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Abstract: Reliable drought information is of utmost importance for efficient drought management.
This paper presents a fully operational processing chain for mapping drought occurrence, extent and
strength based on Moderate Resolution Imaging Spectroradiometer (MODIS) normalized difference
vegetation index (NDVI) data at 250 m resolution. Illustrations are provided for the territory of Kenya.
The processing chain was developed at BOKU (University of Natural Resources and Life Sciences,
Vienna, Austria) and employs a modified Whittaker smoother providing consistent (de-noised)
NDVI “Monday-images” in near real-time (NRT), with time lags between zero and thirteen weeks.
At a regular seven-day updating interval, the algorithm constrains modeled NDVI values based on
reasonable temporal NDVI paths derived from corresponding (multi-year) NDVI “climatologies”.
Contrary to other competing approaches, an uncertainty range is produced for each pixel, time step
and time lag. To quantify drought strength, the vegetation condition index (VCI) is calculated at
pixel level from the de-noised NDVI data and is spatially aggregated to administrative units. Besides
the original weekly temporal resolution, the indicator is also aggregated to one- and three-monthly
intervals. During spatial and temporal aggregations, uncertainty information is taken into account
to down-weight less reliable observations. Based on the provided VCI, Kenya’s National Drought
Management Authority (NDMA) has been releasing disaster contingency funds (DCF) to sustain
counties in drought conditions since 2014. The paper illustrates the successful application of the
drought products within NDMA by providing a retrospective analysis applied to droughts reported
by regular food security assessments. We also present comparisons with alternative products of the
US Agency for International Development (USAID)’s Famine Early Warning Systems Network
(FEWS NET). We found an overall good agreement (R2 = 0.89) between the two datasets, but
observed some persistent (seasonal and spatial) differences that should be assessed against external
reference information.

Keywords: vegetation condition index; uncertainty; Whittaker smoother; MODIS; Drought
Contingency Funds; NDMA; Kenya

1. Introduction

Drought is a recurrent natural phenomenon in many arid and semi-arid regions of the world [1].
Each year it affects millions of the most vulnerable people [2,3]. According to Below et al. [4], more
than 50% of all deaths associated with natural hazards are drought related, and only floods rank higher
in terms of the number of people affected.

The stress following a drought depends primarily on the strength, duration, timing and spatial
extent of the dry spell. For similar meteorological conditions, different communities and economic
sectors show varying vulnerabilities and resiliencies to drought events. Effects differ for example as a
function of available coping strategies and previous (environmental) conditions [5].
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Drought definitions and drought indicators are summarized by [1,6]. Satellite observations
provide synoptic overviews over large areas at dense temporal sampling intervals and are therefore
often used in drought monitoring systems [7–9]. Reviews of existing satellite-based approaches are for
example found in [5,10]. Several chapters in the recently published compendium “Remote Sensing of
Water Resources, Disasters, and Urban Studies” (edited by Thenkabail) [11] with various aspects of
large scale drought monitoring in detail [12–15].

For efficient drought management, drought monitoring is essential [16–21]. Especially in
drought-prone and vulnerable countries, it is important to continuously monitor droughts and affected
communities to prevent disastrous results [22,23]. To enable a quick response, short time lags are
required between data acquisition and information release.

In 2011, in Kenya, a National Drought Management Authority (NDMA) was established to
pro-actively manage droughts. NDMA’s mandate is to exercise general supervision and coordination
over all matters relating to drought management within its territory. In 2014, the NDMA received
Drought Contingency Funds (DCFs) from the European Union (EU) to facilitate early response to
drought threats. The DCFs are disbursed by NDMA to drought-affected counties to finance response
activities that can help mitigating the worst impacts of droughts.

To determine the (agricultural) drought status of a (sub-) county in an objective, reproducible
and cost efficient way, NDMA decided to use Earth Observation (EO) data. For near real-time (NRT)
provision of EO data, the University of Natural Resources and Life Sciences (BOKU) developed and
implemented an advanced filtering method for Moderate Resolution Imaging Spectroradiometer
(MODIS) normalized difference vegetation index (NDVI) images for NDMA, described below in
detail. Numerous alternative filtering methods are available, evaluated in several studies (e.g., [24–29]).
In our processing chain, we employ the Whittaker smoother [30], which offers some appropriate
characteristics for filtering NDVI time series [31–33].

The BOKU processing yields reliable drought indicators at county and sub-county levels for
various aggregation times and livelihood zones. The image analysis is complemented by field-based
(socio-economic) indicators at NDMA as well as satellite-based rainfall estimates from the TAMSAT
group of University of Reading (UK) [34,35]. The innovative DCF disbursement mechanisms of NDMA
ensure a timely support of drought-affected counties and communities. As DCFs are only disbursed to
county governments having approved drought mitigation plans, the setting also provides a strong
motivation for drought preparedness activities.

The objective of this paper is to introduce the processing chain implemented for MODIS NDVI
data at BOKU according to the needs of NDMA. We put emphasis on describing the NRT filtering
and the provision of uncertainty estimates that are employed for drought anomaly calculation.
Through comparison with the well-established data of the US Agency for International Development
(USAID)’s Famine Early Warning Systems Network (FEWS NET) [36,37], we highlight and quantify
similarities and differences between the two datasets. FEWS NET data are used for drought
monitoring and assessing agricultural production around the globe mainly by the USAID but also
other organizations (e.g., by World Food Program and FAO) [10,36]. The comparison is interesting
because the (consolidated) FEWS NET data are only delivered 5–6 weeks after the end of each month,
while the BOKU drought indicators are provided in NRT. Hence, our study allows evaluating the
impact of our NRT processing versus the time-lagged indicators provided by FEWS NET. The FEWS
NET data, however, do not provide an absolute reference suitable for assessing the quality of the
BOKU data.

2. Material and Methods

2.1. Study Area

BOKU’s processing chain, as illustrated in this note, covers an area of 10˝ ˆ 11˝ centered over
Kenya. Replicates of the algorithm have been implemented to cover the pan-European continent as
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well as part of Brazil, but will not be presented here. Kenya has been chosen for illustration because of
its operational use of BOKU indicators. The country setting is challenging, as Kenya is characterized
by highly variable land cover, biomass, elevation and rainfall (Figure 1).
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(©University of Natural Resources and Life Sciences (BOKU); administrative data from [38]); (b) 
average annual NDVI (non-arid and semi-arid (ASAL) counties in grey)—the 1° × 1° tiling system is 
indicated in which MODIS data are processed at BOKU; (c) elevation [38]; and (d) annual rainfall [39]. 

The filtering of NDVI time series and the calculation of drought indicators are applied at pixel level 
for the entire area. To compare the results with the FEWS Net data, the paper focuses on Kenya’s arid and 
semi-arid lands (ASAL), mainly located in the northern and eastern parts of the country (see Figure 1b). 
The ASALs are characterized by high temperatures (except for a few elevated areas) and low rainfall 
amounts. Consequently, biomass/NDVI is often very low (average annual NDVI ≤ 0.4—brownish color) 
as seen in Figure 1b. 

2.2. MODIS Data Processing at BOKU 

2.2.1. Overview of the Operational Processing Chain 

BOKU, in cooperation with NDMA, has developed and setup an operational processing of 
MODIS images with the aim of providing consistent NDVI and anomaly “Monday-images” in NRT 
with a seven-day update interval. The main processing stages are depicted in Figure 2. The tasks 
shown in bold rectangles were only executed once at the start of the development (“offline”) to 
furnish statistical information. The remaining processes have been executed since this date every 
weekend and back to the start of the time series. Back-processing is done in hindcasting mode to 
ensure a temporally consistent time series. 

Figure 1. Main environmental characteristics of Kenya: (a) land cover from MODIS NDVI time
series (©University of Natural Resources and Life Sciences (BOKU); administrative data from [38]);
(b) average annual NDVI (non-arid and semi-arid (ASAL) counties in grey)—the 1˝ ˆ 1˝ tiling system
is indicated in which MODIS data are processed at BOKU; (c) elevation [38]; and (d) annual rainfall [39].

The filtering of NDVI time series and the calculation of drought indicators are applied at pixel
level for the entire area. To compare the results with the FEWS Net data, the paper focuses on
Kenya’s arid and semi-arid lands (ASAL), mainly located in the northern and eastern parts of the
country (see Figure 1b). The ASALs are characterized by high temperatures (except for a few elevated
areas) and low rainfall amounts. Consequently, biomass/NDVI is often very low (average annual
NDVI ď 0.4—brownish color) as seen in Figure 1b.

2.2. MODIS Data Processing at BOKU

2.2.1. Overview of the Operational Processing Chain

BOKU, in cooperation with NDMA, has developed and setup an operational processing of MODIS
images with the aim of providing consistent NDVI and anomaly “Monday-images” in NRT with a
seven-day update interval. The main processing stages are depicted in Figure 2. The tasks shown in
bold rectangles were only executed once at the start of the development (“offline”) to furnish statistical
information. The remaining processes have been executed since this date every weekend and back
to the start of the time series. Back-processing is done in hindcasting mode to ensure a temporally
consistent time series.
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Figure 2. Processing chain of BOKU’s near real-time (NRT) filtering of MODIS NDVI time series. The 
steps in bold rectangles were executed only once (e.g., in 2013 including 2001 to 2012). The other 
processes are repeated every week, respectively, having been applied back in time in hindcasting 
mode. Together, the fully automated processing leads to filtered NDVI images with associated 
uncertainties. Based on this primary information, several anomaly indicators are derived and 
aggregated over time and for different administrative units. 

2.2.2. MODIS Data Acquisition and Preparation 

The drought indicators are calculated from MOD13Q1 and MYD13Q1 NDVI collection 5 
products of the MODIS Terra and Aqua satellites obtained through the online Data Pool at the NASA 
Land Processes Distributed Active Archive Center (LP DAAC) from 2000 onwards. These products 
are gridded level-3 data in approximately 250 m spatial resolution in Sinusoidal projection with a 
(combined) temporal resolution of 8 days. The level-3 data are derived from the level-2G daily surface 
reflectance gridded data (MOD09 and MYD09 series) using the constrained view angle—maximum 
value composite (CV-MVC) compositing method [40]. 

The MODIS data are downloaded, mosaicked and re-projected to geographic coordinates 
(datum WGS84) with a spatial resolution of approximately 250 m (0.002232°) using nearest neighbor 
resampling. The images are cropped to a dedicated tile system (see Figure 1b). These steps are 
performed on a daily basis using the in-house developed R MODIS package [41,42]. 

2.2.3. NRT Filtering 

To minimize the possible impacts of undetected clouds and poor atmospheric conditions, a 
standardized procedure temporally filters the NDVI time series based on two distinct steps illustrated on 
the left and right side of Figure 2, respectively, following the definitions of Sedano et al. [43]: 

• Offline smoothing (done only once): Smoothing applies in a post hoc sense, where there is a need 
to interpolate past events in a time series. By definition, smoothing estimates a state based on 
data from both previous and later times. 

Figure 2. Processing chain of BOKU’s near real-time (NRT) filtering of MODIS NDVI time series.
The steps in bold rectangles were executed only once (e.g., in 2013 including 2001 to 2012). The other
processes are repeated every week, respectively, having been applied back in time in hindcasting mode.
Together, the fully automated processing leads to filtered NDVI images with associated uncertainties.
Based on this primary information, several anomaly indicators are derived and aggregated over time
and for different administrative units.

2.2.2. MODIS Data Acquisition and Preparation

The drought indicators are calculated from MOD13Q1 and MYD13Q1 NDVI collection 5 products
of the MODIS Terra and Aqua satellites obtained through the online Data Pool at the NASA Land
Processes Distributed Active Archive Center (LP DAAC) from 2000 onwards. These products are
gridded level-3 data in approximately 250 m spatial resolution in Sinusoidal projection with a
(combined) temporal resolution of 8 days. The level-3 data are derived from the level-2G daily surface
reflectance gridded data (MOD09 and MYD09 series) using the constrained view angle—maximum
value composite (CV-MVC) compositing method [40].

The MODIS data are downloaded, mosaicked and re-projected to geographic coordinates
(datum WGS84) with a spatial resolution of approximately 250 m (0.002232˝) using nearest neighbor
resampling. The images are cropped to a dedicated tile system (see Figure 1b). These steps are
performed on a daily basis using the in-house developed R MODIS package [41,42].

2.2.3. NRT Filtering

To minimize the possible impacts of undetected clouds and poor atmospheric conditions,
a standardized procedure temporally filters the NDVI time series based on two distinct steps illustrated
on the left and right side of Figure 2, respectively, following the definitions of Sedano et al. [43]:

‚ Offline smoothing (done only once): Smoothing applies in a post hoc sense, where there is a need to
interpolate past events in a time series. By definition, smoothing estimates a state based on data
from both previous and later times.
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‚ NRT filtering (repeated every week): Filtering is relevant in an online learning sense, in which
current conditions are to be estimated by the currently available data. Filtering, therefore, involves
calculating the estimate of a certain state based on a partial sequence of inputs.

BOKU’s smoothing step uses the Whittaker smoother, which fits a discrete series to discrete data
and puts a penalty on the roughness of the smooth curve [25,30,32]. It smooths and interpolates
the data in the historical archive (2001 to 2012) to daily NDVI values. The smoothing takes into
account the quality of the observations according to the MODIS VI Quality Assessment Science Data
Set (QA SDS) [40] and the compositing day for each pixel. The weights assigned to the MODIS
observations based on the QA SDS are reported in Table 1. For a detailed description of the filtering
procedure and settings, see [33]. The original Whittaker smoother is presented in [30].

Table 1. MODIS quality flags (QF) and assigned weights for the Whittaker smoothing and filtering.
Observations qualified as “less reliable/unreliable” (e.g., VI usefulness >7) are excluded from the
filtering (weight = 0). VI usefulness values between 4 and 7 (“acceptable”) are linearly scaled between
0.8 and 0.2. Observations with values 1–3 are considered to be of “good” or “very good” quality and
assigned a weight of one.

MODIS QF Description Weight in Filtering

1 Very good 1.0

2 Good 1.0

3 Good 1.0

4

Acceptable

0.8
5 0.6
6 0.4
7 0.2

8 Less reliable/unreliable 0.0

9 Less reliable/unreliable 0.0

Only every 7th image is stored from the output of the daily NDVI time series, corresponding to
“Mondays”. From the smoothed “Monday” images, weekly statistics are calculated describing the
typical NDVI temporal paths for a given location and time (NDVI “climatology”). This information
serves for “constraining” the Whittaker smoother during the NRT filtering (Figure 2).

The NRT filtering step is executed every weekend and uses available observations within the past
175 days (in temporally overlapping windows for each week) and associated QA SDS. The length of
the time window is indicated in Figure 3 as blue arrow. The black asterisks in Figure 3 are the observed
(raw) MODIS values from 16-day MVC (both Terra and Aqua) available at the time of filtering. To deal
with insufficient observations (e.g., several days of cloud cover), a minimum of 10 MOD and MYD
observations (combined) are required (empirically defined) within the temporal window of 175 days.
If this condition is not fulfilled, we apply the NDVI of the pixel-based “climatology”. As each MODIS
observation comes with a VI quality flag, this information is translated and used as weight during the
filtering (not shown in Figure 3). In the example of Figure 3, the filtering is executed at the beginning
of August (e.g., 31st week of 2011). Note the irregular spacing of the observations (*) and the missing
(not yet available) NDVI values at the end of the time series. The blue line is the fitted curve of the
(unconstrained) Whittaker filter for the indicated 175 days.
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Figure 3. Principle of BOKU’s constrained near real-time (NRT) filtering. The five colored dots are the
final (constrained) “Monday” images, representing different consolidation phases (from 0 to 4 weeks).

The output of the weekly NRT filtering is six images, indicated as colored/black dots in Figure 3,
representing different consolidation phases of the filtered NDVI (“output 1” to “output 4”). Obviously,
“output 4” is more reliable (e.g., better constrained through available data) compared to the “output 0”,
which is always extrapolated as MODIS observations are not available in real time. Producing filtered
data in NRT avoids time lags related to the otherwise necessary consolidation period (e.g., 5–6 weeks
with FEWS NET data).

The sixth and final image stored every weekend corresponds to the black dot in Figure 3.
Obviously, this fully smoothed value will become available only after thirteen weeks but has the
advantage of observations available to the left and right (e.g., back and forward in time). It serves as a
“reference” and for modeling the uncertainty in our processing.

Note that missing constraints in NRT filtering (e.g., at the right side of the smoothing spline) may
lead to arbitrary high or low values, particularly at times of the year, when rapid NDVI changes take
place and/or many missing or unreliable inputs occur. Thus, we apply a pixel specific constraining
procedure that limits the NDVI change between consecutive “Mondays” according to weekly statistics
of the offline-smoothed data. In Figure 3, the effect of the constraining is schematically depicted as the
difference between the blue line (the unconstrained Whittaker spline) and the (colored) dots. Only the
constrained outputs are stored and used for drought mapping in our processing.

Besides the mentioned “Monday” images, BOKU stores a number of metrics characterizing the
particular filtering conditions at each filtering step (e.g., each weekend). The various metrics are listed
in Table 2 and permit later modeling of the uncertainty of the smoothed outcome. From Figure 3,
it can for example be seen that sixteen observations were available in total in the time window of
175 days; the most recent (available) observation at the time of filtering was 33 days old. These and
other characteristics are stored.
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Table 2. Quality and pixel information stored during near real-time filtering per “Monday image”.

Name Description

Days to last measurement (NLM) Number of days to last available measurement
Quality of last measurement (QLM) MODIS VI quality of last available measurement
Number of measurements (NWM) Number of valid measurements within the time window (175 days)

Quality of measurements (QWM) Average MODIS VI quality of valid measurements within the time
window (175 days)

The NRT processing started in 2014. For processing the data prior to 2014, hindcasting is used
(e.g., simulating the incomplete availability of data as experienced in reality). Saving the five output
NDVI images, the reference image, plus quality information (Table 2) every weekend allows BOKU to
keep a consistent archive of the different consolidation phases while characterizing the filtering
conditions for the entire time series starting from 2001. Data are not over-written, as different
applications may have different timeliness constraints.

2.2.4. Uncertainty Modeling

Before starting the operational production of data for NDMA, pre-produced NRT filtered data
were compared to the smoothed “reference” time series, where all observations were available (e.g.,
central black dot in Figure 3). The difference between the “reference” time series and NRT estimates
gives the “error” of the NRT filtering. We model this “error” using the stored quality information
(Table 2). In our operational setting, the uncertainty of a pixel filtered in NRT is estimated based
on those previously established models. This is done independently for each pixel position, output
product and time step in NRT. We are not aware of other competing NDVI products providing such
uncertainty information (e.g., [24,44–48]).

2.3. Drought Indicator Calculation

From the filtered NDVI datasets, temporally and spatially aggregated vegetation condition index
(VCI) anomalies [49] are calculated. Conceptionally, the VCI enhances the inter-annual variations
of a vegetation index (e.g., NDVI) in response to weather fluctuations while reducing the impact
of ecosystem specific response (e.g., driven by climate, soils, vegetation type and topography) [49].
At BOKU, a weekly VCI is calculated at pixel level from the filtered NDVI data (each consolidation
phase separately—not specified in Equation (1)) using

VCIi “ 100ˆpNDVIi´NDVImin,iq{pNDVImax,i´NDVImin,iq (1)

where VCIi is the vegetation condition index at time step i, NDVIi is the filtered normalized difference
vegetation index observed at time step i and NDVImin,i/NDVImax,i are the lowest/highest seven-day
filtered NDVI values observed from 2003 to 2012 at week i.

In a very similar way, z-score values (ZVI) are calculated (Equation (2))

ZVIi “ pNDVIi´NDVImean,iq{stdpNDVIiq (2)

where ZVIi is the standard score (z-score) of NDVI at time step i, NDVIi is the filtered NDVI observed
at time step i, NDVImean,i are the average seven-day filtered NDVI values (between 2003 and 2012) at
week i and std(NDVIi) is the standard deviation of seven-day filtered NDVI values (2003 to 2012) at
week i.

The VCI puts an actual NDVI value in a range between historical minimum (VCI = 0%) and
maximum (VCI = 100%). ZVI indicates the (signed) number of standard deviations an observation
is above/below the mean. Results for ZVI are not covered in this paper due to their high correlation
with VCI (not shown).
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To get a more concise picture of the vegetation development in the ongoing season and to identify
drought-affected areas, the weekly VCI maps are temporally and spatially aggregated. Temporal
aggregation includes 1-monthly and 3-monthly weighted VCI averages using the VCI images of the
recent 4 and 12 weeks of the according month, respectively. During the temporal aggregation, the
modeled uncertainty is taken into account to down-weight the impact of less reliable observations
(e.g., having relatively large uncertainties). Spatial aggregation subsequently averages the VCI at
pixel level according to administrative units (e.g., counties) and/or livelihood zones. A summary
of provided drought indicators is given in Table 3. All data are imported at NDMA into SPIRITS
software [50] for production of seasonal graphs, etc. Additional web-tools were developed by BOKU
for educational purposes [51] (Appendix). The VCI thresholds applied by NDMA for disbursement of
DCF are reported in Table 4.

Table 3. Main vegetation related products produced at the University of Natural Resources and Life
Sciences (BOKU) for the National Drought Management Authority (NDMA) and public web services
for products covering Europe and Kenya. Additional vegetation anomaly indicators (e.g., z-score) as
well as TAMSAT-derived rainfall indicators (not shown here) are also provided.

Product
Updating
Frequency

Temporal
Aggregation

Length

Spatial Aggregation/Product

Pixel Sub-County County

IMG KMZ QLK CSV CSV

NDVI Weekly Instantaneous x x x x x
VCI1W Weekly Instantaneous x x x x x
VCI1M Monthly 1 month x x x x x
VCI3M Monthly 3 months x x x x x

Europe http://ivfl-info.boku.ac.at/index.php/eo-data-processing/real-time-modis-data-eu-only
Kenya http://ivfl-geomap.boku.ac.at/demo_WG/kenya/
Kenya http://ivfl-info.boku.ac.at/index.php/eo-data-processing/data-analytics

Table 4. Thresholds used at National Drought Management Authority (NDMA) for monthly updated
vegetation condition index (VCI3M) and related drought categories. For disbursement of disaster
contingency funds (DCF), the thresholds have to be met after data aggregation at county level.

VCI3M in % Drought Category Color

ě50 Wet
35 to 50 No Drought/Normal
21 to 34 Moderate Drought
10 to 20 Severe Drought

<10 Extreme Drought

2.4. FEWS NET Data Preparation for Comparison

To assess the impact of NRT filtering on data quality compared to consolidated products, we use
the eMODIS NDVI data provided by the FEWS NET [16] for comparison. The downloaded FEWS
NET data are pentadal NDVI at 0.002413˝ spatial resolution (datum WGS84) covering the area of
East Africa. The eMODIS dataset is generated by the U.S. Geological Survey (USGS) Earth Resources
Observation and Science (EROS) Center from the Level 1B MODIS products of Terra (MOD09, MOD03,
MOD35_L2) [52].

The eMODIS data available for download from FEWS NET undergo further processing and are
updated during six composite periods, only after which the images become definitive [53]. Hence,
the most recent five images are produced using climatological information as surrogates for the (yet)
missing information. For our study, only the fully consolidated FEWS NET data were used covering
the period of 2001 to 2014.
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To derive vegetation anomalies from the FEWS NET data, the NDVI images were processed in a
similar way as the BOKU data including five steps:

‚ cropping and resampling to the BOKU grid (see Figure 1b);
‚ calculation of pentadal statistics (minimum, maximum) from the NDVI for each pixel and the

period of 2003 to 2012;
‚ calculation of pentadal VCI images using the derived statistics (Equation (1));
‚ temporal aggregation of VCI images (1 and 3 months) by averaging 6 and 18 pentades,

respectively; and
‚ spatial aggregation by averaging according to administrative units (e.g., ASAL counties of Kenya;

see Figure 1b).

3. Results and Discussion

3.1. Illustration of Filtering Performance & Example Products from BOKU

3.1.1. Filtered NDVI Data and Modeled Uncertainty

The NDVI profiles of two randomly selected pixels are shown in Figure 4. The pixels are
located in the dryer North (Mandera) and in the Southeast (Garissa) of Kenya. Displayed are the
NRT filtering results (two-week consolidation phase: “output 2”) as well as the fully consolidated
(smoothed) “reference” (in black). For didactical purposes, the same colors as in Figure 3 are used. The
graphs also display the original MODIS observations with different symbols reflecting their respective
“VI usefulness” of the MODIS quality assessment science dataset [40] (Table 1). Observations qualified
as “unreliable” (e.g., excluded from the filtering) are shown as asterisks. “Acceptable” observations
(down-weighted) are shown as empty dots, while “good” or “very good” quality observations are
shown as filled dots.
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Figure 4. Near real-time filtered pixels with 2 weeks consolidation time (yellow line) and smoothed
reference NDVI (black line) with MODIS observations. MODIS observations are displayed according
to the MODIS VI usefulness quality flag: “very good” and “good” observations (ď3, grey filled dot),
“acceptable” observations (4–7, grey filled dot) and “bad” observations (>7, black asterisk).
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Despite the missing and sometimes unreliable observations at the time of filtering, the NRT NDVI
profile (yellow) follows quite closely the reference profile (in black), which represents the smoothed
outcome if all NDVI observations (before and after a given date) were available. For both pixels, one
observes two distinct cycles related to the long and short rains. Abrupt changes of the NDVI profile for
the NRT product result from the (sudden) availability of observations at the time of the NRT filtering
from one week to the other. The slight delay in the yellow curve with respect to the black curve is a
direct result of the not yet available information, which can obviously not be perfectly predicted using
the implemented constraining procedure. The graphs also confirm that the MODIS QA SDS flags
(e.g., “VI usefulness”) are not always correct [54]. For example, several doubtful “good” or “acceptable”
observations can be seen (filled and empty dots), while the only excluded observation (*) in Figure 4
(left) falls exactly into the black curve. Such (presumably) erroneous information has a negative impact
on the results of the filtering.

The impact of consolidation time on filtering quality and the associate uncertainty are illustrated
in Figure 5. For one randomly selected pixel, the figure shows the results for three consolidation
phases: two weeks (“output 2”), one week (“output 1”), and without time lag (“output 0”). The colored
lines are the filtered NDVI values; the error-bars specify the modeled range of “uncertainty”. The black
dots in Figure 5 indicate the smoothed outcome if all NDVI observations (before and after a given
date) were available (e.g., black dot in Figure 3). This (reference) data is available at the end of the full
consolidation period (here 13 weeks) for users without timeliness constraints. These smoothed results
are identical for the three subplots. A time lag of zero (red curve—Figure 5 bottom) indicates that
the “Monday image” has been produced for the Monday following the weekend of data processing.
Hence, all NDVI values are forecasted. The two-week time lag (in yellow—Figure 5 top) means that
the NDVI image has been produced representing the surface conditions of two Mondays before the
weekend of production. Compared to the zero time lag, less forecasting occurs (see Figure 3). However,
occasionally some forecasting happens as a result of prolonged periods with “unreliable” observations.
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The aim of the NRT filtering is to come as close as possible to the smoothed (e.g., perfectly modeled)
outcome. Where this is not possible, the smoothed value should be at least within the modeled
uncertainty range. The modeled uncertainty range itself should reflect the modeling conditions—that
is the spatially and temporally varying availability and quality of observations. Looking at Figure 5,
the following points are interesting to note and confirm that the previously mentioned requirements
were met:

‚ Filtered values (colored lines) become smoother and come closer to the smoothed values (black
dots) with increasing consolidation period.

‚ The modeled uncertainties are of variable widths but generally shrink with increasing
consolidation period.

‚ Occurrences of large differences between filtered and smoothed NDVI values are mostly associated
with larger uncertainty ranges.

‚ In most cases, smoothed values are found within the predicted uncertainty range.

Note that all data from all consolidation periods are stored and produced in a fully consistent
manner in hindcasting mode and this from the beginning of the MODIS time series (2001). Hence, the
user is free to choose his/her product of preference. In some cases, the user might opt for the NRT
product with the highest quality if he/she does not mind using 3–4 weeks “old” data (e.g., for land
cover classifications). In other applications, the user requests more actual information and is therefore
willing to accept less accurate information (and in particular if he/she gets additional information—by
pixel—about the modeled uncertainty range).

The various consolidation periods and associated uncertainties are combined to derive one- and
three-monthly VCI (Equation (1)) within the NDMA drought monitoring application. The one-monthly
VCI, for example, is calculated by combining the data from the consolidation periods “output 0” to
“output 3” (e.g., past four weeks) and hereby take into account the respective uncertainty ranges.
In other words, the impact of the newest image (usually with the highest uncertainty range) will
generally be smaller, compared to the somewhat older (better consolidated) data. A spatial comparison
between smoothed and filtered data is shown in Figure 6a (last week of April 2014) and Figure 6b
(last week of June 2014).

In the top left hand corner of Figure 6a,b, the NDVI map of the smoothed “reference” (e.g., black
dot in Figure 3) is shown (e.g., best possible result); right to this map are the filtered products with
zero to two weeks consolidation period. Thereunder, the NDVI deviations between the smoothed
result and the various filtered versions and the modeled uncertainties are shown. Note that all data are
continuous and have been put into classes only for illustration purposes. The small inlets (pie charts in
Figure 6a,b) represent the respective proportions calculated over the displayed area.

Overall a good agreement can be noted (first row). The differences between the smoothed
and the filtered data decrease with increasing consolidation time (e.g., from right to left; second
row). Spatio-temporally varying pattern of agreement and disagreement (over- and underestimation)
depending on the local observation conditions (see Table 2) are also visible from Figure 6a,b. Again,
areas with larger deviations (positive or negative) are generally correctly reflected in the modeled
uncertainty range (third row).

3.1.2. Calculated Drought Indicators

At the beginning of 2011, Kenya experienced one of the most severe droughts in its history,
affecting large parts of the country and all ASAL counties. The onset, peak and end of the drought
episode are illustrated in Figure 7. It displays the three-monthly VCI products from October 2010 to
April 2011. The seven maps depict the timing, strength, location, extent and duration of the drought as
observed in NRT by the BOKU processing chain. Such information proved very valuable to NDMA
over the past few years since the start of the service (pers. communication Luigi Luminari—NDMA
Kenya) as it is provided in NRT, and down-weighting less reliable observations.
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3.2. Comparison of FEWS NET and BOKU Drought Indicators

In this section, we focus on BOKU’s three-monthly VCI data (VCI3M) aggregated at county level
and provided on a monthly basis. The VCI3M anomalies are compared with corresponding FEWS
NET anomalies. Both datasets are also evaluated against food security assessment reports.

3.2.1. Overall Agreement between BOKU and FEWS NET Data

The correlation analysis between three-monthly VCI datasets from BOKU and FEWS NET shows
generally a good agreement between both datasets with a coefficient of determination (R2) of 0.89
(Figure 8 left). The VCI observations regularly scatter around the 1-to-1 line with a slope close to
one and only a (slight) positive intercept. As expected, the majority of the points (highest density,
dark red points) are found in the range of 30% and 55% corresponding to near “normal” conditions.
The majority of observations (88%) fall well within a range of ˘10% (Figure 8 right). If one takes the
FEWS NET data as “reference” for comparison, this confirms that it is possible to derive the agricultural
drought indicator VCI one month ahead thanks to the developed NRT filtering without introducing
(too many) artifacts.

3.2.2. Seasonal Differences between BOKU and FEWS NET Data

Despite the generally good agreement between the two VCI datasets, somehow larger differences
appear if the analysis is repeated for each month separately. The resulting intra-annual coefficient
of determination (R2) varies between 0.77 (November) and 0.94 (February) (Figure 9—green line).
Two minima of R2 (and maxima of RMSE) are visible in April and November agreeing very well with
Kenya’s long and short rains that normally occur in March–June and October–December (blue bars
in Figure 9). The largest differences in the VCI3M anomalies occur at the peak of the long and short
rains and in parallel to significant NDVI changes. As cloudiness is the highest during these periods,
we expect part of the observed differences stemming from the unfavorable observation conditions.
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Figure 8. Correspondence between Famine Early Warning Systems Network (FEWS NET) and
University of Natural Resources and Life Sciences (BOKU) datasets of arid and semi-arid land (ASAL)
counties across all months between 2003 and 2014 (n = 3312). (left) Scatterplot of three-monthly
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Figure 9. Monthly agreement/disagreement between Famine Early Warning Systems Network (FEWS
NET) and University of Natural Resources and Life Sciences (BOKU) three-monthly aggregated
vegetation condition index (VCI3M) values. In green is shown the coefficient of determination (R2)
between the two datasets, and in blue the root mean square error (RMSE). Lines are only shown
for reader’s convenience. The lower part of the figure shows the climatology of NDVI (orange) and
monthly rainfall estimates (RFE). All data refer to arid and semi-arid land (ASAL) countries.
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3.2.3. Annual Differences between FEWS NET and BOKU Data

The inter-annual agreement/disagreement between the two datasets is analyzed separately for
the long and short rains (Figure 10). Results show some annual variability in relation to rainfall.
For both periods Long Rain/Long Dry (LRLD) and Short Rain/Short Dry (SRSD), the RMSE follows
the average monthly rainfall for the given periods. This is particularly true for the long rains, when
local minima of RMSE (maxima of R2) and RFE can be observed in 2009, 2011 and 2014 (Figure 10 top).
These years coincide well with major droughts according to assessment reports of the Kenya Food
Security Steering Group [55–57]. On the contrary, the KFSSG reported generally good or favorable
conditions for the years 2006, 2010 and 2013 [58–60]. Distinctive years of poor short rain performance
over large parts of the country occurred in 2005/2006 and 2010/2011, which is again confirmed by
the KFFSG reports [61,62]. Under the assumption that FEWS NET provides correct information, our
current (but still preliminary) analysis confirms that the BOKU dataset is performing particularly
well in years with (extreme) droughts. Naturally, these are the most important situations for drought
management authorities and other related stakeholders.

Figure 10. Inter-annual agreement/disagreement between Famine Early Warning Systems Network
(FEWS NET) and University of Natural Resources and Life Sciences (BOKU) three-monthly aggregated
vegetation condition index (VCI3M) values for the long rains/long dry (top) and short rains/short dry
(bottom). In green is shown the coefficient of determination (R2) between the two datasets, and in blue
the root mean square error (RMSE). Lines are only shown for reader's convenience. In the lower part of
the two graphs is shown (as blue bars) the average monthly rainfall estimates (RFE). All data refer to
arid and semi-arid land (ASAL) countries.
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3.2.4. Spatial Patterns of Agreement/Disagreement between FEWS NET and BOKU Data

Kenya is a huge country with a large spatial variability in land cover, growth patterns and
topography (Figure 1). For this reason, we assessed if spatial patterns in agreement/disagreement
between FEWS NET and BOKU datasets can be found. To quantify this agreement/disagreement, for
each ASAL county, the RMSE between FEWS NET and BOKU three-monthly VCI were calculated
over every year (2003–2014) and month (e.g., 12 ˆ 12 time steps, 144 values per county). The resulting
spatial variation of RMSE for the ASAL counties is shown in Figure 11. The resulting RMSE ranges
between 4.3% and 9.7% and shows some distinct spatial pattern. Largest variations occur in the Center
region (e.g., Kitui) as well as in Mandera (in yellow and orange). On the contrary, the large arid
counties of Turkana, Marsabit, Wajir, etc. as well as southwestern semi-arid counties (e.g., Narok and
Kajiado) show a relatively good agreement between the FEWS NET and BOKU anomalies (Figure 11,
green and dark-green). Although the counties seem to build spatial groups, no obvious relation to
aridity or other environmental variables can be seen.
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4. Conclusions

The Famine Early Warning Systems Network (FEWS NET) provides relevant, consistent and
well-established data for drought monitoring on a global scale [17]. This study presents similar drought
indicators with associated uncertainty estimates that are derived in a fully operational processing chain
for Kenya. We demonstrate that the University of Natural Resources and Life Sciences (BOKU) drought
indicators generally re-produce well the drought indicators provided by FEWS NET. The analysis
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shows an overall good agreement with a coefficient of determination (R2) of 0.89 and a root mean
square error (RMSE) in the order of 6% for the investigated 3-monthly VCI. The main advantage of our
data is that the drought information is provided in near real-time (NRT), without time lag. Positively,
the most relevant (driest) years correspond best, e.g., R2 of 0.92 and RMSE of 3%. The highest difference
is a RMSE of 8% and a R2 of 0.63. Intra-annual coefficients of determination between both datasets
display the same order of variations with a R2 of 0.77 for November and 0.94 for February.

The BOKU data presented in this paper are delivered to NDMA within 2–3 days after the last
Monday in a given month. For comparison, the consolidated FEWS NET data are only available
five to six weeks after the end of each month. This offers an improved timeliness for deployment
of disaster contingency funds (DCF) and other (financial and humanitarian) interventions. Kenya’s
National Drought Monitoring Authority (NDMA) uses for example our timely data for triggering the
DCF payments. In a very similar way, the Hunger Safety Net Program (HSNP) of Kenya uses BOKU
indicators for cash transfers to households in need.

Despite the overall good agreement between FEWS NET and our indicators, we observe some
persistent (seasonal and spatial) differences between the two datasets. These differences deserve
further research—not only from a scientific point of view, but also because such differences might
confuse stakeholders, and therefore erode the trust in the remotely sensed information. We plan
to improve our NRT processing by incorporating for example daily or eight-day MOD09 products
(collection 6) into the filtering process, as well as additional data sources such as Proba-V.

For the analysis provided in this paper, it has to be highlighted that the FEWS NET data were
taken as “reference” to which the BOKU data were compared. Future research should compare
the two datasets against an external reference. Ideally, such an external reference would consist of
multi-year in-situ biomass measurements. We do not recommend using rainfall measurements as
reference information as they only capture meteorological drought; the impact on grazing conditions
and agriculture remains unknown. In addition, spatially explicit rainfall estimates from satellite
observations have their own limitations and uncertainties.
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Appendix

Web Interfaces

The operational drought-related information products (Table 3—upper part) are delivered to
NDMA at the end of each month via FTP server. This includes image files (e.g., GeoTiff and generic
binaries), but also KMZ files and quick looks (QLK), as well as spatially aggregated drought indicators
for producing charts and figures using the SPIRITS software [50]. Part of the data can also be accessed
online (see Table 3). Exemplary figures of the online possibilities are shown in Figures A1 and A2 [51].
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Figure A1 contains the web interface for displaying the spatially aggregated drought indicators
for the example of the three-monthly VCI (June 2015) at sub-county level in Kenya. Only sub-counties
classified as “pastoralist” are displayed (all other counties in grey). Pixels not classified as “pastoralist”
are excluded from the aggregated statistics. Statistics are derived by averaging the pixel-wise VCI
values. Details for the Samburu East County (Figure A1 left side) are also shown. This information
can be obtained by clicking on the sub-county in the map (here located in the center of Kenya—black
border). The top graph shows information about RFE (in blue bars, long-term average and actual data)
as well as for three-monthly VCI (actual year in purple, historical minimum in red, historical maximum
in green and historical median in yellow). The below matrix plot is the classified three-monthly VCI
(color coding according to Table 4—missing data in grey).

In Figure A2, the VCI image data are analyzed and displayed as a colored matrix (one box per
month and year). Instead of averaging over the spatial extent (e.g., sub-counties or counties) as in
Figure A1, the web-interface permits the calculation of fractional (percentage) coverage of pixels below
a user-defined threshold (here: VCI ď 35; moderate to extreme drought) of a user-selected county
(here “Samburu”) and livelihood zone (here “pastoralists”).
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