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Abstract: The invasive emerald ash borer (EAB, Agrilus planipennis Fairmaire) infects and eventually
kills endemic ash trees and is currently spreading across the Great Lakes region of North America.
The need for early detection of EAB infestation is critical to managing the spread of this pest.
Using WorldView-2 (WV2) imagery, the goal of this study was to establish a remote sensing-based
method for mapping ash trees undergoing various infestation stages. Based on field data collected
in Southeastern Ontario, Canada, an ash health score with an interval scale ranging from 0 to 10
was established and further related to multiple spectral indices. The WV2 image was segmented
using multi-band watershed and multiresolution algorithms to identify individual tree crowns, with
watershed achieving higher segmentation accuracy. Ash trees were classified using the random forest
classifier, resulting in a user’s accuracy of 67.6% and a producer’s accuracy of 71.4% when watershed
segmentation was utilized. The best ash health score-spectral index model was then applied to the
ash tree crowns to map the ash health for the entire area. The ash health prediction map, with an
overall accuracy of 70%, suggests that remote sensing has potential to provide a semi-automated and
large-scale monitoring of EAB infestation.
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1. Introduction

The emerald ash borer (EAB) (Agrilus planipennis Fairmaire) is an invasive wood-boring beetle that
originated from Eastern Asia [1]. The EAB attacks and kills all species of native ash trees (Fraxinus sp.),
which are widely distributed across the Great Lakes region of North America. Once established, this
pest can cause an estimated 99% mortality in ash stands annually by damaging the critical (phloem)
tissue that carries nutrients from the roots to the canopy [2,3]. The pest was first detected in Windsor,
Ontario, and Detroit, Michigan, in 2002 [1]. Although the spread of EAB is not fast, it is accelerated
through human intervention by the transportation of ash wood products and firewood [1,2]. A recent
survey conducted in Canada indicates that EAB has already spread to 27 counties within Ontario and
to seven areas within Quebec in a span of about ten years [1]. Continued spread of this pest could
result in large-scale ash mortality, leading to serious ecological, economic, and social consequences in
this region [4,5].

EAB infestation can be detected by a variety of symptoms shown by ash trees, including exit bore
holes, canopy thinning, twig dieback, larval bore tracts under the bark, and evidence of increased

Remote Sens. 2016, 8, 256; doi:10.3390/rs8030256 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 256 2 of 18

woodpecker activity [5–7]. The EAB will eventually cause the death of an ash tree; however, this can be
a delayed response, meaning it can take three or four years for a mature tree to die [8]. Several methods
have been developed to attempt to control and manage the spread of EAB [5]. These methods include
containment procedures and injection of insecticides into early-infested trees [9]. However, to successfully
employ these methods, an effective method of detecting early EAB infestation is required.

One important step in the management of EAB infestations is the identification of ash trees, which
occupy a large proportion of both natural and urban forests in the Great Lakes region of North America.
Geographic object-based image analysis (GEOBIA), with the capability of delineating individual tree
crowns, can aid in this process [10]. GEOBIA involves two image processing steps: segmentation
and classification [11]. In recent years, several segmentation algorithms, including multiresolution
segmentation and multi-band watershed transformation, have been applied to delineate individual
tree crowns [12]. Multiresolution segmentation is a bottom-up region-merging technique that uses
multiple spectral bands and creates a final image segment from a few smaller image objects through
numerous iterative steps that attempt to minimize the internal weighted heterogeneity within the
segment [13]. On the other hand, a recently-proposed multi-band watershed transformation algorithm
incorporates multiple spectral bands for individual tree crown delineation, which has the potential
to form a complete boundary around an individual tree crown without any refinement [12]. One of
the critical parameters in these segmentation algorithms is the segmentation scale, which determines
intra-segment homogeneity and inter-segment heterogeneity [11]. However, manual selection of
the appropriate segmentation scale can be ineffective and subjective due to the influence of human
bias [14,15]. The use of a segmentation evaluation index is thus recommended, in order to quantitatively
evaluate the quality of the segments. The recently-proposed segmentation evaluation index (SEI) is an
appropriate choice, as it effectively recognizes overlap between segments and reference polygons and
thus allows the selection of the most appropriate segmentation threshold to assess tree crowns [16].

The image classification step, using image objects instead of pixels, has also proven to be beneficial
for individual tree species classification [17]. Many classification algorithms, both parametric and
non-parametric, have been used in land use/land cover classification, including the maximum
likelihood classifier, decision tree classifier, neural network classifier, support vector machine classifier,
and random forest classifier [18]. In recent years, the random forest classifier has attracted growing
attention, especially in the forestry community [19]. The random forest classifier is an “ensemble
learning” algorithm consisting of many decision trees and outputting the class that is the mode of
the classes output by individual trees [20]. In contrast to more traditional classification methods (e.g.,
the maximum likelihood classifier), the random forest algorithm is a typical non-parametric classifier;
thus its success is less dependent, or not dependent, upon the parameter settings [21].

Remote sensing data and techniques can not only aid in ash tree identification, but also have
the potential to monitor ash tree health status. When vegetation is stressed, chlorophyll content
declines, followed by an increase in the breakdown of chlorophyll molecules, which in turn affects
pigments in the leaves of the plants [22–24]. Several vegetation indices that use red, red-edge, and
near-infrared, such as the Normalized Difference Vegetation Index (NDVI) [23], are sensitive to changes
in chlorophyll and, therefore, have the potential to detect EAB infestations. Previous studies have
also demonstrated the potential of remote sensing for monitoring ash health. For example, Pontius
et al. identified ash health in EAB-infested natural forests in Michigan and Ohio using hyperspectral
imagery and ground observations [25]. Zhang et al. identified EAB-infested ash trees in an urban area
in Canada through texture information and vegetation indices derived from hyperspectral data [26].
More recently, multispectral data obtained from the WorldView-2 sensor were used to classify ash
mortality as a result of a fungal pathogen in Europe [27].

Building on existing work, this paper examines the utility of a field- and remote sensing-based
approach to detect EAB-infested ash trees in a natural mixed hardwood forest in Ontario, Canada.
The three objectives of this work are to: (1) map ash tree crowns using multi-band watershed
transformation and multiresolution segmentation, as well as random forest classification; (2) establish
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an ash health score using field-observed EAB health symptoms and investigate its relation to remote
sensing spectral indices; and (3) map the EAB infestation stages to identify areas of concern. Different
from previous work, we test the effectiveness of two popular segmentation algorithms and classify
ash trees in a hardwood forest using only 4-band multispectral images that could be accessed and
analyzed by conservation authorities.

2. Data and Methods

2.1. Study Area and Study Sites

The study area (43.81˝N, 79.93˝W) is located in the Credit River watershed, in Southeastern
Ontario, Canada. The watershed covers approximately 1000 square kilometers of land, contains a
mix of both urban and natural areas, and includes several conservation areas and municipalities such
as Mississauga, Orangeville, and Caledon. The Ken Whillans Resource Management Area within
the watershed was selected for this work because it is a natural forested area experiencing early
EAB infestation according to the Credit Valley Conservation group (Figure 1). The Ken Whillans
Resource Management Area covers 1.08 km2 and contains a mix of deciduous (Populus sp., Acer sp.,
and Fraxinus sp.) and coniferous trees (Pinus sp. and Abies sp.). Ash trees cover approximately 38% of
the forested area at Ken Whillans.
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Figure 1. The three study sites within the Credit River Watershed ((a) is the north site; (b) is the middle
site and (c) is the south site). The WorldView 2 image for the study area was displayed in true color
composite (RGB: 321).

Three study sites—north, middle, and south sites—were selected to collect field data for this
work (Figure 1). The north site is characterized by a large swamp area on the west side of the site,
and comprised of many tall deciduous trees. The middle site has a large open field to the south
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and a greater number of coniferous trees. The south site contains a larger number of shrubs and is
more heterogeneous in terms of the tree species and canopy height. We did not select a site in the
northwestern portion of the conservation area because this was not an area of concern according to
Credit Valley Conservation. We split sites for data collection to allow for a comparison of segmentation
methods over sites with different tree sizes and composition.

2.2. Study Data

2.2.1. Field Data

In 2014, a total of 53, 41, and 37 ash trees were identified in the north, middle, and south sites,
respectively, based on morphometric characteristics (Figures 1 and 2). The tree locations were marked
in the field using a Trimble GPS unit (Trimble Navigation Limited, Sunnyvale, CA, USA) with decimeter
accuracy (Figure 1). In addition to the ash trees, a total of 32, 36, and 34 other dominant trees were
recorded in the north, middle, and south sites, respectively, for classification purposes (Figure 1).
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Figure 2. A collection of field pictures: (a) is ash tree bark as identified by the diamond-shaped pattern;
(b) is an ash tree leaf as denoted by the tear drop shape and thin point; and (c) is a general photo of the
mixed canopy.

Among the recorded ash trees, a total of 86 trees in the north and middle sites were randomly
selected in 2015 to collect ash tree health status in relation to EAB symptoms when trees were in full
canopy, between July and August (Figure 3). We could not collect tree health status data for the south
site due to its temporal inaccessibility.
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The specific ash tree health variables we surveyed included twig dieback, crown
condition/thinning, general tree health (a measure that considers bore holes, evidence of woodpecker
activity, and epicormic branching), and crown transparency. All qualitative variables were collected on
a scale from 1 to 10, with 10 indicating little decline in ash health, and 1 indicating severe decline in
ash health. Values of 0 were all given to those trees that were completely dead. All data were collected
by the same field team and cross-validated within the team members in order to limit user bias on the
rating scale. The procedures to obtain these data were based on techniques employed by the United
States Department of Agriculture [28], and are briefly described below.

Twig dieback measurement was obtained by visually inspecting the branches within the canopy
of the ash tree. All visible branches were included in the determination of this measure, and it
included both fine twig and branch mortality. Branches that were missing leaves were identified,
and, depending on the percentage of dieback within the canopy, the tree was assigned to one of ten
classes [28]. Each class represented a distinct 10% threshold between 0% and 100%. Crown thinning
was evaluated by inspecting the various gaps in the crown [28]. This provided insight into how many
and how large gaps were in the crown structure. The gaps were defined as holes and open space within
the tree crown. These gaps were differentiated from natural gaps by looking at the location of gaps
in relation to dead branches and twigs. The tree crown gaps that were related to twig dieback were
determined to be the result of infestation. Gaps are present in most tree crowns; however, by looking
at the relationship to dead branches, we can determine if they are indeed the result of infestation.
The tree was then assigned into one of ten categories established for this symptom (Table 1).

Table 1. Ash tree classes based on crown gaps.

Crown Condition Classes Parameters for Crown Gap Assignment

10 Little to no gaps in the crown
9 Small gaps in isolated sections of the crown
8 Small gaps throughout the crown
7 Larger gaps in isolated sections of the crown
6 Larger gaps throughout the entire crown
5 Large gaps in the crown
4 Large gaps cover more of the crown than leaves
3 Little evidence of a crown (some leaves)
2 Very few leaves, dispersed throughout the crown
1 Almost no leaves, little evidence of growth
0 Tree is dead

General tree health was evaluated through an investigation into the various EAB-specific
symptoms displayed by the tree. This measure took into account twig dieback and crown thinning
to a certain degree, but focused more on the observation of EAB bore holes, woodpecker activity, and
epicormic branching, all of which are indicators of EAB infestation used in previous studies [6,7,29]. Trees
were assigned to one of ten categories established for this measure of tree health, as indicated in Table 2.

Canopy transparency was measured using hemispherical photography. Different from
traditional photos, which are commonly used for determining species composition and canopy cover,
hemispherical photographs provide information on the light regime of the forest, which can be used
to draw conclusions about the overall health of the canopy area [30]. A Canon Coolpix camera and
stabilizing fisheye lens, mounted on a tripod, were used to take a minimum of eight photographs of
the canopy around each tree. These images were processed using CAN_EYE software, version 6.3.1.2
(IRNA, Avignon, France), to produce a gap fraction and leaf area index, which has been demonstrated
to be effective in previous studies on agricultural crops and oak tree health [31,32]. The software
required a minimum input of eight images to perform a supervised classification and subsequent
analysis of percent sky and vegetation for each tree (Figure 4. The classification results of this process
were scaled from 0 to 10 by normalizing the data (Equation (1)).
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Transparency Score “
xi ´min pxq

max pxq ´min pxq
(1)

where xi is the classification percent produced by CAN_EYE, min(x) is the minimum score, and max(x)
is the maximum classification data. This was used to quantify the amount of canopy dieback and
overall canopy thinness, a symptom of Emerald Ash Borer infestation.

Table 2. Ash tree classes for general tree health.

Health Classes Parameters for General Health Assignment

9 or 10 Crown is in good health, no evidence of twig dieback or slight, bark is healthy, no evidence
of obvious EAB infection.

7 or 8
Crown is slightly different from a tree that received a 9 or 10. There may be small gaps in
the crown (larger gaps for a 7). Bark may be peeling lightly and there may be trace
amounts of evidence of EAB infection.

5 or 6
Crown is less full. There are medium-sized gaps in the crown and significant twig dieback.
There is evidence of epicormic branching on the lower truck of the tree, and moderate
evidence of EAB infection.

3 or 4 There is significant crown thinning and twig dieback. There is obvious evidence of EAB.

1 or 2 There is significant crown thinning and twig dieback. There is significant evidence of EAB.

0 0 is only given if the tree is dead.
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images were imported into the software and the outer edges of the images were masked out. From this,
the images were classified into percent vegetation and percent sky (gaps). The tree used in this figure
has 87.3% vegetation cover and 12.7% open canopy.

2.2.2. Development of an Ash Health Score Based on Field Observations

The final ash health score was calculated by averaging the score from each of the collected ash
health parameters, which were ranked from 0 to 10. This provided an overall ash health score for each
tree that was studied within the different sites. Similar methods were used by Pontius et al. when
predicting ash decline due to the emerald ash borer in Michigan [25].
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2.2.3. Image Data

The WorldView-2 (WV2) image for the study sites was acquired on 13 September 2013. The
image contained four multispectral bands (blue, 450–510 nm; green, 510–580 nm; red, 630–690 nm;
and near infrared, 770–895 nm) with a spatial resolution of 2 meters, and a panchromatic band
(450–800 nm) with a spatial resolution of 0.5 meters. The image was georeferenced using ground
control points (RMSE = 0.44) and atmospherically corrected using the ATCOR surface reflectance
module in Geomatica software (PCI GEOMATICS, Markham, ON, Canada). Image pan-sharpening
was then implemented using the Graham-Schmidt method [33] to increase the spatial resolution
and enable a more accurate identification of individual trees in the process of image segmentation.
The Graham-Schmidt image pan-sharpening method was selected because it has been demonstrated to
be effective at maintaining spectral information in comparison with other techniques, such as the IHS
(intensity, hue, saturation) and SFIM (smoothing filter-based intensity modulation) techniques [34].
The pan-sharpened image was further clipped into three study sites for further analysis (Figure 1).

2.3. Methods

An overview of the workflow process used in this study is shown in Figure 5. To map ash tree
health status, we first identified and delineated the ash trees from the remote sensing image; this was
accomplished through segmentation and subsequent supervised classification. Next, we created an ash
health index using field-observed ash tree data, and established an ash index-remote sensing spectral index
regression model for the prediction of ash health. Finally, the ash health model was applied to the remote
sensing image within the ash masks (classified ash trees) created in the first step to predict ash health.
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2.3.1. Image Segmentation and Classification

We employed the multi-band watershed segmentation [12] and multiresolution segmentation [35]
algorithms to delineate tree crowns. The multi-band watershed segmentation algorithm uses a spectral
angle metric to produce the gradient image and then segments the gradient image to match the
boundary of the real world object. The equation for calculating the spectral angle is provided below:

θab “ cos´1
řn

i“l aibi
b

řn
i“l ai

řn
i“l bi

(2)

where n is the number of spectral bands, and ai and bi are the reflectance components of two different
pixels [12]. The watershed method produces a high degree of over-segmentation during the initial
segmentation [12]. A seed-to-saddle difference threshold was then used to merge the over-segments
in the SAGA (System for Automated Geoscientific Analyses) [36]. In this study, the values of the
seed-to-saddle difference threshold between 0.05 and 0.5 were selected at a 0.05 interval.

The multiresolution algorithm implemented in eCognition Developer (Trimble Munich, Munich,
Germany) was mainly controlled by several user-defined parameters, namely scale, shape,
compactness, and layer weight [13]. The scale parameter, as the most important parameter, determines
when to stop the merging process based on the heterogeneity threshold, which also takes into account
the shape and compactness parameters [13]. The multiresolution method archives the segmentation
process through local-oriented region merging, where the iteration process does not cease until
the heterogeneity threshold exceeds the scale parameter. After careful trial-and-error attempts, we
constrained the scale parameter between 3 and 12 by an interval of 1 for this application. Both the
shape and compactness parameters were fixed at the values of 0.9 in order to produce the most optimal
crown shapes [37]. Moreover, all the spectral bands were weighted equally for the segmentation.

The segmentation results derived from the two aforementioned algorithms were evaluated by
the SEI method [16]. A lower value of SEI indicates a higher quality of image segmentation, and vice
versa [11]. A total of 150 reference tree crowns (50 for each site) were manually delineated using the
panchromatic image for segmentation assessment, and the scale parameter of the best segmentation
was optimized by the lowest value of SEI.

The random forest classifier was then applied to classify the ash trees using the best segmentation
product from each segmentation algorithm. The mean values of each spectral band were calculated
as the representative features of each segment for classification. We implemented random forest
classification (i.e., random trees) in eCognition Developer. We conducted the classification in a
hierarchical manner. The entire imagery was first classified into forest and non-forest areas (e.g.,
water, grass, bare land). The forest areas were then further classified into ash and non-ash trees. We
selected 96 ash (out of 131) and 77 non-ash (out of 102) trees as the training samples to differentiate the
ash and non-ash trees for the entire study area, and used the remaining samples to assess classification
accuracy. The user’s accuracy (UA), producer’s accuracy (PA), and overall accuracy were derived from
the confusion matrix to quantitatively evaluate the classification accuracy. PA indicates the accuracy of
the classification in relation to the number of trees correctly classified over the ground truth points.
UA denotes the number of correctly classified trees over the number of total points that were classified.

2.3.2. Establishing the Ash Health Prediction Model and Mapping the EAB Infestation

Seven remote sensing spectral indices, including the normalized difference vegetation index
(NDVI), green normalized difference vegetation index (GNDVI), enhanced vegetation index (EVI),
infrared percentage vegetation index (IPVI), difference vegetation index (DVI), ratio vegetation index
(RVI), and renormalized difference vegetation index (RDVI), were calculated using spectral information
extracted from the multispectral image (Table 3 [38–44]). These indices were selected because they
have been used to evaluate vegetation health in previous studies [27,45].
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The field-observed tree health data were split into two sets, 66 percent (57 ash trees) being used
to create the model and 34 percent (29 ash trees) reserved for validation purposes (Figure 3). Linear
regressions were calculated using the model fitting function in R software package (version 3.0.2) [46].
The spectral index with the lowest root means square error (RMSE, Equation (3)) for the validation
data was selected as the final model for ash tree health prediction. The final model was then applied
to the areas classified as ash within the different sites on a pixel-by-pixel basis to predict ash health
within the conservation area. The overall accuracy of the ash health model was determined by the
measure of map accuracy (MA, Equation (4)) [47]:

RMSE “

g

f

f

e

1
n

n
ÿ

i“1

pxi ´ x̂iq
2 (3)

MA “
ˆ

1´
RMSE
mean

˙

x 100 (4)

where x is the observed ash health score, x̂ is the predicted ash health score, n is the number of
observations, and mean is the average of predicted ash health score.

Table 3. All remote sensing vegetation health indices used as initial independent variables to the
regression model. B = Blue, G = Green, R = Red, and NIR = Near Infrared.

Remote Sensing Index Index Formula Reference

NDVI (NIR ´ R)/(NIR + R) [38]
GNDVI (NIR ´ G)/(NIR + G) [39]

EVI 2.5 ˆ ((NIR ´ R)/(NIR + R ˆ 6.0 ´ 7.5 ˆ B + 1) [40]
IPVI (NIR)/(NIR + R) [41]
DVI (NIR ´ R) [42]
RVI (NIR/R) [43]

RDVI
‘

(NDVI ˆ RVI) [44]

3. Results and Discussion

3.1. Segmentation Results

The lowest SEI occurred at the threshold of 0.25 (SEI = 0.45) for the watershed segmentation and
at the scale of 7 (SEI = 0.58) for the multiresolution segmentation in the north site, 0.15 (SEI = 0.41)
for watershed and 8 (SEI = 0.61) for multiresolution in the middle site, and 0.15 (SEI = 0.43) for
watershed and 5 (SEI = 0.58) for multiresolution in the south site (Figure 6). The substantially lower
SEI and closely-approximated tree crown segments (Figure 7) created by the watershed segmentation
algorithm suggest that the watershed algorithm is more effective at segmenting the mixed hardwood
forest imagery.

The optimal segmentation thresholds/scales differ slightly between sites, likely due to the
difference in species composition and tree crown size between sites. The optimum watershed
segmentation threshold of 0.25 in the north site is slightly higher than the optimal threshold of
0.15 in the middle and south sites. This result is consistent with field observations that the north site is
dominated by deciduous trees with a larger mean crown size and, as a result, a higher segmentation
threshold. When the image was segmented for the entire area, the watershed threshold of 0.25 created
the best segmentation map with the lowest SEI of 0.45, while the multiresolution scale of 8 produced
the lowest SEI of 0.56. These results indicate that using a fixed, global scale parameter to control
the process of the entire image segmentation can capture the full range of variation in the size of
geo-objects. As a result, we chose the entire area segmentation product from each method for the
subsequent classification practice.
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and 4 for multiresolution). 
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demonstrated in Figure 7. When the threshold is too large, the generated segments are greater than 
the reference polygon, and when the threshold is too small, over-segmentation occurs, whereby the 
resulting image segment is smaller than the reference polygon. A threshold value of 0.25 most closely 
matches the reference tree crown polygon when using the watershed segmentation approach (Figure 
7a–c). Similar patterns to those observed with multiresolution segmentation for under- and over-
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Figure 7. (a–f) The size of segments created by watershed and multiresolution algorithms change
as a function of the scale/threshold. Reference polygons are in red and segments are in yellow.
(a) and (d) are segments created by a larger threshold/scale value (0.5 for watershed and 12 for
multiresolution); (b) and (e) are the best segment threshold/scale values (0.25 for watershed and 8 for
multiresolution); (c) and (f) are the smallest segments created by the two methods (0.1 for watershed
and 4 for multiresolution).

The effect of increasing or decreasing scale or threshold on the resulting segment is demonstrated
in Figure 7. When the threshold is too large, the generated segments are greater than the reference
polygon, and when the threshold is too small, over-segmentation occurs, whereby the resulting image
segment is smaller than the reference polygon. A threshold value of 0.25 most closely matches the
reference tree crown polygon when using the watershed segmentation approach (Figure 7a–c). Similar
patterns to those observed with multiresolution segmentation for under- and over-segmentation are
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also observed in the multiresolution segmentation images (Figure 7d–f). Overall, the watershed
method provides a better shape of the object.

3.2. Classification Results

Classification was conducted on the best watershed segmentation created by the threshold
of 0.25 and the best multiresolution segmentation produced by the scale parameter of 8. Visual
interpretation of classification maps (Figure 8) indicates that the ash trees spread out in small clusters
in all sites, which is very similar to what was observed in the field, as there were small groves of
ash trees surrounded by larger clusters of other coniferous and deciduous trees. The watershed
segmentation-based classification produced an overall accuracy of 63.3%, slightly higher than the
60.0% overall accuracy of multiresolution segmentation-based classification (Table 4). When focusing
on the ash tree class, the watershed segments-based classification resulted in a user’s accuracy of
67.6% and a producer’s accuracy of 71.4% for ash trees. In comparison, the classification based on
multiresolution segmentation produced a similar user’s accuracy (67.7%), but much lower producer’s
accuracy (60.0%). The results suggest that better segmentation could lead to higher classification
accuracy in this application.
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Table 4. Classification accuracy matrices for the ash and non-ash trees.

Watershed-Based Classification Multiresolution-Based Classification

Ash Non-Ash Total UA Ash Non-Ash Total UA

Ash 25 12 37 67.6% 21 10 31 67.7%
Non-Ash 10 13 23 56.5% 14 15 29 51.7%

Total 35 25 60 35 25 60
PA 71.4% 52.0% 60.0% 60.0%

Overall accuracy 63.3% Overall accuracy 60.0%

For the watershed segmentation-based classification, the user’s accuracy is lower than the
producer’s accuracy for ash class, indicating there is a higher error of commission (1-user’s accuracy)
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than error of omission (1-producer’s accuracy) when classifying ash trees. This is to be expected
because the forest is comprised of several species of broadleaf trees that can be confused with ash
trees. Two examples of these trees are the Acer negundo (Manitoba Maple) and Ulmus sp. (Elm tree).
The clustering of trees in natural forests would also make it more difficult to differentiate between
species. A study conducted using WV2 products to classify tree species in Kuala Lumpur experienced
similar issues [48]. Fortunately, the users, in this case the conservation agencies, are less concerned
with commissions but more concerned with omissions, because omission means that the ash trees are
excluded from the species inventory and would prevent the conservation agencies from saving those
omitted ash trees under early infestation

Our results show an improvement over a similar work that classified Asian ash (Fraxinus
mandschurica) trees with an accuracy of 42% using IKONOS images in a mixed northern forest [49].
However, if comparison is made in terms of image wavelength used, the usefulness of an 8-band
WV2 image is clear. The ash classification accuracy of 63.3% in this study is lower when compared
with another work that produced an 82% ash identification accuracy using 8-band WV2 multispectral
data [27]. A few more examples also demonstrate the usefulness of 8-band WV imagery. A classification
work using WV imagery resulted in overall accuracies as high as 96% when classifying four tree species
and 82% when classifying 10 species [50]. A study evaluating riparian vegetation using six bands of
the WV2 achieved high overall accuracies of 93% [51]. Research mapping endangered tree species
using WV imagery resulted in an accuracy of 77% [52]. In addition, hyperspectral imagery coupled
with SVM showed high overall accuracies of 90% for delineating boreal forest areas that contain similar
tree species to forests in our research [53]. Future work using higher spectral resolution imagery could
expand on our current research to produce better species-level classification and thus provide a better
understanding of the composition of the forest. This is supported by work done in urban areas that
shows the direct benefits of using the 8-band WV2 products over both 4-band WV2 products and other
high resolution products, such as IKONOS images [54].

3.3. Ash Health Prediction

Ash health prediction models were established using the selected indices. Model evaluation for
all tested indices (Table 5) indicate that NDVI best predicted ash health over the study sites (root
mean square of 2.01, p < 0.01, R2 of 0.38) (Figure 9). DVI had a lower RMSE; however, it had a much
lower R2 value and a higher p value. Using the RMSE calculated from the reserved field data, the ash
health map achieved an overall accuracy of 70% (Table 6). A breakdown of prediction accuracy by tree
health class indicates the prediction algorithm becomes less accurate when ash becomes more severely
infested (Table 6). This is expected, as the study area was experiencing early to moderate infestation
and we have had limited training and validation data for severely infected trees. As shown in Table 6,
only 5 out of 29 reference ash trees were recorded under a health score of 4.5. This result suggests
that our approach would work well for detecting/predicting early EAB infestation, which is critically
important for employing pest management methods effectively. However, more field data need to be
collected in regions of more severe/long term EAB infestation to improve the model accuracy.

Table 5. Model evaluation parameters (R2, significance value, and RMSE = root mean square error) for
all indices tested. The results show that NDVI was the best model.

Index R2 Value Significance Value Validation RMSE

NDVI 0.38 <0.01 2.01
GNDVI 0.33 <0.01 2.19

EVI 0.28 <0.01 2.01
IPVI 0.38 <0.01 2.01
DVI 0.23 <0.01 1.97
RVI 0.34 <0.01 2.07

RDVI 0.36 <0.01 2.05
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Table 6. A breakdown of ash classification accuracy by tree health class.

Health Score
Class

Observed
Health Score

Predicted
Health Score

Reference
Points

RMSE
Per Class

Map Accuracy
Per Class

2.5–3.5 3.09 5.92 2 2.86 51.6%
3.5–4.5 3.93 7.09 3 3.75 47.2%
4.5–5.5 4.99 6.48 8 4.03 37.8%
5.5–6.5 5.79 6.45 3 2.51 61.0%
6.5–7.5 7.28 6.77 1 1.61 76.3%
7.5–8.5 7.93 6.73 9 1.19 82.3%
8.5–9.5 8.94 7.20 3 1.18 83.7%

Overall RMSE 2.01 Overall Map Accuracy 70.0%
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Our overall accuracy is acceptable, but lower than that of a similar study which reported an
accuracy of 97% when predicting ash health using hyperspectral data [25]. In terms of multispectral
data, many studies used the 8-band WV2 imagery to predict health decline due to invasive species
and found it achieved better prediction power. For example, a study on the bronze bug in South
Africa produced a R2 of 0.71 through the use of the red-edge and near-infrared bands in 8-band WV
imagery [55]. Work done in Europe on the classification of health decline due to a fungus produced an
overall accuracy of 77% [27]. A similar accuracy of 76% was obtained when investigating the early
detection of bark beetle in Norway spruce [56]. Work conducted in Northern Chile also highlighted
the success of using the red-edge band in combination with the near-infrared band [57]. These studies
show the importance of the red-edge band when monitoring the health of vegetation species [58].
However, due to constraints in budgets for most conservation authorities, it is more practical to use
the 4-band product, which our results show is an acceptable alternative.

In the predicted ash health map, areas with very low health scores cover small portions of the
total study area for all three sites (Figure 10). The majority of ash trees are experiencing a moderate
level of health to very slight levels of health decline. Within sites, ash health condition varies spatially.
For the north site, a heavier infestation is taking place on the west side of the site, while the ash trees
on the east side remain fairly healthy. The middle site shows a slight consistent decline throughout
the area, with some lower amounts of decline identified on the west site of the site along the river.
The south site shows evidence of some heavy decline, especially in the northern part, while the rest of
the ash trees appear relatively healthy. These results are consistent with field observations, and with
the assessment from the Credit Valley Conservation group (personal communication) that the entire
area is undergoing the early stages of infestation.
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The final ash health prediction products should be used with caution, due to the health decline
map being produced based on the classification maps, which had about 33% errors of omission
(meaning that some ash trees were confused with other trees, and not included in the prediction of
ash health). We would also like to point out that, although the goal of this map was to identify EAB
infestations, other disturbances such as an ice storm may have contributed to ash decline [22,59,60].
However, the health index that was used throughout this research was developed specifically for
damage caused by the EAB. Some damage may be similar between EAB and ice storms, such as the
appearance of epicormic branching [60]. On the other hand, disturbances such as ice storms can cause
entire limbs of a tree to break off, whereas in an EAB infestation this may not occur until later stages of
infestation when the tree is dead [5].

Although there was a two-year gap between image acquisition and field data collection, we are
confident that the variation of infestation over space should remain similar, as the infestation of ash
trees by the EAB is a slow process. This speculation is also confirmed by a comparison between the
tree health data collected in the summers of 2014 and 2015. No significant differences are observed in
the variables (i.e., twig dieback, crown condition, and general tree health) between the two years (p > 0.40),
although the ash health conditions observed in 2015 are slightly worse than those observed in 2014.

4. Conclusions and Future Work

Using two different types of segmentation methods, a multi-band watershed segmentation and a
multiresolution segmentation, as well as the random forest classifier for classification, ash trees were
successfully delineated and classified in EAB-infested natural forests. Although the results show that
the watershed algorithm outperformed the multiresolution method greatly, the difference in the final
classification maps produced from the two segmentation maps are not as obvious. Using an ash prediction
model that was developed based on an ash health index and NDVI, an ash health map was successfully
produced for the study area. The overall ash health map accuracy of 70% suggests that high spatial
resolution multispectral images are capable of monitoring early ash decline as a result of EAB infestation.
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Multispectral data with red-edge band and hyperspectral data have proven useful for monitoring
and tracking infestations within conservation and urban areas [25,26]. Further work will employ
these data to improve the prediction model, with the ultimate goal of accurately predicting ash health
across space and time. Although the cost of the hyperspectral data from commercial suppliers may
be prohibitive for some, the continuing advancement of Unmanned Aerial Vehicle (UAV) technology
may provide a cheaper alternative. Future work will consider expanding the study area across Ontario
to better capture the variation in EAB infestation. This may allow for the development of a general
model that could be applied to a wide variety of forests.
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Abbreviations

The following abbreviations are used in this manuscript:

UA User’s Accuracy
PA Producer’s Accuracy
EAB Emerald Ash Borer
SEI Segmentation Evaluation Index
WV2 WorldView-2
MA Map Accuracy
NDVI Normalized Difference Vegetation Index
GNDVI Green Normalized Difference Vegetation Index
EVI Enhanced Vegetation Index
IPVI Infrared Percentage Vegetation Index
DVI Difference Vegetation Index
RVI Ratio Vegetation Index
RDVI Renormalized Difference Vegetation Index
UAV Unmanned Aerial Vehicle
RMSE Root Mean Square Error
SVM Support Vector Machine
GEOBIA Geographic Object-Based Image Analysis
SAGA System for Automated Geoscientific Analyses
ATCOR Atmospheric and Topographic Correction
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