is crucial to effectively tackle climate change challenges.

5. Conclusions

In this study, we derived the NDVI value and relevant environmental variables for 19 weather
stations in Taiwan for the period of 1982–2012, to address three questions.

What is the spatial characteristic of the NDVI value in Taiwan? As shown in the results of HCA,
the spatial characteristics of the NDVI in Taiwan can be delineated into two groups. Spatially,
Group 1 comprises weather stations located in the northern, central, and eastern part of Taiwan,
whereas Group 2 comprises stations located in the western, southern, and one station from the
northeastern Taiwan (Yilan). Group 1 stations have higher NDVI values than Group 2. Additionally,
stations in Group 1 have higher values in elevation and mean slope, and lower values in temperature.
Stations in Group 2 were characterized by relatively high values in temperature, sunshine duration,
and population density, and relatively low values in cloud amounts, rain, elevation, and mean
slope. Generally, Group 1 stands out as stations remaining their natural status with relatively less
human disturbances, whereas Group 2 appears high level of human development. These two groups
clearly represent two distinct vegetation characteristics of Taiwan, which suggests that the level of
anthropogenic activity plays an important role in controlling the variation of NDVI in Taiwan.

What environmental variables control the spatial characteristics of NDVI values? Over 96% of the
NDVI variations could be efficiently explained by the selected environmental variables based on
the RDA results. Statistically significant controlling variables include climatic factors-temperature
and precipitation, orographic factors-mean slope and aspects, and anthropogenic factor-population
density. Temperature and precipitation would be obviously direct link to the nature of vegetation
growth. The aspects of southwest-, west-, and southeast-facing slopes could be related to effects of the
amount of solar radiation and climate phenomena such as monsoon systems on local microclimate,
microenvironment, and corresponding local phenology. Population density, mean slope, and flat slope
may associate with human disturbances and routine agricultural activities.

What are the current vulnerabilities and future climate risks in Taiwan? Group 1 shows a slight
increasing NDVI tendency whereas Group 2 expresses a slight decreasing NDVI tendency. Both
groups illustrate increasing temperature trends over the period 1982–2012. The NDVI tendencies
and warming trends correspond well to relevant studies [25,80], suggesting significant climate
variability influence can be found in both groups. With a projected rising temperature and variable
precipitation [48], the estimated larger amplitudes in temperature and precipitation are expected
to threaten the ecosystems and water resources in Taiwan. Weather stations in the CMR region of
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Group 1 may experience a more pronounced alteration because their relatively undisturbed natural
environments would reveal purer responses to natural climate change. Group 1 stations in Northern
Taiwan are expected to receive more rain in the future, thus, the interactions among precipitation,
topographic effects, and other weather phenomena such as monsoon systems must be considered
simultaneously. Group 2 stations corresponding to the major agricultural areas in Central and Southern
Taiwan are expected to face challenges of water shortage due to rising temperature and variable
precipitation. Because of water shortage are naturally associated with vegetation state and cover,
declined water availability would impact healthy vegetation and yield low NDVI with associated
primary productivity.

In summary, two groups were identified in terms of their different long term NDVI patterns,
spatial characteristics, significant controlling environmental variables, and possible vulnerabilities
with future climate risks. Overall, the present study contributed a valuable detailed assessment on
the vegetation trends of Taiwan. On the basis of this assessment, the current vulnerability and future
climate risks for Taiwan can now be estimated, evaluated, and considered in policy making and spatial
planning processes by national, regional, and local agencies. Therefore, proper, effective, and efficient
adaptation strategies can be implemented to tackle the emerging large-scale threats that climate change
poses to people’s lives and livelihoods in Taiwan.
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