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Abstract: In- land surface models, which are used to evaluate the role of vegetation in the context of
global climate change and variability, LAI and FAPAR play a key role, specifically with respect to the
carbon and water cycles. The AVHRR-based LAI/FAPAR dataset offers daily temporal resolution,
an improvement over previous products. This climate data record is based on a carefully calibrated
and corrected land surface reflectance dataset to provide a high-quality, consistent time-series suitable
for climate studies. It spans from mid-1981 to the present. Further, this operational dataset is available
in near real-time allowing use for monitoring purposes. The algorithm relies on artificial neural
networks calibrated using the MODIS LAI/FAPAR dataset. Evaluation based on cross-comparison
with MODIS products and in situ data show the dataset is consistent and reliable with overall
uncertainties of 1.03 and 0.15 for LAI and FAPAR, respectively. However, a clear saturation effect is
observed in the broadleaf forest biomes with high LAI (>4.5) and FAPAR (>0.8) values.
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1. Introduction

Leaf Area Index (LAI) and Fraction of Absorbed Photosynthetically Active Radiation (FAPAR)
are key vegetation biophysical variables. the Global Terrestrial Observing System [1,2] has defined
these variables as follow: (i) “the LAI (m2/m2) is geometrically defined as the total one-sided area
of photosynthetic tissue per unit ground surface area”; and (ii) “the FAPAR is a primary variable
controlling the photosynthetic activity of plants, and therefore constitutes an indicator of the presence
and productivity of live vegetation, as well as of the intensity of the terrestrial carbon sink”. These two
biophysical variables are recognized by the Global Climate Observing System (GCOS) as Essential
Climate Variables (ECVs, [3]). ECVs are defined as measurements of atmosphere, oceans, or land that
are technically and economically feasible for systematic observation and have a high impact on the
requirements of the United Nations Framework Convention on Climate Change (UNFCCC) and the
Intergovernmental Panel on Climate Change (IPCC). The concept of ECVs includes a wide panel of
terrestrial variables. Vegetation processes incorporated in models (i.e., photosynthesis, transpiration,
carbon assimilation, and respiration) are strongly driven by the surface of the plant in contact with
atmosphere. In land surface models, which are used to evaluate the role of vegetation in the context of
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global climate change and variability [4], LAI and FAPAR play a key role, specifically with respect to the
carbon and water cycles (GCOS 2011). Hence, the GCOS and the Food and Agriculture Organization
(FAO) highlighted the need for accurate LAI and FAPAR measurements from both in situ and remote
sensing systems [1,2]. Remotely-sensed Earth observation systems provide a unique perspective to
continuously monitor vegetation, globally. Using the wealth of available satellite data, the scientific
community has designed ECV retrieval methods (e.g., [5–8]) and achieved an operational production
of ECV global maps.

The National Oceanic and Atmospheric Administration’s (NOAA) Climate Data Record (CDR)
Program has the mission to support robust, sustainable, and scientifically defensible approaches to
producing and preserving climate records from satellite data. The National Research Council defines a
CDR as a time series of measurements of sufficient length, consistency, and continuity to determine
climate variability and change [9]. The result is trustworthy information contributing to understanding
how, where, and to what extent our global climate is changing. NOAA’s operational CDRs are
systematically generated and thoroughly documented with a six-phase research-to-operations process
that includes public posting of source code used to produce the CDR.

Recently a daily surface reflectance dataset processed in a consistent and transparent way became
available as an operational NOAA CDR distributed by NOAA’s National Centers for Environmental
Information (NCEI), available online at http://doi.org/10.7289/V5TM782M [10]. This surface
reflectance dataset (named AVH09C1) has a 0.05˝ spatial resolution, also called Climate Modeling
Grid (CMG), a daily temporal resolution, and spans from 1981 to 10 days from the present based
on Advanced Very High Resolution Radiometer (AVHRR) data from seven NOAA polar orbiting
satellites: NOAA-7, -9, -11, -14, -16, -18, and -19. This unique data set offers the opportunity to analyze
long-term (30+ years) trends in global vegetation and as an input to generate LAI and FAPAR products.
The AVHRR-derived LAI/FAPAR product is named AVH15C1.

To the author’s knowledge, two other LAI/FAPAR published datasets derived from AVHRR
data record are currently in existence. Both algorithms are based on machine learning using AVHRR
data (surface reflectance or vegetation indices) and existing LAI/FAPAR products (e.g., the Moderate
Resolution Imaging Spectroradiometer (MODIS) LAI/FAPAR product). The GLASS LAI product
(http://glcf.umd.edu/data/lai/, [11]) is generated and released by the Center for Global Change
Data Processing and Analysis of Beijing Normal University. The GLASS LAI product is of CMG
spatial resolution (~5 km), has a temporal resolution of eight days, and is available from 1982
to 2012. However, data after 2000 are derived from the MODIS sensor rather than the AVHRR.
The other existing product adopts a similar approach but relying on the AVHRR NDVI3g product
(https://nex.nasa.gov/nex/projects/1349/), LAI3g and FPAR3g [12] are datasets produced by Boston
University bi-monthly at the same spatial resolution, and span the period from 1981 to 2011.

The AVH15C1 LAI/FAPAR dataset will provide several advantages over both of these existing
datasets. Firstly, the temporal resolution is daily, which is finer than the eight-day and 15-day resolution
of GLASS and LAI3g/FPAR3g, respectively. Secondly the production of this dataset continues to
present and is offered in near real-time, providing monitoring opportunities, unlike the other datasets
which end in 2012 and 2011, respectively. Further, this dataset is based on the surface reflectance CDR
which has been carefully geolocated, calibrated, and had necessary atmospheric and bidirectional
reflectance distribution function (BRDF) corrections applied, providing a consistent AVHRR surface
reflectance record as an input.

This paper provides a description of the AVH15C1 LAI/FAPAR product (called hereafter
AVH15). The product is a CDR distributed by NOAA’s NCEI and is available online at
http://doi.org/10.7289/V5M043BX [13]. In this paper, we first list and describe all the inputs required
to design, calibrate and execute the algorithm (Section 2). Section 3 is dedicated to the description of
the algorithm and its calibration. Section 4 presents the evaluation and validation results.
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2. Input Data

2.1. AVH09 Surface Reflectance

The AVH09C1 surface reflectance product (named hereafter AVH09) is the core input of the AVH15
CDR. This is the product distributed as the AVHRR Surface Reflectance (SR) CDR by NOAA’s NCEI.
It corresponds to the surface reflectance (SR) measured in two wavelengths (red, 580–680 nm, and
near-infrared, 725–1000 nm) and resample at the CMG spatial resolution (0.05˝). The SR is normalized
for BRDF effects (nadir view and 45˝ solar zenith angle) using the VJB approach [14]. A full description
of the product is given in the AVHRR Surface Reflectance Climate Algorithm Theoretical Basis
Document (C-ATBD, [15]). The CDR distribution of AVH09 contains associated quality information
such as indications of cloud, cloud-shadow, and snow-free conditions. NDVI (Normalized Difference
Vegetation Index) was derived directly from the nadir-adjusted surface reflectance.

While the AVH09 product is a measurement of SR normalized to a constant 45˝ solar zenith angle,
the FAPAR varies according to solar zenith angle. To be consistent with the FAPAR definition used in
comparable FAPAR products, such as the MODIS product (which is an instantaneous FAPAR at the
time of the satellite overpass), FAPAR is derived from nadir-adjusted surface reflectance with the solar
zenith angle at the time of the acquisition. The same VJB BRDF model performs this adjustment.

The VJB model is based on two coefficients (V and R), describing the 3D structure of the surface,
that have been demonstrated to be well correlated to NDVI [14]. Based on MODIS CMG data, the linear
regression coefficients were retrieved globally over the land surface. The retrieval of the nadir-adjusted
and variable solar zenith (θs) angle SR (ρ pOS, 0, 0q) from the AVH09 product is computed as in Equation
(1), where ρN p45, 0, 0q is the AVH09 SR and V and R are the two coefficients of the VJB model. F1 and F2
are two kernels defined by [16] and [17], respectively, that both depend on illumination-view geometry.

ρ pOS, 0, 0q “ ρN p45, 0, 0q
1`V ˆ F1 pOS, 0, 0q ` Rˆ F2 pOS, 0, 0q
1`V ˆ F1 p45, 0, 0q ` Rˆ F2 p45, 0, 0q

(1)

2.2. Reference LAI/FAPAR

The MCD15A2 (denoted MCD15 hereafter) is used as the reference LAI/FAPAR dataset. It is a
global LAI and FAPAR product. MCD15 is used as a LAI/FAPAR reference to calibrate the AVH15
algorithm. MCD15 is composited every eight days at 1-km resolution on a sinusoidal grid. It is
produced on near real-time during the entire MODIS era (2000 to present). The main algorithm is
based on lookup tables (LUT) simulated from a 3D radiative transfer model [18]. Red and NIR (Near
infrared) atmospherically-corrected MODIS reflectance [19] and the corresponding illumination-view
geometry are used as inputs of the LUT. The output is the mean LAI and FAPAR values computed over
the set of acceptable LUT elements for which simulated and MODIS surface reflectances agree within
specified level of (model and measurement) uncertainties. When the main algorithm fails, a backup
algorithm based on NDVI relationships, calibrated over the same radiative transfer model simulations
is used [20]. Retrievals from both algorithms were used. LAI and FAPAR are first produced daily.
Then, the eight-day composite corresponds to the values of the product when the maximum FAPAR
value within the eight day period is observed. Note that no LAI and FAPAR values are retrieved over
bare or very sparsely vegetated area, permanent ice or snow area, permanent wetland, urban area,
or water bodies.

2.3. Land Cover Map

Land cover classification, used to stratify the outputs, follows the 1981–1994 IGBP (International
Geosphere-Biosphere Program) map [21]. To avoid inconsistent land cover changes, the same
classification is used for the entire dataset. Moreover, to reduce spatial discontinuity, the number of
classes was reduced from 17 to 6 (see Table 1). A global map depicting the land cover categories used
is shown in Figure 1.
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Table 1. Reclassification table of IGBP land cover classes.

Short Name New Class Name Original IGBP Class Name

NLF Needle leaf forest Needle leaf forest

DBF Deciduous broadleaf forest Deciduous broadleaf forest, mixed forests

Shrub Shrubland Closed/open/woody shrubland, savannas

CGNV Croplands & grasslands &
non-vegetated

Grasslands, permanent wetlands, croplands, urban and
built-up, cropland/natural vegetation mosaic, snow and ice,

barren or sparsely vegetated

EBF Evergreen broadleaf forest Evergreen broadleaf forest

water Water Water
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The BELMANIP2 (BEnchmark Land Multisite ANalysis and Intercomparison of Products 2,
updated version of BELMANIP1, [22]) network was created using sites from existing experimental
networks (FLUXNET, AERONET, VALERI, BigFoot, ...) completed with selected sites from the GLC2000
land cover map. The site selection was performed for each band of latitude (10˝ width) by keeping
the same proportion of biome types within the selected sites as within the whole band of latitude.
Attention was paid so that the sites were homogeneous over a 10 ˆ 10 km2 area, almost flat, and with
a minimum proportion of urban area and permanent water bodies. The BELMANIP2 dataset includes
445 sites.

DIRECT is a collection of sites for which ground measurements have been collected [23] and
processed according to the CEOS-LPV (Centre for Earth Observation Science—Land Product Validation)
guidelines. This network is used for evaluation purposes since it contains sites different from those
in BELMANIP2. There are currently 113 in situ data points available. Data were obtained through
the On-Line Validation Exercise (OLIVE) a CEOS-LPV initiative for online validation of global land
products [24].

Matchups with MCD15 and AVH09 were performed by selecting pixels whose center is the nearest
to the BELMANIP2 and DIRECT site locations. We focused on coincident years between NOAA-16
and MODIS products: 2001–2007. Since MCD15 products are 1 km resolution, they were aggregated to
0.05˝ to be consistent with the spatial resolution of AVH09. Finally, for temporal consistency and to
reduce the noise, AVH09 and MCD15 products were averaged monthly.

3. Algorithm Definition and Calibration

The AVH15 algorithm is based on an artificial neural network (ANN) connecting LAI or FAPAR
to AVH09 SR products for each of the five biomes (omitting the water class) as defined in Section 2.3.
The algorithm has five steps:

- Input normalization,
- ANN execution (per class and variable),
- Output normalization,
- Classes fusion according to the IGBP land cover as defined in Section 2.3, and
- Flagging pixels outside of the defined domain.

The ANN were trained using the MCD15 products as reference. The calibration procedure was
done using data from BELMANIP2 as described in Section 2.4. We retained data for the period
spanning from 2001 to 2007.

3.1. Input and Output Normalization

Normalization is achieved simply by scaling between the minimum and maximum values: the
normalized values (Y) will vary between ´1 and +1, and are computed from the raw values (X), and
the minimum (Xmin) and maximum (Xmax) values (Equation (2)). Minimum and maximum values of
input and outputs retrieved with the calibration data are reported per class (i.e., for each ANN) in
Table 2.

Y “
2ˆ pX´Xminq
pXmax´Xminq

´ 1 (2)

3.2. ANN Definition and Learning

ANN are connections of “neurons”, associated by “synaptic” weights. Each neuron transforms
the sum of the weighted signal from the previous neurons according to a given transfer function and
a bias. The combination of sigmoid and linear functions is capable to fit any type of function [25].
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Table 2. Minimum and maximum values used for normalization. Refer to Table 1 for biome
class definition.

Class EBF DBF NLF Shrub CGNV

Min Max Min Max Min Max Min Max Min Max
Red 0.01 0.31 0.01 0.12 0.01 0.11 0.01 0.29 0.02 0.42
NIR 0.01 0.37 0.04 0.39 0.02 0.24 0.01 0.39 0.02 0.48

cos(θs) 0.46 0.88 0.14 0.88 0.05 0.85 0.06 0.88 0.01 0.88
NDVI ´0.41 0.91 ´0.01 0.87 0.01 0.86 ´0.22 0.92 ´0.22 0.80
LAI 0.69 6.72 0.01 5.94 0.00 5.24 0.00 5.95 0.00 5.27

FAPAR 0.23 0.91 0.02 0.92 0.01 0.93 0.00 0.89 0.00 0.89

The ANN architecture finally retained followed the proposition of [6] to have as many
intermediate neurons as inputs plus one. The ANN architecture is composed of (see Figure 3):

- One input layer made of the four normalized inputs: AVH09 Red SR, AVH09 NIR SR, AVH13
NDVI and the cosine of the solar zenith angle,

- One hidden layer with five neurons having hyperbolic tangent sigmoid transfer functions
(Equation (3), where x is the neuron input and y the output),

- One output layer via a linear transfer function, and
- Normalized output.

y “
2

1` exp p´2 ˚ xq
´ 1 (3)
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Figure 3. Conceptual representation of the ANN, including normalization (“Norm”) steps. Notice that
the number of neurons correspond to the actual number of neurons. S and L stand for “sigmoid” and
“linear” neurons, respectively.

For each of the 10 configurations (i.e., five classes ˆ two output variables), 10 ANN were trained,
resulting to 100 ANN in total. The selection of the 10 optimal ANN was based on the RMSD
(root-mean-square deviation) between the outputs and the in situ data from DIRECT network sites.

The learning process is composed of two elements: the training dataset that was described
previously, and the learning rule that is now described. The Levenberg–Marquardt optimization
algorithm [26] is used to adjust the synaptic weights and neuron bias to get the best agreement
between the output simulated by the network and the corresponding value of MCD15 LAI/FAPAR.
The initial values of the weights and biases were set to a random value between ´1 and +1.

3.3. Domain Definition

The ANN are trained over a defined area and the output accuracy decreases considerably outside
of the domain delimited by the learning dataset. Therefore, we defined an acceptable input domain for
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each class based on SR inputs used during ANN training. Since output data are not considered, no
differentiation is necessary between LAI and FAPAR domain definitions.

The domain definition was defined based on calibration data from NOAA-16 AVHRR SR pixels
overlapping spatially and temporally with BELMANIP2 sites during the 2001–2007 period. Figure 4
illustrates the density distribution of the learning dataset for each class and the associated domain
is delimited by a polygon. Polygons were defined to include 97% of the density distribution pixels
(0.01 resolution for red and NIR). With these selected pixels, a convex hull algorithm is used to define
the exact envelope. Finally, the envelope was simplified using a recursive Douglas–Peucker polyline
simplification algorithm [27].
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Figure 4. (a–e) Domain definition for the five classes (red polygons) in the red/NIR surface reflectance
space. Greyscale images represent the density function for each 0.01 surface reflectance (SR) bin
(white = no value; black = high density). Refer to Table 1 for biome class definitions. The domain
definition is calculated using AVH09C1 data acquired from 2001 to 2007.

Each processed pixel is compared to the polygon of the corresponding class. If it falls outside the
polygon, an indicator flag is reported in the QA associated with the retrieval.

4. CDR Performance and Validation

CDR performance is evaluated by examining the theoretical performance of the ANN as presented
in Figure 5. Three statistical metrics (Equations (4)–(6), [28]) are calculated: bias, the root-mean-square
deviation (RMSD), and the unbiased RMSD (ubRMSD).

Bias “
1
n
ˆ

n
ÿ

i“1

εi (4)

RMSD “

g

f

f

e

1
n
ˆ

n
ÿ

i“1

εi
2 (5)

ubRMSD “

g

f

f

e

1
n´ 1

ˆ

n
ÿ

i“1

pεi ´ Biasq2 (6)
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functions (CDF) of MCD15 training data and AVH15 LAI retrieval are shown. On the second column,
scatter plots between LAI MCD15 (x-axis) and LAI AVH15 (y-axis) are displayed. The graphs are
reproduced for FAPAR on the third and fourth column. Only data from DIRECT sites (not used for
training) were plotted. Statistical metrics on the second and fourth subplot columns are defined in
Equations (4)–(6); values in parenthesis correspond to metric values divided by the reference mean
value. Refer to Table 1 for class biome definitions.

In Equations (4)–(6), n is the number of valid samples used for the comparison and εi is the
estimate minus the reference. Relative values for the three metrics are computed by dividing the metric
by the mean value of the reference observation.
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The data shown in Figure 5 are based on DIRECT site locations, which were not used for the
training but only for the evaluation of the ANN. The cumulative distribution functions demonstrate
the good overall performance of the ANN to reproduce the range of value. However, a clear saturation
effect is observed in the DBF and EBF classes with high LAI (>4.5) and FAPAR (>0.8) values. The good
performance of non-broadleaf-forest classes (i.e., NLF, shrub, and CGNV) is consistent with the fact
that the input data used for calibration (i.e., MCD15) have shown better performance on such land
cover [6,29].

Another way to evaluate the reproducibility of the algorithm is to compare outputs from AVHRR
sensors on board two different platforms. We selected NOAA-16 and NOAA-18, with an overlapping
period from 2 July 2005 to 31 December 2006. The analysis is carried on BELMANIP2 and DIRECT sites.
The resultant scatterplot is displayed in Figure 6. RMSD are 0.35 for LAI and 0.07 for FAPAR, which are
comparatively better than the ANN performances computed in Figure 5l,x comparing AVHRR-derived
to MODIS-derived LAI and FAPAR, respectively.Remote Sens. 2016, 8, 263 10 of 13 
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Direct comparison of the satellite-derived products with in situ measurement is a key validation
step. It has been defined as Stage 1 of the CEOS-LPV guideline. However, an important issue
related to the validation of any coarse resolution retrieval is to link the pixel footprint to the spatial
representativeness of the measurement [30]. We relied on the work performed by Garrigues et al. [23]
who contributed to the conception of the DIRECT network. They first gathered in situ measurements
from many locations and scaled them up to a 3 kmˆ 3 km area using medium-resolution (<100 m) data.
To extend the measurement from a 3 kmˆ 3 km area to a 0.05˝ area, we applied a ratio calculated using
the LAI/FAPAR MCD15 (1 km) retrieval aggregated over the measurement footprint (3 km ˆ 3 km)
and the one aggregated at 0.05˝. The outputs were finally compared to the AVH15 retrieval (Figure 7).
Notice that these DIRECT sites are independent of the ANN learning process. LAI validation scatter
plots were separated among the type of measurement: effective and true LAI, depending if the
clumping factor is considered or not [6,31]. By merging the two LAI measurements types, we obtained
an uncertainty of 1.03.

The error budget is detailed in Table 3, which includes per-class Bias, ubRMSD and RMSD
from the validation over DIRECT sites. The class “Grasslands and Croplands and Non-vegetated”
(CGNV) is the most represented class of the in situ dataset, in terms of the largest N, and shows
the best result for Effective LAI. The computed RMSD fit in the medium range of previously
published. Camacho et al. [32] validated four global LAI/FAPAR products (GEOV1, CYCLOPE,
MCD15, and GLOV2) and found RMSD ranges of (0.74–1.39) and (0.078–0.228) for effective LAI and
FAPAR, respectively.
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Table 3. Error budget based on in situ validation. N corresponds to the number of points used to
compute the statistical metrics.

Class
Effective LAI True LAI FAPAR

Bias ubRMSD RMSD N Bias ubRMSD RMSD N Bias ubRMSD RMSD N

EBF 0.24 1.33 1.31 14 0.85 0.39 0.90 2 ´0.08 0.04 0.08 2
DBF 0.36 1.27 1.29 22 0.68 1.01 1.20 22 0.03 0.13 0.12 5
NLF 0.25 0.37 0.36 2 0.66 1.13 1.18 4 N/A N/A N/A 0
Shrub 0.18 1.06 1.05 20 0.46 0.96 1.00 7 0.08 0.12 0.14 25
CGNV ´0.04 0.67 0.66 51 ´0.31 1.08 1.10 27 0.05 0.16 0.16 40
All 0.12 0.98 0.98 109 0.23 1.11 1.13 62 0.05 0.14 0.15 72

5. Conclusions

This paper presented the 30+ year AVH15 LAI/FAPAR CDR distributed by the NOAA’s NCEI.
The dataset is a global, daily, 0.05˝ (~5 km) spatial resolution, spanning from 1982 to 10 days from
present. The algorithm relies on artificial neural networks which were calibrated per land cover
type using the MODIS LAI/FAPAR product. Five land cover classes were included: evergreen
broadleaf forest, deciduous broadleaf forest, needle leaf forest, shrubland, croplands and grasslands,
and non-vegetated.

Reproducibility of the algorithm was demonstrated to achieve overall uncertainties performance
of 0.54 (27%) and 0.08 (16%), for LAI and FAPAR, respectively. However, per-biome scores are
contrasted. Best performances were computed for cropland, grassland, and non-vegetated surfaces.
The main limitation of the algorithm is the incapacity to reproduce variability of densely vegetated
cover such as deciduous forest. A clear saturation of the algorithm was observed in these biomes for
high LAI (>4.5) and FAPAR (>0.8) values. The outputs were also compared to in situ data. Overall
uncertainties of 0.98 and 1.13 were found for LAI, depending on the accounting of the clumping index
in the in situ processing. Overall uncertainties of 0.15 were found for FAPAR. The high values of these
scores are also related to the complexity of producing a consistent measurement over a pixel footprint
(i.e., 0.05˝ ˆ 0.05˝).
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