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Abstract: Traditional on-site methods for mapping and monitoring surface water extent are
prohibitively expensive at a national scale within Canada. Despite successful cost-sharing programs
between the provinces and the federal government, an extensive number of water features within
the country remain unmonitored. Particularly difficult to monitor are the potholes in the Canadian
Prairie region, most of which are ephemeral in nature and represent a discontinuous flow that
influences water pathways, runoff response, flooding and local weather. Radarsat-2 and the
Radarsat Constellation Mission (RCM) offer unique capabilities to map the extent of water bodies
at a national scale, including unmonitored sites, and leverage the current infrastructure of the
Meteorological Service of Canada to monitor water information in remote regions. An analysis of
the technical requirements of the Radarsat-2 beam mode, polarization and resolution is presented. A
threshold-based procedure to map locations of non-vegetated water bodies after the ice break-up
is used and complemented with a texture-based indicator to capture the most homogeneous water
areas and automatically delineate their extents. Some strategies to cope with the radiometric artifacts
of noise inherent to Synthetic Aperture Radar (SAR) images are also discussed. Our results show that
Radarsat-2 Fine mode can capture 88% of the total water area in a fully automated way. This
will greatly improve current operational procedures for surface water monitoring information
and impact a number of applications including weather forecasting, hydrological modeling, and
drought/flood predictions.

Keywords: hydrological modeling; water mapping; wetlands; flooding; SAR; Radarsat-2;
RCM; potholes

1. Introduction

The National Hydrological Service (NHS) of Environment and Climate Change Canada is the
national agency responsible for the collection, interpretation and dissemination of standardized data
on water resources and information in Canada. Currently NHS’s primary mechanism to collect and
process data is by means of approximately 2100 active gauging stations that are employed to measure
lake level or river stage used to calculate water discharge. This system has been in place for over
100 years, and although valuable, provides only a limited picture of water resources within Canada.
As a part of the Government of Canada’s strategy to leverage earth observation technology to further
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broaden the amount and value of environmental data and products [1], the NHS is working with the
Canadian Space Agency on the development of technology and methods based on satellite imagery
for water monitoring [2].

Water monitoring using Synthetic Aperture Radar (SAR) has been the object of study for many
researchers [3–19]. Due to its all-weather capabilities, and its image acquisition capacity during day or
night or in cloudy conditions, SAR imagery offers better alternatives for water mapping than optical
imagery [5]. As a result of the radar’s unique response to water, water mapping using intensity
thresholding methods on SAR image had been extensively used [4–7,20,21]. In this method, water
is separated from land in intensity images, but the accuracy of the results relies on the ability to
differentiate land vs. water pixels in the intensity domain, which becomes especially difficult when
the water backscatter is affected by wind-induced roughness. Since the values of backscatter vary
depending on the incidence angle, image quality and wind-induced roughness, the threshold needs to
be modified on a scene per scene basis [4–6]. In some other instances, image thresholding is combined
with texture information [7] or region-growing segmentation algorithms used to determine the water
pixels [14,16,21,22]. Segmentation algorithms are quite successful but computationally expensive. In
many cases, statistical information is combined with digital elevation models [8,14,16], where pixels
likely to contain water are first determined based on topographic data and the probability of water
is based on histograms of water vs. land pixels in the image, but this requires a coarse water mask
to determine the statistics of water pixels. This dependence on a pre-determined water mask and
high-resolution digital elevation models makes these methods unusable for mapping small ephemeral
water bodies. More recently, active contour algorithms, also called snakes [23], have been applied
with some success for water mapping from radar images [17,22]. These algorithms, however, rely on
ancillary data to determine candidate pixels for water as well as on morphological operators, which
results in longer processing times.

This paper presents a novel threshold-based algorithm for automated water mapping based
on Radarsat-2, which does not require ancillary data or a priori knowledge of the response of water
bodies in each scene. It has been developed in such way that it will be transferable to the Radarsat
Constellation Mission (RCM) upon launch. The RCM will consist of three satellites that will provide
daily worldwide coverage in lower resolution modes. The constellation will have a revisit period
of 4 days, nominal resolution going from 3 m in very high resolution mode to 100 m in ScanSAR
mode, and swaths ranging from 20 to 500 km. The system will provide imagery in single, dual and
compact polarimetry modes and is expected to deliver 300,000 scenes per year [24]. RCM is owned
and will be operated by the Government of Canada and will provide Earth Observation radar data
continuity for Canada to fulfill the government priorities in maritime surveillance, disaster and natural
resources management [25]. A combination of a thresholding technique with a texture indicator has
been applied in a fully automated way on 82 Radarsat-2 images over the Canadian Prairies, to produce
polygons delineating ephemeral water bodies (potholes) as well as permanent open water, which will
be integrated into the Canadian Land Data Assimilation System (CaLDAS) [26], to improve numerical
weather prediction [27]. The results were evaluated using nearly synchronous high resolution optical
imagery for three areas of interest in the study site.

2. Materials

2.1. Study Area and Data

Two study areas in the Canadian Prairies were established based on the temporal and spatial
variability of open water in this region. The region has been affected by severe flooding after snowmelt,
which will benefit from better land surface information for numerical weather prediction. The first
study area is 494 km north to south stretching from Edmonton, Alberta, to the US/Canada border and
is approximately 265 km wide. The second study area, over Saskatoon, Saskatchewan is approximately
150 km wide by 200 km north to south (Figure 1). Both areas are characterized by low relief, with
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elevations varying from 502 to 940 meters above sea level. Normal summer temperatures range from
12 to 27 degrees Celsius with winter temperatures remaining well below freezing. This region has the
highest number of sunny days in Canada (2300 h of sunshine per year), an average annual precipitation
of 450 mm and is primarily covered by grasslands and cropland. This area consists of numerous small
potholes (also called sloughs) and is considered one of the largest wetland complexes in the world [28],
supporting around 60% of the North American breeding bird populations of several species [29].
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Figure 1. Study area: (a) Location of the study area in Canada (red square); (b) Areas of interest over
Alberta and Saskatchewan (red polygons), radar image footprints (gray lines) and optical data (orange
polygons) used for accuracy assessment. Numbers on the orange rectangles indicate the location of
each of the three optical-SAR image pairs used for accuracy assessment, described in Section 4.

The Prairie potholes are glaciated depressions that store fresh water for which direct precipitation
and spring runoff from snowmelt are the major sources of water supply [30]. Their water
balance is influenced by redistribution of snow by wind from adjacent upland areas, precipitation,
evapotranspiration, snowmelt runoff, groundwater exchange and soil type. Prairie potholes range in
size from 1 m2 to 100 km2 and are also a significant storage of water that otherwise can oversaturate
the soil during storm events [30]. Given the complexity of their vegetation structure, the minimum
mapping unit identified for this project is defined as all open water features that are non-vegetated
(or contain less than 15% vegetation areal cover) and are 1 ha or larger. This includes non-vegetated
potholes, rivers and lakes.

2.2. Water Extents Dynamics of Prairie Potholes

Due to their dynamics and location, potholes are ephemeral and difficult to survey. Currently,
there has not been a characterization of the potholes’ size in the Canadian prairie region, and their
physiological characteristics can vary significantly [31]. To get an idea of the spatial and temporal
frequency required for water mapping, a time series analysis was conducted in our study area in
Alberta. An area of 50 km by 100 km over the town of Olds, north of Calgary was selected and visually
inspected using cloud-free orthorectified (and pan-sharpened) Landsat imagery acquired biweekly
between May 2005 and October 2014 and available from the U.S. Geological Survey. This exploratory
analysis on the pothole dynamics showed that:

‚ Potholes change very rapidly, especially in early spring (from May to beginning of June), then they
become more stable—i.e., the aerial extent of open water does not change significantly afterwards.

‚ The size of a pothole is not linked to its stability: inter-annual analysis showed that although
the smaller potholes tend to disappear more rapidly (or become fully vegetated), large ones also
could disappear (or be completely covered by vegetation) in less than 2 weeks.
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‚ They have predictable locations. Over a 14 year period, potholes change the amount of water
stored (they could shrink or expand) but for the most part, they’re always in the same location.

This inspection helped us define the temporal scale of our image acquisition. Based on this
analysis it was determined that imagery needs to be acquired in a period shorter than two weeks at the
beginning of the season but the acquisitions can be switched to monthly from July through October
without significant risk of changes.

2.3. Image Acquisition and Parameters

Surface water has been mapped from SAR in an operational way by the Emergency Geomatics
Services of the Canada Centre for Mapping and Earth Observation (CCMEO) since 2006 during
flooding events [5]. Based on their experience, the use of a beam mode with fine resolution and wide
extent could offer the best trade-off between coverage and detail for water mapping. Eighty-two (82)
Radasat-2 Wide Fine mode images with a nominal resolution cell size of 80 m and extents ranging
from 100 km to 170 km were acquired bi-weekly over our study areas from May through October, 2014.
Subsets of cloud-free pan-sharpened Landsat images were acquired on the same date (˘1 day) and
were used to help on the visual interpretation of water features in the SAR image and to define the
temporal and spatial dynamics of open water features in the study area, as described in Section 2.2. For
accuracy assessment, concurrent, orthorectified, pan-sharpened and cloud-free WorldView-2 imagery
was used. To evaluate accuracy of the method at different scales, Fine Quad imagery acquired in 2012
was obtained and compared to a 5 m RapidEye Level 3A of the same day.

Radarsat-2 imagery can capture data in four polarizations: horizontal transmit, horizontal receive
(HH); horizontal transmit, vertical receive (HV); vertical transmit, horizontal receive (VH); and vertical
transmit, vertical receive (VV). Modes that have large extents (beyond 70 km) are available in one
or two polarizations (HH and HV or VV and VH), due to the storage and downlink capacity of the
satellite, while smaller swaths can provide all four polarizations. Previous studies [5,20] had shown
that HH is the preferred polarization for mapping flooded vegetation, because it maximizes canopy
penetration and enhances the contrast between forest and flooded vegetation. Also, HH has lower
backscatter over rough open water (roughness induced by wind) than VV, and therefore is better
to map open water under windy conditions. Noise limits the use of HV or VH, because water has
lower radar-cross section in cross polarization than in co-polarized channels (HH or VV). Given this
background, we chose a single-look complex dual-polarized Radarsat-2 image in Wide Fine mode
with HH and HV polarizations to initiate our experiments.

3. Methods

The main processing steps of the method are illustrated in Figure 2 and are fully described in the
following sub-sections.

3.1. Image Preparation

Calibration of backscatter values is necessary to enable comparison of radar images acquired in
different conditions [32]. Calibration of Radarsat-2 is applied using the information from the scene.
The images were ordered from the Canadian Space Agency (CSA) with constant beta look-up table
applied, and were converted to sigma-nought values based on the image’s ancillary information. An
intensity-based Enhanced Lee filtering [33] and a polarimetric Lee filtering of 5 ˆ 5 pixels were applied
to the images and compared. The Enhanced Lee filter was considered more appropriate to do this
comparison than any other intensity-based filter because it divides the image into areas of three classes:
homogeneous areas, such as the central area of open water bodies, where the speckle is eliminated
with an average (low pass) filter; heterogeneous areas (e.g., land-water edges) on which an adaptive
kernel is used; and areas containing isolated point targets (e.g., very small potholes), where the pixel
value is preserved.
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the rational polynomial coefficients available with the image [36] and a 1:50,000 Digital Elevation 
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Center for Remote Sensing [38] and implemented in PCI Geomatics®. For the prairie region, with low 
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Figure 3. Accuracy of automatic geometric correction using only ancillary data from Radarsat-2 in 
low terrain: (a) Wide Fine mode image over Saskatoon; (b) Wide Fine mode image over Saskatoon 
with overlaid roads at 1:10,000. 

Figure 2. High-level workflow of the proposed water-mapping procedure consisting of geometric
correction followed by novel threshold-based filtering and topological intersections. A quality
assurance (QA) step should take place on the orthorectified imagery and on the final water polygons.

Unlike intensity-based filters, polarimetric filters use the intensity and phase information, hence
capturing more dark water pixels and reducing the amount of false positives [34]. Then, the calibrated
intensity values in the image are converted to physical units, decibels. The conversion to decibels
increases the image contrast and minimizes the noise as well as sets all the images in the same physical
units—so that a unique value or unique range of values can be used on multiple scenes. Once the
image has been filtered and converted to physical units, a geometric correction process is applied.

All SAR images were orthorectified using a 3D rigorous geometric model [35] computed using the
rational polynomial coefficients available with the image [36] and a 1:50,000 Digital Elevation model
from the Canadian Digital Elevation Data (CDED) dataset [37]. The geometric correction algorithm
uses the hybrid model for geometric processing of Radarsat-2 developed at the Canadian Center for
Remote Sensing [38] and implemented in PCI Geomatics®. For the prairie region, with low topographic
relief, the model provides sub-pixel positioning (mean Root Mean Square Error, RMSE = 0.35), when
compared to roads at 1:10,000 scale from the National Road Network [39]—see Figure 3.
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For areas of moderate to high relief, the collection of Ground Control Points (GCP) will be
necessary to correct for relief displacement and a quality assurance (QA) step should take place to
inspect the point accuracy and distribution as well as the overall RMSE prior to proceeding with the
automatic tie point collection, orthorectification and mosaicking of scenes of the same swath.

3.2. Thresholding

Thresholding techniques on SAR image for water mapping had been covered at length in the
literature [4–7,20,21]. In its most simplistic form, thresholding consists of establishing a value below or
equal to which pixel values are selected. Unlike thresholding methods that depend on manual user
intervention, the thresholding method presented here is less computationally intense and requires
no user interaction. To avoid changing the threshold value for each scene depending on the wind
speed or image viewing geometry, thresholding here is done in two steps. First, a low threshold has
been pre-determined based on visual inspection of the lowest return of open calm water for each beam
mode. This threshold is fixed for all the scenes in each run, but may differ for each beam mode because
water has the lowest return of all the pixels in the image and this value changes depending on the
noise level of each specific beam mode [40]. The pixels selected in this step constitute the “seed mask”.
Since the backscatter and noise change depending on the incidence angle [6], especially for images
with wide extents, this seeding threshold is also modified based on the incidence angle value at every
pixel, using an incidence angle raster created for each scene. This concurs with the work of other
researchers on water mapping from SAR imagery [6,11,20]. For instance, Sokol et al. [11] found that a
large decrease in C-HH backscatter occurs as the incidence angles increases and backscatter values
from beam modes S1 to S7 (20˝–49˝) correspond to an average difference of 7 decibels.

In a second step, a more permissive threshold is used to create an “extended” mask based
on a texture indicator (namely energy [41]), which is computed for each image channel (co and
cross-polarized channels). In order to cope with wind-induced water roughness in either HH or
HV, the highest value of this indicator is selected for each pixel. This texture indicator provides a
measure of homogeneity of the signal by comparing the mean to the standard deviation of all the
pixels in a 13 ˆ 13 window [41]: the more homogeneous the section of the image is, the higher its value.
Edges are regarded as boundaries between image objects and they are located where major changes
in Digital Number (DN) values occur. This division of the image into a set of homogenous regions
is the baseline concept of image segmentation, which has been widely used for object recognition
from imagery [42,43]. Image segmentation algorithms can be region growing or edge detectors
(among others). Edge detectors are the basis for active contour models (also called snakes), an object
recognition technique that has been successfully used for SAR imagery to detect land-water boundaries
in a semi-automated way [17,22]. In this technique, the energy in a moving window of group of pixels
is minimized until the edge is found. Our extended mask uses the same concept: it compares the pixel
values using local statistics in a window, to find the areas with the highest homogeneity.

The threshold defined to select the most homogeneous pixels in the image is based on the statistics
of the highest value of this texture indicator for each pixel in the co-polarized and cross-polarized
channels. The texture parameter is computed in both channels (HH and HV) in order to avoid a
negative contribution of the lower signal-to-noise ratio in cross-polarized channels (HV). The statistics
of the channel holding the highest (i.e., most homogeneous) value of this texture indicator are computed
and if a pixel is higher than the mean plus two standard deviations (chosen through experimental error)
the pixel is considered very homogenous. This standard deviation multiplier could be adjusted to any
number between 1 and 2, depending on the Noise Equivalent Sigma Zero (NESZ) of the employed
beam mode and of the homogeneity of the surface water bodies (severely affected by roughness under
windy conditions). Pixels meeting this criterion constitute the “extended mask”. Figure 4 shows the
logic used for thresholding.
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Land Data Assimilation System (CaLDAS).

3.3. Topological Intersection

A mode filter is applied to eliminate granularity of the extended mask (in a 7 by 7 kernel) and
reduce the seed mask’s false positives (in a 3 by 3 kernel). This is a particularly useful filter in
classification procedures to eliminate noisy pixels, because each pixel value is replaced by its most
common neighbor. The filter size on the seed mask is smaller than the one applied on the extended
mask, because the seed pixels are always fewer and more clustered than the pixels in the extended
mask. Both masks are then converted to polygons and exported to a GIS package, where the polygons
are intersected using spatial criteria: if a polygon from the extended mask intersects a polygon from
the seed mask, the extended polygon is considered water—see Figure 5. Polygons resulting from
this intersection are aggregated based on a minimum area criteria and are visually inspected for
dissemination to the weather networks.
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4. Results

Radarsat-2 derived polygons were evaluated against water polygons derived from cloud-free,
temporally coincident high-resolution optical imagery over three areas of interest (AOIs) in Alberta,
selected based on the availability of the imagery and landscape characteristics.

Due to the difficulty of accessing potholes’ areas and their ephemeral nature, concurrent optical
imagery with sub-meter spatial resolution was used whenever available. If this type of imagery was
not available, then optical imagery with a pixel size comparable to the SAR image was employed.
Although the evaluation against imagery instead of ground surveys is recognized as being limited to
some degree, this was considered an appropriate proxy for an expensive field campaign that did not
align well with the priorities of the Radarsat-2 acquisition plan.

In order to assess the veracity of the method to map surface water with different conditions, the
three pairs of concurrent optical-SAR image were chosen because they represent a variety of conditions
in which non-forested surface water areas can be found: open water, water with some vegetation and
areas of very small (<1 ha) closed drainage flows, commonly found in the agricultural landscape of the
Canadian Prairie region. The radar/optical image pairs were:
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‚ Pair 1: WV2 and F0W3 (0.5 m and 8 m resolution respectively). Surface water polygons were
derived from a cloud-free orthorectified and pan-sharpened WorldView2 (WV2) image taken
on 12 May 2014 over the east side of the city of Red Deer and with a coverage 116 km long by
20 km wide. The polygons delineating open water were produced by thresholding of the near
and short-wave infrared bands and manually edited. The resulting polygons were compared
against the ones derived from a Wide Fine (F0W3) scene taken 1 day before (i.e., 11 May 2014) and
fully containing the WorldView-2 scene. The area covered by the optical image is cropland, which
hydrological features are rivers, potholes and many shallow drainage flows that can be perceived
mainly in sub-meter optical imagery, but are still considered surface water.

‚ Pair 2: WV2 and U76: (0.5 m and 2 m resolution respectively). Another WorldView-2 image taken
on 10 May 2015 over an area 10 km west of the city of Schuler, Alberta was employed to derive
water polygons using the same thresholding and manual editing procedure described above. The
resulting polygons were compared against water polygons derived from an Ultra-Fine image
(U76) taken 6 days after. The landscape in this area is mainly characterized by flooded vegetation.

‚ Pair3: RapidEye and FQ19 (5 m and 7 m resolution respectively). A RapidEye (RE) Image from 8
September 2012 over Elk Island National Pak in Alberta was employed to derive water polygons
using thresholding and manual editing. The resulting polygons were compared against the water
polygons obtained from a fully overlapping Fine Quad image (FQ19) taken the same day. Surface
water in this area is mainly composed of open water bodies larger than 1 ha.

The minimum area, maximum area, number of shapes and cumulative area of the resulting water
polygons from the optical and SAR images were derived. To facilitate the comparison, polygons
bigger than 25 m2 were selected, their statistics were computed using 5 area intervals (represented
by the rows in the tables below) and the number of polygons as well as the contribution (expressed
as percentage) of their cumulative area to the total area was calculated for each area range. Polygons
smaller than 25 m2 were excluded as they are not perceived by Radarsat-2 operational beam modes
with repeated pass and continuous coverage. The comparison of surface water delineation based
on area intervals was motivated because missing a high number of small polygons would not be
detrimental for water quantification, as long as, together, they do not hold the biggest percentage of
surface water in a particular area. Having an area for which missed small water polygons hold the
majority of surface water will render the method or the data inappropriate for mapping ephemeral
water bodies. Tables 1–3 show the accuracy in area quantification obtained from polygons, when
surface water is mapped by manual vector editing on the optical image vs. applying our operational
procedure on the SAR images:

Table 1. Water area quantification for Pair 2: WorldView-2 vs. Ultra-Fine (U76). The numbers on
the second and third columns represent the total number of polygons in each area range, while the
numbers in brackets represent the contribution of the cumulative area in each range to total surface
water area.

Area Range WorldView2
(10 May 2014)

Radarsat-2 Ultra-Fine
(U76) (16 May 2014)

[25 m2–1000 m2) 7634 (15.8%) 636 (23.27%)
[1000 m2–1 ha) 401 (20.28%) 65 (25.69%)

[1–2 ha) 38 (10.16%) 2 (3.68%)
[2 ha–0.5 km2) 43 (53.74%) 3 (47%)

[0.5 km2–5 km2] 0 0
Total number of polygons 8116 771

Total area 5.52 km2 (100%) 0.64 km2 (100%)
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Table 2. Water area quantification for Pair 3: RapidEye-2 vs. Fine Quad (FQ19). The numbers on
the second and third columns represent the total number of polygons in each area range, while the
numbers in brackets represent the contribution of the cumulative area in each range to total surface
water area.

Area Range RapidEye L3A
(8 September 2012)

Radarsat-2 Fine Quad
(FQ19) (8 September 2012)

[25 m2–1000 m2) 5391 (3.29%) 72 1 (0.20%)
[1000 m2–1 ha) 674 (9.23%) 698 (7.85%)

[1–2 ha) 110 (5.87%) 99 (6.00%)
[2 ha–0.5 km2) 155 (35.89%) 158 (48.90%)

[0.5 km2–5 km2] 8 (45.6%) 8 (36.93%)
Total number of polygons 6336 779

Total area 26 km2 (100%) 23 km2 (100%)
1 The smallest water polygon derived from FQ19 was 62.5 m2.

Table 3. Water area quantification for Pair 1: WorldView-2 vs. Wide Fine (F0W3). The numbers on
the second and third columns represent the total number of polygons in each area interval, while the
numbers in brackets represent the contribution of the cumulative area in each range to total surface
water area.

Area Range WorldView2
(12 May 2014)

Radarsat-2 Wide Fine
(F0W3) (11 May 2014)

[25 m2–1000 m2) 86576 (15.44%) 44 1 (0.15%)
[1000 m2–1 ha) 8513 (27.26%) 266 (6.19%)

[1–2 ha) 533 (8.76%) 75 (5.80%)
[2 ha–0.5 km2) 488 (34.98%) 119 (56.45%)

[0.5–5 km2] 6 (13.55%) 3 (31.41%)
Total number of polygons 96116 507

Total area 84.825 km2 (100%) 17.68 km2 (100%)
1 The smallest water polygon detected in this Wide Fine mode scene is 147 m2.

The accuracy achieved in quantifying the area of water bodies, when compared to high-resolution
optical imagery for different beam modes, showed that:

‚ Our procedure fails to map open water bodies smaller than 1 ha when applied to Wide Fine
mode. For the first paired optical-SAR dataset evaluated (Table 3), small water bodies were mostly
missed by the algorithm. Also, the cumulative area contained in polygons smaller than 2 ha
contributed to 52% of total surface water area in this particular AOI, which explains why the
accuracy of polygons extracted from the SAR image drops significantly for this beam mode—see
Figure 6.

‚ The quantification of the area on large water features were missed from Wide Fine mode due
to fragmentation. This occurs due to discontinuity of polygons delineating water edges, when
vegetation patches occur at the edges (e.g., riparian forest)—see Figure 7. On the other hand, two
big water polygons that are seen as separate entities in the RapidEye image can be joined together
and form one in the SAR image, due to the missing separation by small low vegetation patches
(which are visible on the RapidEye image)—this changed the distribution of the area contribution
for the water polygons derived from Fine Quad between 2 ha and 0.5 km2 (Table 2).
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‚ As expected, the algorithm also fails to detect flooded vegetation: a closer look at the polygons
missed from the Ultra-Fine image vs. the polygons obtained from WolrdView 2 of the same
time period showed that many polygons were larger than 1 ha and could have been seen in the
Ultra-Fine image due its fine resolution, but were missed because of their high backscatter, which
is characteristic of vegetation—see Figure 8 and Table 1.

‚ Fine mode imagery seems to provide the best results, as it quantified 88% of the total surface
water area and picked up 97% of the total number of polygons larger than 1 ha when compared to
polygons obtained from RapidEye (Table 2).

‚ Some water polygons that are selected by the algorithm from the SAR image are not shown as
discernible open water bodies in the optical image (especially when the optical image pixels size
is 5 m or more). They could be seen as false positives, but considering that SAR is more sensitive
than optical imagery to water content, these areas could also be areas of low vegetation (where
the vegetation cover is not high enough to influence backscatter but its chlorophyll content does
influence reflectance) with particularly high water content—higher than its surroundings.
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Figure 7. Effects of riparian forest on layer fragmentation. Subset over the Red Deer river in Alberta.
The vectors shown are resulting polygons when the method is applied on Wide Fine mode. Background:
Pan-sharpened Worldview2 imagery taken 1 day apart (Red = NIR band, Green = red band and
Blue = green band). The fragmentation of SAR-derived water polygons (in blue) make them smaller
than 0.5 km2, excluding them from the last area interval in Table 3.
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Figure 8. Results on flooded vegetation: (a) Reference WorldView2 image displayed as NIR, red, green
in RGB with overlaid water polygons from the Ultra-Fine image (in blue); (b) source Ultra-Fine image
with overlaid derived polygons (in blue). Note that the images were taken 6 days apart, with changes
in the aerial coverage of flooded vegetation between these two scenes.

In addition to this comparison of area estimates, randomly stratified points (50% of them on water
pixels and 50% of them on non-water pixels) were generated and error matrices as well as kappa
statistics [44] were computed using the same SAR-optical image pairs described above (see Tables 4
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and 5 respectively). The accuracy of the reference optical images to map water was evaluated through
visual inspection, and their kappa values varied between 91.6% and 98.8%.

Table 4. Error matrices for all three pairs of images used for accuracy assessment.

Image Water Non-Water Totals (Classifier) Totals (Reference Data)

Pair 1 (F0W3 vs. WV2)
Water 13 0 13 100

Non-water 87 99 187 99
Pair 2 (UF76 vs. WV2)

Water 3 0 3 48
Non-water 45 52 97 52

Pair 3 (FQ19 vs. RE)
Water 41 0 41 49

Non-water 8 51 59 51

Table 5. Kappa statistics for water classification from the three SAR images described above, using
their paired optical image as reference.

Image Number of Points Overall Accuracy (%) 95% Confidence
Interval (%) Overall Kappa

Pair 1 (F0W3 vs. WV2) 199 1 56.5 49.38–63.621 0.125 ˘ 0.05
Pair 2 (UF76 vs. WV2) 100 55.0 44.75–65.25 0.065 ˘ 0.19
Pair 3 (FQ19 vs. RE) 100 92.0 86.18–97.82 0.839 ˘ 0.03
1 This image contained the largest coverage of the optical images set (as can be seen in Figure 1); therefore a
higher number of points was used to maintain a similar same sampling density in all three areas.

Considering the uniform spatial distribution, number and representation of each class in the
sample points, we can state that the confidence interval provides a precise approximation of the
estimated overall accuracy. The kappa statistic, as a measure of how closely the instances classified
by the algorithm matched the reference data (compared to a random classifier) confirms the results
presented in Table 3 through Table 2—despite the likelihood of large water bodies attracting more
random points. Our method has low accuracy to map water from Wide Fine beam mode over areas
with a high number of small potholes (less than 1 ha) or over flooded vegetation (i.e., the dominant
landscape in UF76). However, the method succeeds in automatically mapping non-vegetated water
bodies larger than 1 ha from Fine Quad beam modes when compared to optical imagery of equivalent
spatial resolution.

5. Discussion

The areal extent of water bodies is important for a variety of reasons including a better
understanding of the land–atmosphere boundary for meteorological and climate modeling [27]. The
size and extent of water bodies across Canada vary both geographically and temporally throughout the
year. This variation depends significantly on local climate and topography: the prairie region has many
shallow water depressions (prairie potholes) that are filled through snow redistribution, snow melt,
infiltration, and precipitation, and can evaporate quickly and exhibit “spill and fill” movement [45].
Due to local topography, small amounts of contributed water influence the areal extent of water bodies
significantly. On the other hand, in the Canadian Shield, and mountainous regions, a large influx of
water may significantly raise the stage, but areal extent does not significantly change.

The method presented in this paper includes procedures for geometric correction, calibration,
filtering and thresholding of image values and derived texture. For surface water detection, a
threshold-based algorithm that requires dual polarization is less restrictive than polarimetry-based
algorithms that rely on fully polarimetric data, and therefore is easier to implement operationally, as
more data can be obtained from scenes with larger coverage than fully polarimetric scenes.
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Having accurate orbit and satellite ephemeris information as well as ancillary information (e.g.,
RPCs and GCPs) improves the efficiency of any operational system designed to retrieve data from
satellite imagery: processing times were significantly lower when the system could skip the point
collection routines, and eliminate manual quality control process on point collection. The nominal
geometric model provided with Radarsat-2 was sufficient to perform orthorectification for the Prairie
region. For the Radarsat Constellation Mission, we expect that the orbit accuracy as well as the rational
polynomial coefficients are going to have accuracy that is at the same level or better than Radarsat-2,
so that processing times remain as they are. Even for mountainous areas, where ground control point
collection is required, the accuracy of the orbit and RPCs can significantly affect the processing time
and quality of the results, as the image-matching algorithm uses this information to define the initial
position of a searching window and to define a search radius [35].

A threshold-based technique offers an efficient and non-expensive way to do automatic mapping,
but it has limitations. Work done by Manjusree et al. [20] proved that a water mapping threshold needs
to be decreased from –8 to –12 decibels in the near range and from –15 to –24 in the far range. In our
experiments, using a single threshold resulted in missing water bodies in the far range, because there
were no seeds captured: the threshold value excluded more pixels on open water in the far range,
which usually has lower signal to noise ratios and higher calibration uncertainty. Work by O’Grady
et al. [21,46] also concluded that there are variations in the backscatter based on the incidence angle,
given the varying noise levels of the scene. Another drawback of threshold-based methods for water
mapping from SAR is that the threshold used for water mapping is severely affected by the noise (and
noise floor) of the scene. Hardcoded threshold values are always “subject to change”—based on image
quality and beam mode specifications. Wide beam modes with fine resolution (such as Wide Fine and
Wide Ultra-Fine) are achieved by increasing the Noise Equivalent Sigma Zero (NESZ) which regulates
the minimum signal that a SAR can measure, in order to maintain a constant resolution [36,40]. Also,
to reduce data volumes when wide swaths modes with high resolution are acquired, a 2-bit block
adaptive quantization (BAQ) compression technique is used [40]. Predominantly, the 2-bit BAQ does
not provide enough detail to capture the difference in signal strength (and therefore compensate for it)
when there is a large change in the radar return as a function of time. This results in artificial backscatter
variability from the near to the far edge, and increased noise levels, especially in darker areas (calm
water) that are close to bright features (vegetation), hence the necessity to vary the threshold used for
water based on the incidence angle.

The traditional method of accuracy assessment based on a confusion matrix and random points
(or stratified random points) did not adequately evaluate the success (or failure) of surface water
mapping for different beam modes since an indication of the accuracy on obtaining the complete area
of surface water is required for numerical weather prediction models [47]. Also, large water bodies
that are easily identified in any SAR beam mode, have more pixels and therefore are more likely to get
more random points, hence introducing some bias on the results of traditional accuracy assessment
procedures. Furthermore, the elaboration of the confusion matrix requires a direct comparison of all
points, without considering their contribution to the total surface water area. Quantifying water area
based on polygons of a defined range (i.e., 1 to 2 ha) better described the capacity of different SAR
imaging modes for water mapping, as well the effectiveness of the method given the area distribution
of ephemeral and permanent water bodies for the AOIs in our study region.

While omission errors in the SAR-derived polygons are relatively easy to evaluate, false positives
(some of which could be wet surface or just homogeneous areas of low return, unrelated to water
content) are much harder to assess. If we define the mapping unit as non-vegetated potholes that have
a characteristic shape (normally high compactness), the commission errors can be assessed based on
high-resolution optical image. However, if we were to define surface water as any standing water
that might or might not contain any type of vegetation, the false positives are very difficult (if not
impossible) to discriminate from high-resolution optical imagery, specially without a short-wave
infrared band. Water areas with some vegetation are as important as open water for numerical
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weather prediction [26]. Nonetheless, doing fieldwork in these areas might neither be possible (due
to accessibility) nor relevant if the field work campaign is not executed at the exact same time of the
image acquisition, as water can evaporate very quickly, especially during the summer season. Radar
is more sensitive to water content than optical imagery, and therefore it can detect water that cannot
be easily discriminated in the visible or NIR part of the spectrum [48]. Furthermore, the chlorophyll
activity and leaf structure can also affect the reflectance in optical imagery whereas for SAR these
factors play a secondary role on the backscatter registered by the sensor. More work is underway
to gather concurrent UAV and LiDAR data along with more SAR scenes, to obtain relative accurate
ground truth that will serve to evaluate the commission errors. However, the validation of dynamic
targets for multi-temporal, multi-source data remains a big challenge under a limited budget.

Further work is required to improve accuracy for small potholes and flooded vegetation. The
upcoming Radarsat Constellation mission will offer compact polarimetry [24], which means that
polarimetric data can be easily obtained in wider areas with more resolution than its predecessor,
Radarsat-2. The acquisition of polarimetric data in the standard coverage that will be available with
RCM, means that imagery will be acquired on a periodical basis, without the overhead of image
acquisition planning and consolidation of conflicting acquisition requests from different users. If this
type of imagery can be provided in fine resolution modes for inland applications, such as forestry,
agriculture, moisture analysis, biomass estimation, flooding and landslides, it will open many new
opportunities not only for more accurate and frequent water monitoring systems but also for better
natural resource mapping, in general.

6. Conclusions

A threshold-based procedure to automatically extract surface water polygons from SAR imagery
has been presented here. For the AOI covered by the Wide Fine scene, our analysis based on
WorldView-2 imagery at 50 cm pixel size showed that 52% of the total water area was contributed
by polygons smaller than 2 ha, whereas in the AOI covered by the Fine Quad scene, most of the
potholes and permanent water bodies (87%) were larger than 1 ha. For areas where small potholes
are dominant, mapping with Wide Fine can only reach 21% accuracy when estimating total surface
water area, but for areas where potholes larger than 1 ha are dominant, Radarsat-2 Fine mode captured
88% of the total water area extracted from RapidEye. This provides much better information than
currently available for regions where seasonal and ephemeral changes are expected on surface water.
More efforts should be made to improve the performance and meet the requirements for operational
applications on smaller water bodies and low-resolution modes.

Despite its limitations, our procedure is a fully automated method to derive polygons of open
water from Radarsat-2 Fine beam modes, based on pixel values, which is, in terms of processing
time, much faster than running more complex segmentation procedures. Processing time becomes a
key factor when the information on the land surface needs to be derived to feed the models used in
weather forecasting, which run as frequently as every 6 h [47]. The procedure has been implemented
in Python as a processing chain (see WaterExtents.py, provided as Supplementary Material to this
paper), and it uses image processing software with multi-threat algorithms from PCI Geomatics,
where only two steps for quality control and analysis are required: first, when a collection of points is
required for geometric correction, and at the end, when water polygons are generated. The topological
intersection of polygons to generate the final water mask is also being integrated into the same script
using Python-based algorithms and open-source GIS software, which will make it easier to integrate
into operational and/or web-based systems.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-4292/8/4/285/s1,
WaterExtents.py.
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Abbreviations

The following abbreviations are used in this manuscript:

RCM Radarsat Constellation Mission
DN Digital Number
DB decibels
RMSE Root Mean Square Error
GCPs Ground Control Points
RPC Rational Polynomial Coefficients
GIS Geographic Information System
AOI Area Of Interest
SAR Synthetic Aperture Radar
QA Quality Analysis
NESZ Noise Equivalent Sigma Zero
BAQ Block Adaptive Quantization
NIR Near-Infrared
Km kilometers
RE RapidEye imagery
WV2 WorldView-2 imagery
RGB Red, Green, Blue guns used for visual display
UAV Unmanned Aerial Vehicle
LiDAR Light Detection and Ranging
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