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Abstract: Remotely sensed land surface temperature and fractional vegetation coverage (LST/FVC)
space has been widely used in modeling and partitioning land surface evaporative fraction (EF)
which is important in managing water resources. However, most of such models are based on
conventional trapezoid and simply determine the wet edge as air temperature (Ta) or the lowest
LST value in an image. We develop a new Two-source Model for estimating EF (TMEF) based on
a two-stage trapezoid coupling with an extension of the Priestly-Taylor formula. Latent heat flux
on the wet edge is calculated with the Priestly-Taylor formula, whereas that on the dry edge is set
to 0. The wet and dry edges are then determined by solving radiation budget and energy balance
equations. The model was evaluated by comparing with other two models that based on conventional
trapezoid (i.e., the Two-source Trapezoid Model for Evapotranspiration (TTME) and a One-source
Trapezoid model for EF (OTEF)) in how well they simulate and partition EF using MODIS products
and field observations from HiWATER-MUSOEXE in 2012. Results show that the TMEF outperforms
the other two models, where EF mean absolute relative deviations are 9.57% (TMEF), 15.03% (TTME),
and 30.49% (OTEF).

Keywords: evaporative fraction; evapotranspiration; two-source model; land surface temperature;
fractional vegetation coverage

1. Introduction

Modeling and partitioning land surface evapotranspiration (ET) are of crucial importance in
managing water resource both at the farm and the irrigation project level [1,2]. They are also essential
in predicting the climatic response of ecosystem functions and processes [3–5]. Evaporative fraction
(EF), defined as a ratio between the latent heat flux and the available energy at the land surface, is an
index for ET. It has been widely used to characterize the energy partition over land surfaces and to infer
daily energy balance information based on mid-day remote sensing measurements [3,6–9]. Moreover,
it is more suitable as an index for surface moisture condition or drought status than ET, because ET is
not only a function of the land surface conditions but also the surface available energy [1,10].

Satellite remote sensing offers the possibility to obtain regional distributed EF or ET in a relatively
cheap and rapid way [2]. Recently, remote sensing-based EF or ET models have experienced an
explosive growth. Among them, the models based on the land surface temperature and fractional
vegetation coverage (LST/FVC) space show a wide application prospect because these models
can avoid complex parameterization of aerodynamic and surface resistances for water and heat
transfer [11] and enable the calculation of EF or ET from a remote sensing image itself without
additional information [3,12]. Moreover, Yang et al. (2015) compared three two-source remote sensing
models of ET (i.e., the Hybrid dual-source scheme and Trapezoid framework-based ET Model (HTEM),
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the Two-Source Energy Balance (TSEB) model, and the MOD16 ET algorithm) and found that the
HTEM which is based on the LST/FVC space outperformed the other two models in estimating and
partitioning ET [13].

Currently, there are two typical classes of EF models based on the LST/FVC space: the one-source
models and the two-source models. Generally, the one-source models utilize the LST/FVC space
to interpolate the effective Priestly-Taylor parameter in the Priestly-Taylor formula for calculating
EF [3,6,8,14,15], whereas the two-source models use the LST/FVC space to decompose LST into
vegetation and soil component temperatures (Tv and Ts) and subsequently calculate EF and its
vegetation and soil components (EFv and EFs) [16–18]. The one-source models assume land surface
as a single uniform layer which produce significant errors when applied to partially vegetated
landscapes [18]. In contrast, the two-source models treat soil and vegetation as independent sources of
the moisture flux and are generally considered to be an advancement of the one-source models [18].
Moreover, the two-source models are able to discriminate vegetation transpiration from soil surface
evaporation. Vegetation transpiration and soil evaporation are controlled by different biotic and
physical processes. Discriminating them is critical to many environmental applications and water
management [5].

However, most of such two-source models e.g., the Two-source Trapezoid Model for
Evapotranspiration (TTME) [17] and the HTEM [18] are based on the conventional trapezoidal
LST/FVC space which assumes that Tv and Ts vary simultaneously with the variation of soil
moisture availability. Sun (2015) demonstrated that Tv should vary after Ts because vegetation
can absorb deep soil moisture to maintain transpiration [19]. A two-stage trapezoidal LST/FVC
space was then suggested to take into account the variation speed difference between Tv and Ts [19].
Additionally, the wet edge of the LST/FVC space is usually assumed to be horizontal and determined
as the air temperature (Ta) [17,18] or the lowest temperature in an image [20]. Long and Singh
(2012) indicated that derivation of the wet edge from satellite imagery suffers somewhat from
subjectivity [17]. Errors caused by clouds and terrains can lead to an inappropriate specification
of the lowest temperature. Determining the wet edge temperature as Ta, however, is also inappropriate
because it implies that EF on the wet edge is a constant value of 1, but EF is controlled not only by
the availability of water but also by Ta and wind speed [6]. Yang et al. (2015) indicated that the
underestimation of temperatures for the wet edge is a main reason for underestimating EF in the
HTEM model [13]. Therefore, a new way is required to determine the wet edge.

To advance the performances in modeling and partitioning EF or ET based on LST/FVC space,
a new Two-source Model for estimating EF (TMEF) is constructed in this study. The TMEF model is
based on the two-stage trapezoidal LST/FVC space rather than the conventional trapezoid. Moreover,
the TMEF model determines the wet edge in a theoretical way through calculating latent heat flux on
the wet edge with the Priestly-Taylor formula. Finally, it combines the Priestly-Taylor formula and the
two-stage trapezoid to simulate EFv, EFs, and EF.

2. Methods

2.1. Model Formulation

2.1.1. Priestly-Taylor Formula and Its Extension

The rate of ET is mainly controlled by the available energy, the availability of water, and other
factors affecting the mechanism to transport water from the land surface to the atmosphere such as
wind speed and air temperature. Priestley and Taylor (1972) simplified the general form of ET for
surfaces with sufficient water supply [21]:

LE “ αPT

„

pRn ´Gq
∆

∆` γ



(1)
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where LE is latent heat flux (W/m2); Rn is net radiation (W/m2); G is soil heat flux (W/m2), αPT is
the original Priestley-Taylor’s parameter; ∆ is the gradient of the saturated vapor pressure to the air
temperature and γ is the psychometric constant. Jiang and Islam (1999, 2001) [8,14] extended the
Priestley-Taylor formula to a range of surface conditions:

EF “
LE

Rn ´G
“ φ

∆
∆` γ

(2)

where φ is a complex effective Priestley-Taylor parameter. It is noteworthy that parameter φ, although
it looks similar to the αPT, encompasses a wide range evaporative conditions and can take a range of
values [8,14]. Jiang and Islam (2001) suggested a two-step interpolation scheme to obtain the φ value
using a triangular LST/FVC space [8]. In that scheme, φ has the minimum value φmin on the dry edge
and the maximum value φmax on the wet edge of the triangular LST/FVC space. Moreover, φmax was
considered equaling to p∆` γq {∆ and φmin was determined as a linear function of NDVI [8]. Stisen et al.
(2008) tried to improve the determination of the φmin by proposing a non-linear method [15].

However, trapezoidal LST/FVC space is different from the triangular LST/FVC space. The dry
edge of the triangular LST/FVC space is not an isopleth of zero evapotranspiration but a zero isopleth
for soil evaporation [22]. In contrast, the dry edge of the trapezoidal LST/FVC space represents an
isopleth of zero evapotranspiration [17,19]. Thus, the EF is equal to 0 i.e., φmin should equal to 0 on the
dry edge of the trapezoidal LST/FVC space [17]. In addition, EF should not be a constant value of 1 i.e.,
φmax should not equal to p∆` γq {∆ on the wet edge of the triangular or trapezoidal LST/FVC space
because EF is controlled not only by the availability of water but also by air temperature and wind
speed [6]. The original Priestley-Taylor formula was proposed to express the evaporation rate from an
extensive wet surface. It can be used to determine EF on the wet edge of the trapezoidal LST/FVC
space. Resultantly, φmax is set to the parameter αPT in this study. Previous studies have shown that
the parameter αPT varies depending upon the differences in meteorological conditions [23]. However,
an overall mean value of 1.26 for typically observed atmospheric conditions is well accepted in many
studies and it is relatively insensitive to small changes in atmospheric parameters [3,6,8,14,24,25].
Thus, the value of 1.26 is adopted in this study for determining αPT.

2.1.2. Two-Stage Trapezoid Model

Figure 1 presents the theoretical diagram of the conventional trapezoidal and the two-stage
trapezoidal LST/FVC spaces where point B and A represent bare soil with the maximum and minimum
evaporation, and points C and D represent fully vegetation with the maximum and minimum
transpiration, respectively. AD is the dry edge and BC is the wet edge of the LST/FVC space. The LST
at the point A and D are denoted as Ts

max and Tv
max. The LST at point B and C are Ts

min and Tv
min.

There are two distinct differences between the conventional trapezoid and the two-stage trapezoid:

(1) Firstly, the isopleth of the soil moisture availability from the wet edge to the dry edge has only one
variation stage in the conventional trapezoid, whereas it has two variation stages in the two-stage
trapezoid. In conventional trapezoid, Ts and Tv change simultaneously as land surface dries.
However, in two-stage trapezoid, Ts changes in the first stage and Tv changes in the next stage,
which considers the variation speed difference between Ts and Tv in view of that vegetation can
absorb deep soil moisture to maintain transpiration [19].

(2) Secondly, the EF on the wet edge of the conventional trapezoid is set to a constant value of 1 [17].
Contrarily, the EF on the wet edge of the two-stage trapezoid is set to αPT ˆ ∆{ p∆` γq in this
study. The EF on the dry edges are both equal to 0. Resultantly, the conventional trapezoid and
the two-stage trapezoid have the same theoretical expressions for the dry edge which have been
presented in previous literatures [17,26]. However, they have different expressions for the wet
edge. The wet edge was usually expressed as equaling to Ta in conventional trapezoid [12,20].
In this study, we would present a theoretical expression of the wet edge in two-stage trapezoid.
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Figure 1. (a) the conventional trapezoidal LST/FVC space derived from [17]; (b) the two-stage 
trapezoidal LST/FVC space. 
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Figure 1. (a) the conventional trapezoidal LST/FVC space derived from [17]; (b) the two-stage
trapezoidal LST/FVC space.

For land surfaces on the wet edge, LE is determined by the Equation (1) and the other components
of surface energy budget are determined by:

Rn “ p1´ αq ˆ Sd ` εˆ εa ˆ σˆ Ta
4 ´ εˆ σˆ LST4 (3)

H “ ρcp
LST´ Ta

ra
(4)

G “ nˆRn (5)

where α and ε are land surface albedo and emissivity; Sd is the down-welling shortwave radiation
(W/m2); εa is atmosphere emissivity which can be determined using the method provided in [7]; σ

is a constant with a value of 5.67 ˆ 10´8 W/m2/K4. ρ is the air density (1.293 Kg/m3); Cp is the air
specific heat at the constant pressure (1005.0 J/kg/K); ra is the aerodynamic resistance (s/m); n is a
fraction coefficient.

Consequently, the following equations are obtained according to surface energy balance equation:

p1´ nq
ˆ

1´ αPT
∆

∆` γ

˙

”

p1´ αq ˆ Sd ` εˆ εa ˆ σˆ Ta
4 ´ εˆ σˆ LST4

ı

“ ρcp
LST´ Ta

ra
(6)

In order to calculate from the Equation (6), the first two terms of the Taylor series of LST4 at Ta

are selected to approximate LST4.

LST4 « Ta
4 ` 4Ta

3 pLST´ Taq “ 4Ta
3LST´ 3Ta

4 (7)

Finally, the Ts
min and Tv

min can be witten as:
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$

’

’

’

&

’

’

’

%

Ts
min “

3asTa
4 ´ es

4asTa
3 ` ds

Tv
min “

3avTa
4 ´ ev

4avTa
3 ` dv

(8)

with the coefficients as “ εs ˆ σ; av “ εv ˆ σ; ds “ ρcp{ tra
s p1´ nsq r1´ αPT∆{ p∆` γqsu;

dv “ ρcp{ tra
v p1´ nvq r1´ αPT∆{ p∆` γqsu; es “ ´εs ˆ εa ˆ σ ˆ Ta

4 ´ dsTa ´ p1´ αsq ˆ Sd; and
ev “ ´εv ˆ εa ˆ σˆ Ta

4 ´ dvTa ´ p1´ αvq ˆ Sd where εv and εs are emissivities (unitless) of vegetation
and soil components, respectively; αv and αs are the albedo for the vegetation and soil components
(unitless); ra

s and ra
v are the aerodynamic resistances (s/m) for the soil and vegetation components,

respectively; ns and nv are the fractional coefficients between G and Rn for the soil and vegetation
components and they are set as 0.35 and 0 as done in [17]; ∆ and γ can be determined using several
empirical methods, but for convenience they are calculated using an approximate formula that
∆{ p∆` γq “ 0.0127ˆ Ta ` 0.3464 [6].

In a similar vein, the Ts
max and Tv

max can be written as:
$

’

’

’

&

’

’

’

%

Ts
max “

3as
1Ta

4 ´ es
1

4as1Ta
3 ` ds

1

Tv
max “

3av
1Ta

4 ´ ev
1

4av1Ta
3 ` dv

1

(9)

with the coefficients as
1 “ εs ˆ σ; av

1 “ εv ˆ σ; ds
1
“ ρcp{ rra

s p1´ nsqs; dv
1
“ ρcp{ rra

v p1´ nvqs;
es
1 “ ´εs ˆ εa ˆ σˆ Ta

4 ´ ds
1Ta ´ p1´ αsq ˆ Sd; ev

1 “ ´εv ˆ εa ˆ σˆ Ta
4 ´ dv

1Ta ´ p1´ αvq ˆ Sd.
In this study, ra

s and ra
v are determined using the method suggested in [17]. Moreover, In the

calculation of ra
s and ra

v, the underdetermined Ts
min, Tv

min, Ts
max and Tv

max are required as input.
Therefore, iterative algorithm is necessary in the calculation of Equations (8) and (9). We set the initial
values of Ts

min, Tv
min, Ts

max and Tv
max as Ta in the iteration cycle.

2.1.3. Coupling Priestly-Taylor Formula with Two-Stage Trapezoid for Estimating EF

We proposed the TMEF model for estimating EF based on the combination between the
Priestly-Taylor formula and the two-stage trapezoid model. Firstly, let’s denote a random pixel
as point P when it locates in the lower triangle and denote it as point P’ when it locates in the upper
triangle of the two-stage trapezoid as shown in Figure 1b. Point N and O locate at the wet edge BC
and the median line AC, respectively, which have the same fv with the point P. Point M and O’ locate
at the dry edge AD and the median line AC, respectively, which have the same fv with the point P’.

Subsequently, EFs and EFv for the point P are calculated by the following equation.

$

’

’

&

’

’

%

EFs “
LSTO ´ LSTP

LSTO ´ LSTN
ˆ αPT ˆ

∆
∆` γ

EFv “ αPT ˆ
∆

∆` γ

(10)

where LSTO, LSTP, LSTN, are the LST at point O, P, and N, respectively. LSTO and LSTN

are determined using a linear interpolation i.e., LSTO “

´

Tv
min ´ Ts

max
¯

fv
P
` Ts

max and

LSTN “
´

Tv
min ´ Ts

min
¯

fv
P
` Ts

min. fv
P is the FVC at point P.

For the point P’, EFs and EFv are calculated by the following equation.
$

’

&

’

%

EFs “ 0

EFv “
LSTM ´ LSTP1

LSTM ´ LSTO1

ˆ αPT ˆ
∆

∆` γ

(11)
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where LSTM, LSTP’, LSTO’ are the LST at point M, P’, and O’, respectively. LSTM and LSTO’ are
also determined using the linear interpolation i.e., LSTM “ pTv

max ´ Ts
maxq ˆ fv

P1

` Ts
max and

LSTO1 “

´

Tv
min ´ Ts

max
¯

fv
P1

` Ts
max. fv

P1

is the FVC at point P’.

Finally, the TMEF model adopts a two-source scheme to represent the relationship between the
EF for a mixed landscape and the EF for vegetation and soil components [17]:

EF “
LE
Q
“ fv ˆ

Qv
Q
ˆ EFv ` p1´ fvq ˆ

Qs
Q
ˆ EFs (12)

where fv is the FVC; Q is the available energy (W/m2) defined as the difference between Rn and G; Qv
and Qs as the vegetation and soil components of Q. Q and its components are determined using the
following equation.

$

’

’

’

’

&

’

’

’

’

%

Qv “ p1´ nvq ˆRn
v “ p1´ nvq ˆ

”

p1´ αvq Sd ` εvεaσTa
4 ´ εvσTv

4
ı

Qs “ p1´ nsq ˆRn
s “ p1´ nsq ˆ

”

p1´ αsq Sd ` εsεaσTa
4 ´ εsσTs

4
ı

Q “ fv ˆQv ` p1´ fvq ˆQs

(13)

where Tv and Ts of the point P are determined as:
$

’

&

’

%

Ts “ Ts
max ´

LSTO ´ LSTP

LSTO ´ LSTN
ˆ

´

Ts
max ´ Ts

min
¯

Tv “ Tv
min

(14)

Tv and Ts of the point P’ are determined as:

$

’

&

’

%

Ts “ Ts
max

Tv “ Tv
max ´

LSTM ´ LSTP1

LSTM ´ LSTO1

ˆ

´

Tv
max ´ Tv

min
¯ (15)

2.2. Model Evaluation

The TMEF model was firstly evaluated by comparing the EF estimations with the EF observations
over all testing sites. Evaluation indices include Pearson correlation coefficient (r), Root Mean Square
Error (RMSE), Relative Deviation (RD), and Mean Absolute Relative Deviation (MARD). The relative
deviation is expressed as:

RD “
EF1 ´ EF

EF
ˆ 100% (16)

where EF represents the observed value and EF1 represents the estimated value.
Additionally, there are two typical models that utilize the trapezoidal LST/FVC space to model

EF. Both of them are based on the conventional trapezoid as shown in Figure 1a. One of them does not
use the Priestley-Taylor whereas uses the relative change of Ts and Tv to the dry edge and wet edge to
calculate EF [17]. TTME is a representative of such model where EFs and EFv are expressed as:

$

’

’

&

’

’

%

EFs “
Ts

max ´ Ts

Ts
max ´ Ta

ˆ
Qs,0

Qs

EFv “
Tv

max ´ Tv

Tv
max ´ Ta

ˆ
Qv,0

Qv

(17)

where Qs,0 and Qv,0 are calculated by the Equation (13) when Ts “ Ta and Tv “ Ta. For another
typical model, the conventional trapezoidal LST/FVC space is employed to interpolate the effective
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Priestley-Taylor parameter [1]. Taking a random pixel P for example in the LST/FVC space as
illustrated in Figure 1a, its EF is calculated by:

EF “
LSTM ´ LSTP

LSTM ´ LSTN
ˆ αPT ˆ

∆
∆` γ

(18)

This model is denoted as One-source Trapezoid model for EF (OTEF) in this study. The TMEF,
TTME, and OTEF models were compared with each other in how well they model EF at each site.
Evaluation indexes include Pearson-r and RMSE. Additionally, the differences of estimated EFv and
EFs between the TMEF model and the TTME model were also evaluated.

3. Study Area and Materials

3.1. Study Area

Zhangye oasis, located in the middle reaches of the Heihe River Basin, the second largest inland
river basin in China, is selected as the study area. As a kernel experimental area of the project
Heihe Watershed Allied Telemetry Experimental Research (HiWATER) and its subproject Multiscale
Observation Experiment on Evapotranspiration (MUSOEXE) [27], several observation sties were
established in this study area according to the crop structure, shelterbelt, residential area, soil moisture,
and irrigation status for measuring the surface fluxes of momentum, energy, and water vapor in
2012 [28,29]. At each site, an automatic weather station and an eddy covariance (EC) system were
installed. Observations at six sites in the corn field were obtained in this study from the “Heihe
Plan Science Data Center, National Natural Science Foundation of China”. Figure 2 shows the kernel
experimental area over oasis surfaces and the spatial distribution of the six sites. More information
about these observations can be found in several papers [28,30–32].Remote Sens. 2016, 8, 248 8 of 17 
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3.2. Study Materials

Several meteorological parameters were measured from June to September in 2012 by the sites
listed in Figure 2. Six parameters among them are eligible for our study including near surface air
temperature Ta (˝C), air relative humidity RH (%), solar down welling shortwave radiation Sd (W/m2),
friction velocity u˚ (m/s), sensible heat flux H (W/m2), and latent heat flux LE (W/m2). The H and LE
measured using the EC system were used to determine EF observations since they have been corrected
for closure using the Bowen ratio closure method [28,29,33].
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Additionally, four MODIS products covering the period from April to October in 2012 were
collected in this study. They are Land Surface Temperature/Emissivity Daily L3 Global 1km products
(MOD11A1 and MYD11A1) and Vegetation Indices 16-Day L3 Global 1km product (MOD13A2 and
MYD13A2). The criterions “Pixel produced”, “good data quality”, “average emissivity error ď 0.02”,
and “average LST error ď 2 K” were used to control LST data. Additionally, the VI usefulness
parameter in the SVI products Quality Assessment Science Data Sets was used to control NDVI data.
The NDVI data with a VI usefulness from 0000 (highest quality) to 1100 (lowest quality) were retained
in this study, while the others were excluded. It is noteworthy that that LST and NDVI have different
temporal resolution, daily for LST and 16 days for NDVI. The 16-day NDVI were interpolated firstly
into 8-day NDVI and subsequently daily NDVI during the 8-day interval were assumed to be invariant
as done in [34,35]. MODIS NDVI was utilized to calculate fv by the equation that

fv “ rpNDVI´NDVIminq { pNDVImax ´NDVIminqs
2 (19)

where NDVImin is the NDVI corresponding to bare soil and NDVImax is the NDVI for fully vegetated
area. In this study, NDVImin and NDVImax were set as 0.2 and 0.86 as done in the paper [3].
Additionally, εs and εv were set as 0.95 and 0.98; αv and αs were set as 0.18 and 0.24; and the vegetation
height (hc) was set as 1.0 m according to the field observations over the study area [36].

4. Results

4.1. Model Evaluation

Comparison of the estimated EF with the observed EF at all flux towers is illustrated in Figure 3.
The totality number (N) of the comparison samples is 438. The comparison results indicate that there
is a significant correlation between the observed EF and the estimated EF by the TMEF model with
an r value of 0.69 at the level of 0.05 by the two-tailed test. The r values of the TTME and the OTEF
models are 0.46 and 0.62, respectively, both of which are smaller than the r value of the TMEF model.
Moreover, the RMSE of the TMEF model is 0.10, which is less than that of the TTME (0.15) and the
OTEF (0.27) models. Figure 3b shows the frequency histogram of the relative deviation between the
estimated and the observed EF. Results indicate that the EF estimated by the TMEF model has the
minimum MARD with a value of 9.57%, whereas the MARD of the TTME and OTEF models are 15.03%
and 30.49%, respectively. In summary, Figure 3 indicates that the TMEF model shows the best results
in estimating EF as compared at all flux towers.
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Comparisons of the suggested TMEF model with the TTME and the OTEF models at each flux
tower are presented in Figure 4. The results indicate that RMSE of the TMEF model is less than that
of other models at all of the testing sites. Moreover, the r value of the TMEF model is significantly
greater than that of other models at all of the testing sites. Consequently, the suggested TMEF model
presents the best effectiveness in estimating EF as compared with the TTME and the OTEF models at
each flux tower.
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In addition, the differences of estimated EFv and EFs between the TMEF model and the TTME
model are presented in Figure 5. The soil moisture at the depth of 40 cm, which is closely correlated
with the water availability for vegetation transpiration in the study area, experienced several variation
processes from wet to dry during the period from DOY (day of year) 165 to DOY 260 in 2012. However,
the soil moisture maintains a relative higher status approximately at 25%. The soil type in the study
area is silt loam and its field capacity is approximate to 30% [37]. Therefore, there is almost no water
stress occurred on vegetation during that period, which indicates that the EFv should maintain at a
relative higher status. Results in Figure 5 show that the EFv by the TMEF model varied around 0.7~0.8
with a relatively flat variation, whereas the EFv by the TTME model has a more unsteady variation
within 0.5–1.0.Remote Sens. 2016, 8, 248 11 of 17 
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Furthermore, Figure 5 shows several variation processes of soil from wet to dry at the depth of
40 cm. The soil at the surface would suffer a more drastic variation during that period. In most times,
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soil moisture at the vegetation root zone is greater than the soil moisture at skin surface. Resultantly,
the EFs should be less than the EFv most of the time. Figure 5 indicates that the EFs is less than the EFv

by the TMEF model in most times, whereas the EFs is greater than the EFv by the TTME model most
times. In summary, Figure 5 demonstrates that the TMEF model is more effectiveness than the TTME
in partitioning EF.

4.2. Sensitivity Analysis

Model sensitivity analysis plays an important role in understanding the mechanisms of error
propagation and uncertainty of the model. In this study, we compared the relative change of a new
estimated EF to its initial EF with the relative change of a new input variable to its initial value.
The selected variables are LST, Ta, αs, αv, µ˚, εa, and hc in order to compare with the TTME [17], where
LST and Ta varied in (LST´ 2 K, LST + 2 K) and (Ta ´ 2 K, Ta + 2 K) with a step size of 0.5 K. The other
parameters varied in ˘20% of their initial values with a step size of 5%. Two initial scenes are selected
to analyze the sensitivity according to the position of a pixel in the two-stage trapezoidal LST/FVC
space. The two initial scenes are constructed based on the environment at the overpass time of Terra
MODIS at the site of NO. 10 on DOY 250, 2012. Their variables and parameters are presented in Table 1.
Figure 6 presents the position of the pixels in the two-stage trapezoidal LST/FVC space. Scene 1
corresponds to the pixels varied within the lower triangular space ABC, however, Scene 2 corresponds
to the pixels varied within the upper triangular space ACD.

Table 1. Parameters of the initial scenes for sensitivity analysis.

Parameters NDVI LST (K) Ta (˝C) εa Sd (W/m2) u˚ (m/s) αs αv εs εv hc (m)

Scene 1 0.65 307
22.67 0.63 798.8 0.24638 0.24 0.18 0.95 0.98 1.0Scene 2 0.80 306
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Figure 7 shows the results of the sensitivity analysis. Firstly, Figure 7a,a’ show that αs and αv are
both negatively correlated with the EF estimates in the two scenes. With increasing albedo, the net
radiation will be reduced and therefore LE/EF tend to be reduced [17]. In Scene 1, a 20% increase in αs

and αv can result in 1.66% and 0.85% decreases in the EF estimates, whereas that increase can result in
12.91% and 6.81% decreases in Scene 2.

Secondly, Figure 7b,b’ indicates that µ˚ and hc are negatively correlated with the EF estimates,
and εa is positively correlated with the EF estimates. In Scene 1, a 20% increase in εa only result in
3.55% increase in EF estimates, whereas that increase in εa would lead to a 27.19% increase in EF
estimates in Scene 2. Moreover, a 20% increase in µ˚ and hc lead to 5.34% and 0.27% decreases in EF
estimates for Scene 1 and 28.42% and 13.84% decreases in EF estimates for Scene 2.
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Thirdly, Figure 7c,c’ indicate that LST is negatively correlated with EF, but Ta is positively
correlated with EF. A 2K increase in LST and Ta would result in 5.60% decrease and 7.92% increase in
EF estimates for Scene 1. However, a 2K increase in LST and Ta would result in 57.04% decrease and
53.66% increase in EF estimates for Scene 2.

Sensitivity analysis performed by Long and Singh (2012) indicated that a 2 K increase in LST and
Ta and a 20% increase in αs, αv, µ˚, hc, and εa could result in a 28.6% decrease, a 27.6% increase, a 3.3%
decrease, a 1.3% decrease, a 12.2% decrease, a 1.4% decrease, and a 3.1% increase, respectively, in the
LE estimates from TTME model. The proposed TMEF model show less sensitivity than the TTME
model when land surface is in Scene 1 environment. Additionally, the TMEF model show greater
sensitivity than the TTME when land surface is in the Scene 2 environment. For Scene 1, pixels locate
in the lower triangular space of the two-stage trapezoidal LST/FVC space and vegetation holds the
status without water stress. For Scene 2, pixels locate in the upper triangular space of the two-stage
trapezoid and the vegetation suffers water stress.Remote Sens. 2016, 8, 248 13 of 17 
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In summary, TMEF is most sensitive to LST and Ta. Constraining errors of TMEF lies in controlling
uncertainties in the LST and Ta data. TMEF shows less sensitivity to the variables than TTME in the
environment that vegetation is not subjected to water stress. Contrarily, TMEF is more sensitive to
the variables than TTME in the environment that vegetation suffers water stress. The TMEF requires
higher data quality of the input variables when vegetation suffers water stress.

5. Discussion

The proposed TMEF model has three unique advantages as compared with the same type models
that based on LST/FVC space.

Firstly, the TMEF provides a theoretical way to determine the wet edge of LST/FVC space. In some
literatures, the wet edge is assumed to be horizontal and determined as Ta, which implies that EF is a
constant value of 1 on the wet edge [8,14,17,18]. However, the wet edge only represents the surface
with the maximum soil moisture availability and EF is not only correlated with water availability but
also correlated with environmental factors such as the air temperature. In the TMEF model, latent heat
flux on the wet edge is calculated with the Priestly-Taylor formula. The wet edge is then determined
by solving radiation budget and energy balance equations. Figure 6 shows an example where the wet
edge is determined by the theoretical way. The result indicates that the wet edge is not necessarily
horizontal and it has a higher temperature than Ta. Yang et al. (2015) evaluated the HTEM model that
based on the conventional trapezoidal LST/FVC space and found that HTEM tends to underestimate
ET due mostly to the underestimation of temperatures for the wet edge. This problem can be solved
by the theoretical way of determining wet edge suggested in the TMEF model.

Secondly, the TMEF is based on the two-stage trapezoidal space rather than the conventional
trapezoidal space. The conventional trapezoidal LST/FVC space assumes Ts and Tv change
simultaneously as land surface dries. However, there is variation speed difference between Ts and
Tv in most times and areas [19]. The two-stage trapezoidal LST/FVC space considers the variation
speed difference. However, the two-stage trapezoid would become invalid when the variation speed
difference between Ts and Tv is not significant or even inverse. For example, a sudden irrigation or
precipitation appears after an agricultural drought, which would lead to a wetter surface soil but a
dryer root zone soil. Under those conditions, the two-stage trapezoid could become invalid.

Thirdly, the TMEF couples the two-stage trapezoidal space with the Priestly-Taylor formula to
simulate EFv, EFs, and EF in a two-source scheme. It is well known that the rate of ET is mainly
controlled by the available energy, the availability of water, and other factors affecting the mechanism
to transport water from the land surface to the atmosphere. The Priestly-Taylor formula and its
extension grasp this feature since LE is expressed as the product of available energy (Rn-G), available
water (φ), and other factors (∆{∆` γ). Many one-source models use the triangular LST/FVC space to
obtain the φ value. In contrast, the TMEF model uses the two-stage trapezoidal space to obtain the φ

value, which facilitates modeling and partitioning ET.
Additionally, the TMEF has some common advantages with the models that are based on

LST/FVC space. For example, it has simple calculation form and enables calculating EF from a
remote sensing image itself without any additional information. Certainly, some meteorological
parameters which are difficult to obtain by remote sensing are used in this study to determine the
theoretical dry and wet edges, such as the u˚ and Ta. However, the theoretical boundaries can be
acquired approximately by the image itself in arid and semi-arid regions [3].

In our previous paper [19], the conventional trapezoid in TTME model was just substituted
with the two-stage trapezoid and the TTME model based on conventional trapezoid was compared
with that based on two-stage trapezoid to demonstrate the validity of the two-stage trapezoid. It is
noteworthy that the proposed TMEF model in this study is different from the TTME model based on
two-stage trapezoid, because the TMEF has the abovementioned unique advantages. Even for the
two-stage trapezoid model, this study is an improvement of the paper in [19] since we improve the
determination of the wet edge. Evaluation results in Figures 3 and 4 indicate that the TMEF model
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presents the best effectiveness in estimating EF as compared with the TTME and the OTEF models at
each and all of the sites. Moreover, Figure 5 shows that the TMEF model is more effective than the
TTME in partitioning EF. In summary, by right of its unique advantages, the TMEF model advances
the performances in modeling and partitioning EF or ET based on LST/FVC space.

Certainty, there are some limitations in the suggested model. Firstly, the TMEF model is
constrained to work under clear sky conditions because it uses the remotely sensed LST to estimate
EF [13,38,39]. Secondly, the LST/FVC space depends on the assumption that LST and FVC have
negative relationship. Some previous studies indicated that when water is the limiting factor for
vegetation growth, the LST has a negative correlation with NDVI. However, a positive LST-NDVI
correlation exists when energy is the limiting factor for vegetation growth [40–42]. Therefore, the
TMEF model is suggested to the areas and periods where water is the limiting factor for vegetation
growth, such as in arid and semi-arid areas and during the midseason. Additionally, model sensitivity
analysis indicates that the TMEF is more sensitive to the input variables in the environment that
vegetation suffers water stress. For example, a 2K increase in LST would result in a 57.04% decrease
in EF estimates in that environment. Therefore, the TMEF requires higher data quality of the input
variables for the area where vegetation suffers water stress.

6. Conclusion

In this study, we present a two-source model for estimating EF, named TMEF, through coupling the
two-stage trapezoidal LST/FVC space with the Priestly-Taylor formula. We also present a theoretical
expression of the wet edge of LST/FVC space which was usually set to Ta or the lowest LST value in
an image. The TMEF model was evaluated by comparing with EF observations at six eddy covariance
system sites located in Zhangye oasis in the middle reaches of the Heihe River Basin, China. It was
also compared with other two models that are based on conventional trapezoidal LST/FVC space.
MODIS LST and NDVI products as well as some meteorological data during the period from June
to September in 2012 were utilized in this study. Evaluation results indicate that the TMEF model
outperforms the other two models in simulating EF and its partitioning. EF RMSE, r, and MARD are
0.10%, 0.69%, and 9.57% for TMEF, 0.15%, 0.46%, and 15.03% for TTME, and 0.27%, 0.62%, and 30.49%
for OTEF. Sensitivity analysis indicates that the TMEF model is most sensitive to LST and Ta. A 2K
increase in LST and Ta would result in a 5.60% decrease and a 7.92% increase in EF estimates when
vegetation is not subjected to water stress, and would result in a 57.04% decrease and a 53.66% increase
when vegetation suffers water stress. This study provides a feasible way to advance the performances
in estimating and partitioning EF or ET based on LST/FVC space.
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