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Abstract: Object detection and reconstruction from remotely sensed data are active research topic
in photogrammetric and remote sensing communities. Power engineering device monitoring by
detecting key objects is important for power safety. In this paper, we introduce a novel method for
the reconstruction of self-supporting pylons widely used in high voltage power-line systems from
airborne LiDAR data. Our work constructs pylons from a library of 3D parametric models, which
are represented using polyhedrons based on stochastic geometry. Firstly, laser points of pylons are
extracted from the dataset using an automatic classification method. An energy function made up
of two terms is then defined: the first term measures the adequacy of the objects with respect to the
data, and the second term has the ability to favor or penalize certain configurations based on prior
knowledge. Finally, estimation is undertaken by minimizing the energy using simulated annealing.
We use a Markov Chain Monte Carlo sampler, leading to an optimal configuration of objects. Two
main contributions of this paper are: (1) building a framework for automatic pylon reconstruction;
and (2) efficient global optimization. The pylons can be precisely reconstructed through energy
optimization. Experiments producing convincing results validated the proposed method using a
dataset of complex structure.

Keywords: 3D reconstruction; pylon; point cloud; stochastic models; Monte Carlo simulations

1. Introduction

Object extraction and reconstruction from remotely sensed data has been a motivating topic for
many researchers in the past years. Indeed, 3D models can be very useful in various applications such
as urban planning, navigation, and emergency response.

Power-line systems convey electric energy between networks of electric facilities to provide
electricity to millions of homes and business. Monitoring of power lines is traditionally labor
intensive [1–3]. Automating the monitoring of high-voltage transmission line systems is of importance
to power utility safety [4,5]. Pylons, which support the heavy power lines and resist the force of side
winds, are very important components for power-line systems. The importance of the 3D reconstruction
of pylons is two-fold: (1) constructing information systems for pylons and other electric facilities can be
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helpful for construction planning; and (2) through reconstruction, we can obtain the accurate positions
and parameters of pylons, which is important information for electrical safety applications such as
disaster recovery and radiation testing of high-voltage power [6]. Therefore, a good knowledge of the
pylon types and parameters are of great importance to all local communities for disaster management,
urban planning, environmental protection, and urban development policy planning.

Laser scanning can directly provide 3D point cloud data, which is more advanced than other
remotely sensed data (e.g., remote sensing images), for the modeling of complex objects. In 2002, an
on-board eye-safe laser radar system capable of measuring the distance between high-voltage power
transmission lines and nearby trees was developed [4]. In power-line system surveying, dense points
on power lines and pylons can now be accurately measured using laser scanning [7,8].

This paper focuses on the problem of pylon reconstruction using airborne LiDAR. We first
automatically extract the pylon points from the dense point cloud data. The pylons are then
automatically modeled using a model-based method. Based on the regularity of the construction,
pylons that support power lines may be of similar types, but have different sizes and heights. In some
situations, the pylons along a single power line may even be of different types in order to adapt to the
changing of topography. Therefore, determining the types and fitting the parameters are two important
tasks in the reconstruction. The most recent work has focused on reconstruction from remotely sensed
data, which requires heavy user interaction [6]. However, this method is not practical for most field
research because it is too labor-intensive. Thus, it is necessary to develop a rapid, robust, and reliable
methodology for the automatic reconstruction of pylons. We focus on pylons for the 220–500 kV
power systems common in China, as ultrahigh-voltage power systems are still in development in
China. The ultrahigh-voltage pylons are, however, similar to those used for lower voltages. Thus, the
reconstruction method proposed in this paper could be adapted to future systems.

1.1. Related Work

A tremendous variety of approaches exist in the literature for 3D object reconstruction. However,
there have been very few studies of the automatic reconstruction of pylons. Li et al. introduced
a model-based pylon reconstruction method [9]. In that model, a pylon is precisely reconstructed
by being divided into legs, body and head. However, this method is not suitable for automatic
pylon reconstruction in large areas by introducing many steps and interactive operation. Therefore,
we mainly consider the literature about automatic reconstruction of objects, which has been widely
researched (e.g., building and tree). The approaches about 3D object reconstruction relevant to our
work are discussed in the following sections.

3D Object Reconstruction

There has been very little research into the problem of pylon modeling. To date, power-related
object reconstruction has mainly focused on power lines [10–12]. Pylons are man-made objects with
constructing specification; therefore, we mainly refer to the reconstruction of objects with regularity
(such as buildings). Besides the regular objects, some mostly researched irregular objects (such as trees)
are also referenced to develop effective methods. To model objects, data-driven and model-driven
methods are the two commonly applied solutions.

(1) Data-driven methods

Data-driven methods are mainly based on combining several kinds of primitives of objects.
Pylons are constructed out of a main frame and arms. Therefore, a pylon could be reconstructed using
data-driven methods.

Buildings are constructed with primitives such as 3D-lines, planes, and facades. Much work
detailing building reconstruction by combining such primitives has been published. Maas and
Vosselman reconstructed buildings using a polyhedral model by first detecting planar faces. The
outlines of roof faces were then reconstructed by intersection of the corresponding planes [13].
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Frueh et al. used laser scans to model buildings with a detailed reconstruction of the facades [14].
Taillandier and Deriche used a generic Bayesian framework to model buildings as polyhedral shapes
with no overhang by combining base plane primitives [15].

Tree primitives contain wood and foliage components. Côté et al. first extracted vital clues to the
main branching structure of the tree (the shape of the trunk and the main branches). They then used
that skeleton to add other branches at locations where the presence of foliage was very likely. Finally,
they iteratively used the availability of light as a criterion to add foliage in the center of the crown
where LiDAR information was sparse or absent due to occlusion effects [16].

These data-driven methods can provide accurate descriptions of common objects. However, they
are not suited to the modeling of large scenes since they usually demand high-resolution data and
require very lengthy computation times.

(2) Model-driven reconstruction methods

Model-based methods can be used to reconstruct objects with constant parameters or construction
rules. These methods are known to be robust with respect to data quality, and are suited to large scenes.
As for power lines, McLaughlin defined the parameters of a model, and extracted each individual
transmission line span from classified power-line point cloud data [11]. Based on RANdom SAmple
Consensus (RANSAC) rule, Guo et al. proposed an improved approach for power-line modeling [17].

Buildings are constructed with certain models. Brédif et al. presented a method including
parametric roof superstructure reconstruction using a Minimum Description Length energy
minimization [18]. Lafarge et al. proposed an approach based on a structural concept: reconstructing
buildings by assembling simple urban structures [19].

Livny et al. used the properties of tree skeletal structures to construct a Branch-Structure
Graph [20]. Through global optimization, skeletal structures can be fitted from the often sparse,
incomplete, and noisy point cloud data.

The main merit of the model-based reconstruction methods is their insensitivity to data loss by
imposing constraints on the model’s parameters and construction rules. Since the pylons are elements
that follow a power industry standard of a limited number of shape types, the model-driven methods
are a more suitable solution for this type of model reconstruction.

1.2. Motivation and Contributions

In this paper, we propose an automatic high-precision method for pylon reconstruction from
airborne LiDAR data. Given the construction regularity of pylons, the model-based method is mainly
used in order to avoid labor-intensive work to determine the types and fitting the parameters.
We transform the reconstruction process to be an energetic formulation that states the problem
as a minimization of a function mainly made up of data attachments of the measured data and
object configurations. In this reconstruction process, the type and parameters of a pylon are
simultaneously fitted.

This approach is particularly interesting since it has certain advantages:
(1) In power engineering, pylons are built with regularity that can be parameterized.

Parameterized models can provide important semantic knowledge, e.g., the height of pylons and the
length of arms. In this way, an efficient library can be generated as objects, which are defined by the
parameter sets. This approach therefore guarantees the robustness of the reconstruction by introducing
the regularity, which can overcome the defaults of reconstruction errors due to tiny data loss.

(2) The method used in this paper is insensitive to data loss. There is much sparsity and
occlusion in LiDAR datasets due to low reflectivity or the blocking out of laser scanning. Model-based
reconstruction can be used to overcome these data flaws, to some extent, based on the inherent
information (e.g., regularity and symmetry) provided by the models.

The main contributions of the proposed method are as follows:
(1) A framework for automatic pylon reconstruction.
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As previously mentioned, automatic pylon reconstruction has not previously been explored
in depth, and previous attempts at pylon reconstruction have mainly involved labor-intensive user
interaction. Based on the automatic classification of point cloud data into different target types, we
first precisely extract pylons using a graph-cut approach and power-line contextual error elimination.
A model-based method is then introduced for the pylon reconstruction. The reconstruction is based
on stochastic geometry by building an energy function including the data coherence term and the
regularization term (Section 3.3). By minimizing the energy function, pylons can be reconstructed.

(2) Efficient global optimization.
Our problem lies in a high-dimensional space of unknown dimensions, and is also non-convex.

The sampling of the objective energy function is conducted thanks to a Markov Chain Monte
Carlo (MCMC) sampler and is coupled with simulated annealing to find its optimum. This global
optimization is well adapted to our case as it finds the minimum of the energy function without
becoming trapped in local minima. It also allows us to find an optimal configuration of objects without
any initialization prior on the object configuration.

1.3. Overview

The rest of this paper is organized as follows. Before reconstruction, the pylon points have
to be extracted from the original point cloud data using a classification method, which is briefly
presented in Section 2. In Section 3, we give the essential details of pylon reconstruction. Test area
and data characteristics are given in Section 4. Section 5 presents the extensive experimental results
with a complex dataset. The reconstruction errors are discussed in Section 6. Finally, we present the
conclusions in Section 7.

2. Extraction of Pylon Points

2.1. Classification of Point Cloud Data Based on JointBoost

Before reconstruction, laser points of target objects must be extracted from the point cloud
data using a classification method. There are two approaches to classification point cloud data.
One approach is to directly extract points of target objects, such as terrain [21], building [22] and
vegetation [23,24]. The second approach is to classify all the points into different classes that contain
the target types [8,25,26]. The first approach is effective; however, outliers are difficult to eliminate
due to the fact that all the other types of points are labeled as noise points. The second approach
can provide the contextual information for classes that are helpful for the precise object extraction.
Because very few studies have specifically dealt with pylon extraction, we refer to general classification
methods of point cloud data [7]. The contextual information is then used to eliminate errors.

The point cloud data are automatically classified into five classes: ground, vegetation, building,
power line, and pylon. Classifying the dataset into five classes can be used to eliminate pylon extraction
errors by post processing (Section 2.2). We use the approach described in our previous work [7] for the
point cloud classification. Firstly, 26 features based on the geometry and echo information of the point
cloud are calculated. Based on the calculated features, the JointBoost classifier [27] is used to classify
the point cloud into different target classes. The JointBoost classifier is a multi-class boosting machine
learning algorithm which can handle a large number of input features for multi-class classification.
JointBoost is a special boosting algorithm designed to share features among classes and use fewer
features than other classifiers. Moreover, the JointBoost has the capacity to automatically select useful
features by minimizing a cost function. Therefore, we applied JointBoost for feature selection and
airborne LiDAR point cloud classification. A typical classification result for a pylon is shown in
Section 5. However, it can be seen that there are many outlier errors in the classification result. In order
to guarantee reconstruction quality, post-processing must be performed to precisely extract the pylons.
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2.2. Post-Processing

2.2.1. Graph Cut for Pylon Extraction

For precise pylon extraction, we adopt techniques from computer vision and computer graphics,
where the graph-cut approach is employed to separate an object of interest from its background in the
data [28].

The two key points of graph cut are: (1) foreground and background seed point selection; and
(2) graph building. A region growing algorithm is first used to cluster nearby points with the same
initial classification labels. We consider groups with a large number of clustered points to be reliable,
while ones with a very small number are considered to be unreliable. The thresholds for reliable
groups of each class are determined using a training dataset. For graph cut of a pylon, the seeds of
foreground are points that belong to the reliable pylon group. The seeds of background are points that
belong to reliable groups of other kinds besides pylon. In the graph building, edges are constructed
with a k-nearest neighbor system for the input points. The edges have weights that decrease with
distance. In this way, the closer points are more strongly connected than the other points. Further
details of the graph-cut approach can be found in our previous work [7].

2.2.2. Classification Outlier Elimination

In the intersection regions between power lines and pylons, many non-pylon points are
misclassified as pylons and cannot be distinguished by graph cut. These errors greatly affect the
reconstruction quality. We first extract the power lines [11] and determine the intersection points
between the power lines and the main plane of the pylons in order to find areas where outliers exist.
The points close to these intersection points with a low density are considered to be non-pylon points.
In order to detect these points, a projection method is introduced. We first construct projection planes
around the intersection points of the power lines and pylons. A projection plane is then sliced into
many bins. The bins with few points or short lengths are determined to be non-pylon points. The
details are described in Section 5.1.2.

3. 3D Reconstruction

Once the pylon points have been extracted, the models are automatically reconstructed through
an optimization method. The first step consists of specifying the 3D objects, which are represented by
parameter sets. An energy formulation is then built to measure the coherence degree of the objects and
extracted points. Finally, an MCMC method combining simulated annealing is used to optimize the
energy formulation in order to find the optimal parameters of pylons. The pylons are constructed with
regularity, thus we use a model-based method to reconstruct pylons. As seen in Figure 1, the number
of arms of different pylons is different. However, with different positions of arms and various pylons
with same number arms, only fitting the number of arms is not sufficient for precise reconstruction
of pylons.

3.1. Library of 3D Objects

Pylons are constructed with regularity. The first step of the 3D reconstruction consists of specifying
the 3D object models. We refer to the specification widely used in China for pylon construction.

The content of the library M is a very important thing: if it is too limited, the method loses
generality. In this library, there are many of the common self-supporting pylons used in 220–500 kV
power-line areas (Figure 1). The kinds of pylons included in this library are widely used in China. At
present, ultrahigh-voltage power-line systems are still under development in China. However, the
content of the library could be widened if the power lines are upgraded to a higher voltage rank. The
pylons carrying the same power-lines are usually with same type and similar parameters. However, in
order to overcome the effects of topography, some different pylons are compatible to carry the same
power-lines. We defined the compatibility: (1) the models M1, M4, M5, and M6 can be used to carry
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one group of power lines; (2) meanwhile, two groups of power lines are simultaneously carried by
models M2 and M3.

For simplicity, the pylon models are represented using polyhedrons. The parameters of the pylon
models are shown in Figure 1. The pylon parameters are specified as the height, width of arms, the
positions of turning points, and other specific parameters (ps). Additionally, each pylon has general
parameters (pg): center point coordinates and main direction. Each pylon object reconstructed with
this library is defined by an associated parameter set θ “

`

pg, ps
˘

.
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Figure 1. 3D object library M. There are six models in the library. The pylon models are represented
using polyhedrons. The pylon parameters are specified as the height, width of arms, the positions of
turning points, and other specific parameters.

The library includes a limited number of types. If a pylon cannot be reconstructed using a model
in the library, a minimum external cube outside the data is used to represent the pylon object.
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3.2. The Data-Driven Rough Type and Parameter Calculation

If we know the rough types and parameters of pylons, we can use a data-driven method [29] to
effectively reconstruct the pylons. We design an effective kernel (jumping kernel Q2 (Section 3.4.2))
to cleverly explore the optimal configuration and speedup the convergence by using the rough type
and parameters.

Two general parameters of a pylon are first calculated. The center point XY coordinates are
calculated using average values of the XY coordinates of all the points of the pylon. The center point
Z coordinate is that of the lowest point of the pylon. The direction of the pylon can be calculated by
analyzing the power lines connected to it. The rough direction of the pylon is set to be perpendicular
to the power lines.

As seen in Section 3.1, the structures of pylons are regular, such as the cable arms being longer
than their nearby parts. In order to determine the rough type and parameters of each pylon, we project
all the points of a pylon onto its main plane (Figure 2a). A vertical profile is sliced into several bins of a
certain distance. The histogram for the length of the sliced profile is shown in Figure 2b. The location
of the arms can be determined by analyzing the changing length of the profiles. Usually, the projecting
cable arms are longer than their nearby parts. The changing length of the arms can be represented
using a derivative (Figure 2c). The pylon’s turning points, which represent the connecting locations of
different parts, can be detected using a second derivative (Figure 2d). After determining the number
and distribution of a pylon’s arms and turning points, we determine the rough type and parameters of
this pylon by comparing it with models in the library.
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Figure 2. The initial type and parameter calculation method for a pylon. Firstly, all the points of
a pylon are projected onto its main plane (a); A vertical profile is then sliced into several bins of a
certain distance. The histogram for the length of the sliced profile is shown in (b); (c) A derivative
that represents the changing length of the arms. In order to highlight the pylon’s turning points, a
second derivative is calculated (d); and the positions where the derivatives are large are set to be 0. In
all subfigures, y represents height in m. x represents length (b); derivative (c); or second derivative
(d) in m.
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3.3. Density and Gibbs Energy

In this section, we transform the reconstruction process (find the optimal types and parameters
of pylons) to be a density optimization. The density is defined to measure the probability of the
reconstructed objects corresponding to data of pylon points. The density can be defined in two ways:
in a Bayesian framework, or through Gibbs energy. Using a Bayesian framework, the optimization is
carried out over a posteriori density, which is obtained by multiplying the likelihood that provides
the correspondence between the data and a configuration, by the a priori density. It needs complex
computation of the normalizing constant. In this paper, a MCMC sampler coupled with a simulated
annealing is used to the maximum density estimator x̂ “ argmaxh p¨q. This estimator also corresponds
to the configuration minimizing the Gibbs energy U p¨q, i.e., x̂ “ argminU p¨q. This optimization
technique is particularly interesting since the density does not need to be normalized (Equation (13)),
and the complex computation of the normalizing constant is thus avoided [30].

The notation for the density and Gibbs energy is firstly listed:
C, the configuration space which represents the parameters of pylon objects.
D “ pDiq, the data set of extracted pylon points, where Di is a set of points of the i-th pylon.
N is the number of pylons in the dataset.
x, an element of the configuration space C, which corresponds to a configuration of the 3D

parametric model of the pylon. x “ pxiqiďN “ pmi, θiqiď N , where each object xi is specified by both a
model Mi of the library and an associated set of parameters θi.

dm, the number of parameters describing the model m.
In this section, a mapping from the probability space to the configuration is built. Reconstructing

the objects consists of finding the configuration of objects x̂ by maximizing the density x̂ “ argmaxh p.q.
The density under its Gibbs form:

hpxq “
exp´Upxq

Z
(1)

where Z “
ş

XtPΩ exp p´U pxqq is a normalizing constant. Moreover, the energy U p.q can be expressed
as a weighted sum of two terms: the data attachment term (Section 3.3.1) measures the consistency of
the object configuration with respect to the measured points, and the regularization term (Section 3.3.2)
favors or penalizes certain pylon configurations based on prior knowledge:

Upxq “ Udpxq ` βUppxq (2)

β P R` is a weighting parameter which tunes the importance of the prior energy versus the data energy.

3.3.1. Data Coherence Term

We now focus on the data coherence term Ud pxq, which aims at measuring the adequacy of
reconstructed objects with respect to the extracted laser points of the pylons. The simplest way of
defining it is to expand it as a sum over all objects in a configuration:

Ud pxq “
ÿ

xiPXt

ud pxiq (3)

We now explain how the data term ud pxiq, mapping from a reconstructed object xi to be a real
number, quantifies the relevance of an object with respect to its corresponding laser points. We
naturally calculate the distance and measure the difference. The shorter the distance, the more likely
the probability of finding a good object. The shapes of the pylon model represented using non-convex
polyhedrons with multi-faces are complex. A shape may cause deviation if only the distances from
the laser points to an object are used. As shown in Figure 3, the part of the object that is higher than
red point 5 is a vacancy without any laser points. However, the closest distance from red point 5
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to the object cannot touch that part. Therefore, we design the distance with two mutual parts: (1) a
normalized distance from the point set Di to object xi (denoted by red arrows in Figure 3); and (2) a
normalized Hausdorff distance from the key point set (corner points and central points of faces) of
object xi to the measured point set Di (denoted by blue arrows in Figure 3).
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blue polygon represents the main profile of the pylon model (object), while the blue points represent
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The blue arrows represent the distance from a key point of object to its nearest laser point.

(1) Normalized Distance from Point Set Di to Object xi

We consider that a good object model should contain as many as laser points and the distance from
laser point to the object model should be as near as possible. In order to penalize the points outside of
the object, the distances of the points in and out of the object should have different weights. Because
the models are represented using polyhedrons, whether a point in or out of a model (polyhedron) can
be determined referring to the work of Schneider and Eberly [31].

We first define a normalized distance Dn from a laser point s to its corresponding object xi, where
the value of a point outside the object is bigger than that of a point inside the object:

(a) If point s is in the object xi:

Dn pxi, sq “ δi
D

Dmax
(4)

(b) If point s is out the object xi:

Dn pxi, sq “ δo
D

Dmax
` δi (5)

where D is the nearest Euclidean distance from point s to object xi, which can be calculated by referring
to the work of Schneider and Eberly [31]. Dmax is the largest value of D. δi and δo are two parameters
that restrict the value of the normalized distance to a certain range. We set δi ` δo “ 1 and δi “ 0.2.
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After defining the normalized distance of a single point, the total normalized distance from the
point set Di to object xi is set to be:

Γ pDi Ñ xiq “
1
N

ÿ

sPDi

Dn pxi, sq `max pDn pxi, sqq (6)

where s P Di is every point in the point set, N is the number of points.
Γ pDi Ñ xiq has two parts: a mean and a maximum of the normalized distance. The mean value

term is used to avoid the effects of different data densities. The maximum distance term is used to
avoid the situation of partial mismatch.

(2) Normalized Hausdorff distance from the key point set of object xi to the measured point set Di

The Hausdorff distance from the key point set Ki of object xi to the measured point set Di is:

h pKi,Diq “ max
aPKi

"

min
bPDi

td pa, bqu
*

(7)

where d pa, bq is the Euclidean distance of points a and b. In order to calculating the Hausdorff distance,
we first calculate the nearest distance from the key point a of object to its nearest laser point b (denoted
by blue arrows in Figure 3). Then, the largest distance of the key point to be the Hausdorff distance
from the key point set Ki of object xi to the measured point set Di.

The normalized Hausdorff distance is then set to be:

Γ pxi Ñ Diq “
h pKi,Diq

Hmax
(8)

where Hmax is the largest value of H.
Finally, the data term ud pxiq defined using the distance is:

ud pxiq “ Γ pDi Ñ xiq ` Γ pxi Ñ Diq (9)

3.3.2. Regularization Term

The regularization energy Uppxq is used to favor certain configurations of objects and to penalize
certain others. It introduces interactions between neighboring objects. This reduces to the definition of
a combination of simplified energy terms U pv, wq, where v and w are different objects. A neighborhood
relationship must be set up to define the interactions: two distinct objects xi and xj are said to be
neighbors if they are connected by power lines. The neighborhood relationship is denoted by „(i „ j
represents the set of neighboring pairs).

The regularization term is expressed through summing all the two neighboring objects xi and xj:

Up pxq “
ÿ

i‰j

1txi„xju
g
`

xi, xj
˘

(10)

where 1 p.q is the characteristic function. The function g p.q is defined as a mapping from Rdmi ˆRdmj

to r´1, 0s based on neighboring objects xi and xj.
In order to avoid electric shock, the power lines between neighboring pylons should be parallel

and have sufficient gaps. In this way, the construction of neighboring pylons will satisfy certain
demands. The function g p.q is defined in two situations:
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(1) If the types of objects xi and xj are the same, the parameters are encouraged to be same in
order to keep the power lines parallel:

g
`

xi, xj
˘

“
1
K

ÿ

k

Dk
`

xi, xj
˘

Dmax
k

´ 1 “
1
K

ÿ

k

ˇ

ˇ

ˇ

rθk
i ´

rθk
j

ˇ

ˇ

ˇ

Dmax
k

´ 1 (11)

where, K is the number of the parameters, rθk
i and rθk

j are the k-th element of the parameter sets of objects
xi and xj, respectively. We set Dk to be the k-th parameter distance and Dmax

k “ maxDk
`

xi, xj
˘

is the
maximum value of the k-th parameter distance. In this term, the closer the parameters of the two
objects, the lower the energy.

(2) If the types of objects are different, the neighboring objects should be compatible to carry the
same power lines. The compatibility of pylons is defined in Section 3.1. In this way, we simply define
the function g p.q to be a certain value:

g
`

xi, xj
˘

“ gc (12)

Since different types of pylons connected by power lines are used much less than the situation
of the same type, we set gc to be the maximum value of situation 1 (same pylon type), which can be
learned by analyzing a training set. It is also easy to re-learn when changing the kind of data used.

Otherwise, the energy will be null.

3.4. Optimization

We now find the object configuration by maximizing the density h p.q. This is a non-convex
optimization problem in a high and variable dimension space C, since the models of pylons in the
library M are defined by different numbers of parameters. To sample from h p.q (i.e., to obtain some
configurations of objects), a solution is to use an MCMC method. Such a procedure builds a Markov
chain pXtqtě 0 on the space of finite configurations of objects using a starting point X0 and a Markovian
transition kernel Q px, .q, which converges toward the target distribution (specified by the density h p.q).

There are two basic requirements for Markov chain design [29]. Firstly, the Markov chain should
be ergodic. That is, from an arbitrary initial statement of configuration X0, the Markov chain can visit
any other states x P C in finite time, and converge to the required invariant distribution. In order
to ensure the ergodicity, the jumping and non-jumping transformations (Section 3.4.2) introduced
converge to the desired distribution in this paper. Secondly, the Markov chain should have a stationary
probability. This is replaced by a stronger condition of detailed balance equations which demand that
every move should be reversible. The Metropolis-Hastings-Green MCMC framework [32–34] used in
this paper satisfies the detailed balance and reversibility requirements.

3.4.1. MCMC Procedure

The classical MCMC methods for constructing suitable transition kernels are well known. The
two most popular methods are the Gibbs sampler [35] and the Metropolis-Hastings method [33,34].
However, these methods cannot handle dimension jumps, i.e., changes in dimension between samples.
The reversible jump MCMC algorithm based on Metropolis-Hastings samplers in the general state
spaces [32] allows us to deal with a variable dimension state space. This technique has shown potential
in various applications such as image segmentation [29] and architectural object reconstruction [19,36].

The Metropolis-Hastings-Green sampler simulates a discrete Markov chain pXtqtě 0 on the
configuration space, which converges toward an invariant distribution (specified by the density,
h p.q). The transitions of this chain correspond to perturbations of the current configuration x. We
use the transitions of this chain corresponding to local perturbations, which means that only the
parameters of one pylon object of the configuration is generally concerned with a perturbation of the
current configuration. Each iteration of the sampler is composed of two steps. The first step consists of
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proposing a new state y by perturbing the current state x by using proposition kernels Qm px, ¨q. The
second step decides whether the perturbation is accepted to define the new state y.

The acceptance ratio of a proposition from x Ñ y is given by:

Rm px, yq “
π pdyqQm py, dxq
π pdxqQm px, dyq

(13)

where π p.q is the target distribution defined on configuration space C and specified by the density
h p.q, as defined in Section 3.3; and Qm p., .q is the proposition kernel, which allows us to propose the
different types of perturbations specified in Section 3.4.2.

The acceptance probability of a perturbation from x Ñ y is then expressed by: α “

min p1, R px, yqq.
In summary, the MCMC sampler is:

Input: An initial configuration X0

Repeat

Choose a proposition kernel Qm with probability qm

Build a new configuration Xnew “ y from Xt “ x w.r.t. the selected kernel
Compute the acceptance ratio Rk px, yq
Compute the acceptance rate α “ min p1, Rk px, yqq
Take Xt`1 “ y with probability α and reject it otherwise.

Until convergence

An MCMC algorithm has converged if its output can be safely thought of as coming from the
true stationary distribution of the Markov chain. The convergence can be monitored through many
methods, such as: Monte Carlo error checking [37,38] and the Celman-Rubin method [39]. We mainly
analyze the convergence through checking the trance plot. When the trance plot is stable, and without
obvious trend and periodicity, the MCMC algorithm are thought to be converged.

3.4.2. Proposition Kernels

The kernels are designed in order to make the Markov chain converge to the desired distribution.
The kernel specification plays a crucial role in the efficiency of the sampler. By proposing object
configurations of interest, these appropriate kernels allow acceleration of the convergence by avoiding
rejection of too many candidates.

We introduce two kinds of kernels in this paper: (1) jumping transformations; and (2) non-jumping
transformations. The jumping kernels mainly explore the transformation direction of the configuration,
and favor configurations that have a high density. The non-jumping kernels contribute to a detailed
adjustment of the object parameters when the configuration is close to the optimal solution.

A kernel performs a perturbation from an object xi to an object x̂i, such that the current object
configuration x “

`

xp
˘

pP C is perturbed into the configuration y “
`

xp
˘

pPC´tiu Y x̂i.

(1) Jumping transformations

Let us consider a perturbation from an object xi of type Mm to an object x̂i of type Mn. A
bijection [32] between the parameter space of the object types Mm and Mn is created: xi is completed
by auxiliary variables umn simulated under a law ϕmn p.q to provide pxi, umnq, and x̂i by vnm „ ϕnm p.q
into px̂i, vmnq, such that the mapping Ψmn between pxi, umnq and px̂i, vmnq is a bijection:

px̂i, vmnq “ Ψmn pxi, umnq (14)
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The ratio of the kernels in the acceptance ratio (Equation (13)) is then expressed by:

Qk py, dxq
Qk px, dyq

“
Jpkqnm ϕ

pkq
nm pvnmq

Jpkqmn ϕ
pkq
mn pvmnq

ˇ

ˇ

ˇ

ˇ

BΨmn pxi, umnq

B pxi, umnq

ˇ

ˇ

ˇ

ˇ

(15)

where Jmn corresponds to the probability of choosing a jump from Mm to Mn. The following jumping
transformation kernels, i.e., distributions pJmn, ϕmnq, are used in this paper:

Kernel Q1. This kernel proposes a new state according to a uniform distribution that ensures the
Markov chain can visit any configuration of the state space:

J1
mn “

1
card pMq

(16)

ϕ1
mn “ uKmn (17)

where uKmn is a distribution which distributes uniformly on domain Kmn of parameter umn.
This kernel is classic. The use of this single kernel is inefficient and thus we propose additional

efficient kernels that explore the optimal configuration.
Kernel Q2. In Section 3.2, we described how the rough types and parameters of the pylons are

determined. This information can be used to accelerate the convergence speed. This kernel cleverly
explores the state space using a data-driven process and is efficient [29]. The state x is proposed
knowing the data. The probabilities J2

mn are focused on models of rough types. The state parameter xi
of pylon object i is proposed knowing the rough parameters rxi according to the Gaussian distribution
N

`

rxi, δ2Idi

˘

; in practice, we set δ “ 1 m.
Kernel Q3. In power engineering, the adjacent pylons are commonly built with the same

structures in order to be well-regularized and keep the power lines parallel. Thus, the types and
parameters are the same. In this kernel, the parameter values of object xi are chosen depending on its
neighboring objects. The probabilities J3

mn are focused on some models of neighboring objects whose
types are the same as object xi. The state parameter of object i is proposed knowing the neighboring
object rxj according to a Gaussian distribution N

´

rxj, δ2Idj

¯

. Although this kernel is very useful for
optimizing the configuration statement, it can block the current configuration in a local optimum.
Thus, this kernel is used when the current configuration is close to the optimum.

(2) Non-jumping transformations

Non-jumping transformations do not involve changing the dimension of the configuration. Such
a transformation randomly selects one object xi in the current configuration and perturbs it to obtain a
new version x̂i. Instead of using uniformly generated parameters (kernel Q1), the perturbation is a
zero-mean Gaussian random variable with variance δ2Idi

:

x̂i |xi „ N
´

xi, δ2Idi

¯

(18)

A Gaussian perturbation can be used to adjust details of the parameters rather than greatly
changing their values.

A random walk is introduced to perform a local exploration of the configuration. The suitable
acceptance ratio R (Equation (13)) is simply given by:

R px, yq “
h pxq
h pyq

(19)

We set the process into two stages. At the beginning, when the accepted proposition rate is
high, the process explores the density modes and favors configurations which have a high density.
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In this exploration stage, the jumping kernels are mainly used (
1
4

qj “ qnj “ 0.2). When the accepted
proposition rate computed on 1000 iterations becomes lower than 0.05, the configuration is close to
the optimal solution and does not evolve very much: it involves a detailed adjustment of the pylon

parameters. In this second stage, the non-jumping kernel is mainly used (qj “
1
4

qnj “ 0.2). In each

stage, the jumping kernels are used equally (q1 “ q2 “ q3 “
1
3

).

3.4.3. Convergence Associated Using Simulated Annealing

Simulated annealing is used to ensure convergence [34]. The MCMC sampler is coupled with

simulated annealing in order to find the optimum of the density. Instead of h p.q, we use h p.q

1
Tt in the

optimization process, where Tt is a sequence of decreasing temperatures that tend to zero as t tends to
infinity. Simulated annealing theoretically ensures convergence to the global optimum for any initial
configuration X0 using a logarithmic temperature decrease; however, it is slow. In order to speed up
the processing, we use a geometric decrease which gives an approximate solution close to the optimal
one. Such a decrease was detailed in [40]. The initial and final temperatures are estimated by sampling
the configuration space and considering the variance of the global energy [41].

4. Test Area and Data Characteristic

Our results show the reconstruction of complex pylons in a test area. The terrain is complex, with
undulating and discontinuous characteristics. The vegetation is dense and tall. Tall trees could be
wrongly classified to be pylons due to the high point density and big height difference. In order to
analyze the effectiveness of our methods, we selected an area with a length greater than 20 km along,
which contains more than 100 pylons. In order to be clear, we shown typical reconstruction results of
two regions in Section 5, and the results of other pylons are similar.

The results were obtained using a dataset for power line management, acquired from Yi Chang,
Hubei, China. The data were collected using a Riegl Q560 laser measurement system. The parameters
of the flight and the settings of the sensor are shown in Table 1. Due to the topography, the flying
altitude varied significantly. We first extracted the pylons from the point cloud data, and then the
pylons were reconstructed using the methods introduced in this paper.

Table 1. Data characteristic.

Flying Height Flying Speed Scan Angle Rate

Data 200–600 m 30 km/h 22.5˝ 200 kHz

5. Experimental Analysis

5.1. Pylon Extraction

The accuracy of the pylon point extraction is of importance for the reconstruction. We first
automatically classify a dataset into different classes. The outliers are then eliminated using graph cut
and contextual information.

5.1.1. Point Cloud Classification

As mentioned previously in Section 2.1, we use a JointBoost classifier for the point cloud data
classification. In the training step, object-based balanced sampling is important. In our study, the
training step was performed with 4000 samples (points with true labels) per class, except pylons,
randomly selected from the training dataset. The number of training samples for the pylons were
selected to be 8000, twice the number of each other class in order to improve the pylon extraction
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accuracy. Another part of the training set was randomly chosen as a validation set. The validation set
was used to measure the effectiveness of the classifier parameters. The trained classifier was then used
to classify the test data.

A finely trained JointBoost classifier with well-selected features can generate good classification
results [7]. Testing data were manually labeled as classes of ground truth for calculating the
classification accuracy. The classification precision and recall are shown in Table 2.

Table 2. Classification accuracy.

Overall Accuracy: 94.9%

– Ground Vegetation Building Power-line Pylon
Precision 95.8% 92.1% 91.3% 89.6% 93.5%

Recall 97.8% 87.7% 89.1% 86.4% 78.2%

A typical automatic pylon extraction result using the JointBoost classifier is shown in Figure 4a.Remote Sens. 2016, 8, 243 16 of 24 
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Figure 4. Foreground/background segmentation for a pylon neighborhood: (a) initial classification
using the JointBoost classifier and local features (color legend: buildings/red, trees/green, power
lines/violet, pylons/blue); (b) foreground and background seed points, with the foreground seed
points shown in orange, the background seed points shown in blue, and the points of unreliable objects
shown in black; and (c) the foreground and background segmentation results.

Although the precision of the automatic classification is high, the pylon recall is low. There
are also many local errors in the pylon classification results (see Figure 4a). Misclassified points
are first found in pylons where they are labeled as power lines. The main reason for this is that the
structure of a pylon consists of multiple metallic triangles for stabilization, and the sides of the triangles
share the same linear structure characteristics as power lines. There are also many false vegetation
points that belong to pylons. This is because the densities of pylon points vary in different regions,
especially the intersection regions between power lines and pylons, and regions near the ground. This
misclassification will badly affect the pylon modeling results. Therefore, before reconstruction, the
outliers of the pylon classification need to be eliminated.

5.1.2. Outlier Elimination

The initial pylon classification results have certain features: (1) major parts of the pylons are
correctly classified; and (2) local errors are randomly distributed and are few in number. Because
pylons are usually separated from other objects, we first use graph cut [28] to eliminate the local errors
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on the pylons. The two graph-cut key points include foreground/background seed point selection and
graph building.

The initial classification results produced by JointBoost are used to generate the
foreground/background seed constraints. A region growing algorithm is first used to cluster nearby
points with the same initial classification labels. We consider objects with a large number of cluster
points to be reliable, while objects with a small number of cluster points are considered to be unreliable.
The thresholds for reliable objects of the different kinds are obtained using the training dataset. For
pylon extraction, the points of a reliable pylon are selected to be the foreground seed points. The points
of other reliable objects close to the reliable pylon are selected to be the background seed points.

A graph representing the structure of the point cloud is created before segmentation. In this
graph, the edges are constructed with a k-nearest system for the input points. The closer points are
more strongly connected than the other points.

Segmenting the object of interest from its background is formulated as a binary labeling problem.
Boykov and Funka-Lea demonstrated how to construct a binary energy function using a graph cut
and foreground/background seed constraints [28]. They then showed how this energy function can be
optimized with a min-cut algorithm.

Figure 4 shows the foreground/background segmentation for a pylon neighborhood. Figure 4a
shows the initial classification using the JointBoost classifier and local features, where it can be seen
that there are many error points in the pylon. Figure 4b shows the foreground and background seed
points. As for segmentation, points in the reliable pylon are treated as the foreground seed points,
while points in other reliable objects (power lines, vegetation) are treated as the background seed
points. Figure 4c shows the segmentation results, where it can be seen that the segmentation results
are smooth.

After graph-cut processing, in the intersection regions between power lines and pylons, many
non-pylon points are still misclassified as pylons (Figure 5a). These misclassified points have a lower
density than other parts of the pylons. In order to detect this kind of corresponding misclassified point
of a pylon, we first project the pylon points onto its main plane and detect the intersection points of
the power lines with this plane. The neighboring points of a power line are then sliced into several
bins of a certain distance (Figure 5b). The width of the bin is selected based on that of the arms. The
bins with fewer points are considered to be non-pylon.
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5.2. Pylon Reconstruction

5.2.1. Reconstruction Evolution

As described above, the reconstruction process simultaneously determine the type and fit its
parameters of a pylon. The evolution of the reconstruction at different steps of the algorithm on some
sample pylons is first illustrated in Figure 6.

At the beginning of the process, when the temperature is high, the process mainly explores the
types. There are, however, many objects that are not well identified and reconstructed. The jump plays
an important role by specifying the types of objects. Then, as long as the temperature decreases, more
and more objects are well reconstructed, and some objects begin to find their rough configuration. At a
low temperature, the non-jumping perturbation is useful at this stage mainly to perform a detailed
adjustment of the object parameters. Finally, all the objects are well reconstructed, until convergence.
The associated energy decrease graph is presented in Figure 7.Remote Sens. 2016, 8, 243 18 of 24 
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5.2.2. Results of Reconstruction

We selected two typical regions to demonstrate the reconstruction results (Figures 8 and 9). The
results of other pylons are similar. The models are shown as semi-transparent in order to evaluate the
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reconstruction quality by checking the accordance of the reconstructed models and the laser points.
Overall, the results are convincing. The reconstructed pylon models are attached to the points of the
pylons very well. Even if some details are mismatched with the data, the shapes of the objects compare
well to the ground truth. In the reconstruction process, the data coherence term mainly contributes to
the shape reconstruction. When there is data loss, the regularization term provides helpful information
concerning the models of the neighboring pylons.Remote Sens. 2016, 8, 243 19 of 24 
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The reconstructed main parts of pylons are good and coherent to the extracted laser points. Some
tiny reconstruction errors are mainly caused by the reconstruction methods. In parts with few points,
the details of reconstruction are not precise. It is because that pylon parts with few points contribute
little to the data coherence term in the energy calculation. The MCMC sampler usually cannot find an
absolute optimization.

6. Discussion

We introduced a method for pylon reconstruction in this paper. The quantification and errors of
reconstruction are mainly discussed in this section.

6.1. Reconstruction Quantification

As seen in Section 5.2, because the pylons in the test areas can be well represented using the
models in the library (Section 3.1), all the types of reconstructed pylons have been correctly identified.
Thus, there are no gross errors.

The errors are mainly due to the mismatch of laser points to the reconstructed pylon models. In
order to quantify the reconstruction results, we mainly checked the distance between the reconstructed
models and the laser points

Two indicators were introduced for the quantitative evaluation:
(1) Root-mean-square error (RMSE)
RMSE represents the sample standard deviation of the difference between predicted values and

true values. We used the RMSE to evaluate the difference between the laser points and reconstructed
object models in the dataset. In the EMSE calculating, the difference measured by using the closest
distance of a laser point to its corresponding model. We calculated all the extracted pylon points in the
test area, other than analyzing one pylon by one.

The RMSE is defined to be:
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f
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(20)

where Nt is the tower number in the dataset, Nm
i is the measured point number of the i-th tower, and

dm
j is the closest distance of the j-th point to its corresponding object model.

The RMSE for the pylon reconstruction in this study was 0.12 m, which is a promising result.
(2) Max distance
The mismatch can be represented using distance. We use the max distance to detect the extreme

mismatch of laser points and the models.
We evaluated two kinds of distance: a max distance from laser points to object models, and a max

Hausdorff distance from the key points of object models to laser points.
The max distance from the laser points to the models was 0.32 m, while that from key points of

the models to laser points was 0.37 m. These values are three times bigger than the RMSE, which
means that the mismatch is not uniformly distributed. The two max distances are almost the same
because we used two mutual distances in the data coherence term.

The reasons of reconstruction mismatch are mainly discussed below.

6.2. Reconstruction Errors

Globally speaking, the different pylon types were correctly identified. Even if some details
are omitted, the shapes of pylons compare well to the ground truth (see Section 5.2.2). The details
mismatched to the data mainly occur in pylon parts with few points. There are two reasons for this.

(1) Pylon parts with few points contribute little to the data coherence term in the energy calculation.
The data coherence energy term have been defined with mutual distances between the points and
objects. The distance could be wrongly calculated due to the omitting of data.
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A solution to this could be to introduce effective primitive knowledge about these parts to expand
them using only distance in the data coherence term.

(2) The MCMC sampler usually cannot find an absolute optimization, but only an approximate
global optimization in finite procedures in finite time. The pylon parts with few points, which
contribute little to the energy calculation, thus cannot precisely reconstructed by searching the
approximate global optimization.

Besides the mismatch error of reconstruction, an extreme situation that can cause the pylons to be
poorly reconstructed is the abnormal movement of pylons. A normal pylon is usually vertical. If there
is inclination and curvature, the model-based reconstruction methods cannot adapt to it. As shown in
Figure 10, the gap between the measured points and reconstruction object is caused by the inclination.
Thus, the reconstruction errors can be used to find the abnormal movement of pylons.
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Pylons hold power lines, resisting the force of side wind. Therefore, the stability of the pylons is
important for power safety. An unusual movement might damage the stability of a pylon. If there is
an inclination or curvature, the pylon must be repaired.

In this Section, we have discussed the accuracy of reconstruction and reasons of errors above.
Based on pylon points’ extraction and outliers’ elimination, the method can precisely reconstruct
pylons with high accuracy. Because there were few works of pylon reconstruction, we have not
compared our work with others. Due to the limitation of the library, this method is not suitable for
reconstructing pylon types that are not defined in the library. If a pylon cannot be reconstructed using
a model in the library, a minimum external cube outside the data is used to represent the pylon object.
Then, the types of pylons in the library must be increased.

In different situations (such as different countries), the pylon types may vary greatly.
Reconstruction failures might be caused by using a not suitable library. Therefore, the library must be
updated to adapt the new situations. Because the pylons are usually constructed with specification
and the models can be parameterized, the updating of library can be done conveniently. Based on the
well-defined library, the pylon models are automatically reconstructed using an energy optimization
method. The reconstruction method introduced in this paper thus is robust and effective.

7. Conclusions

We have presented a reliable algorithm to reconstruct pylons from airborne LiDAR data using
stochastic geometry based on a model library. The method has several important characteristics and
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it provides very good results for pylon reconstruction from point cloud data. The advantages and
efficiencies of the proposed algorithm are mainly based on two aspects. The first is the definition
of the energy to be minimized; the second is the choices and efforts made in the implementation.
Regarding the energy, we take into account both low-level information considering the data coherence
degree of the laser points with the pylon objects, and geometric knowledge about the connected
disposition of neighboring pylons. In the implementation, we use an MCMC sampler associated with
well-designed kernels to optimize the energy, considering both precision and efficiency. Overall, the
pylon reconstruction results are accurate and convincing.

In our future work, we will attempt to improve the reconstruction results. As it is, using only
distance in the data coherence term of the energy can cause the reconstruction of some tiny parts
with few points to be less precise. A primitive-combining energy optimization could improve the
reconstruction of details for these parts with few points. It would also be interesting to introduce more
efficient kernels. In fact, at the beginning of the process, when the temperature is high, most of the
moves (jumping and non-jump) are accepted. As long as the process evolves, perturbations (mainly
non-jump) become dominant. In the process, the kernels play a key role in the convergence. More
efficient data-driven kernels should therefore be introduced.

The proposed method is an adaptive method since other models could be added to the library
depending on the context. This method could also be adapted to higher-rank voltage power lines by
extending the library according to future specifications. The methods introduced in this paper could
also be used for other kinds of regular object reconstruction, such as street lamps and dustbins.
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