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Abstract: This paper aims to develop a new methodology for monitoring forest disturbances and
regrowth using ALOS PALSAR data in tropical regions. In the study, forest disturbances and
regrowth were assessed between 2007 and 2010 in Vietnam, Cambodia and Lao People’s Democratic
Republic. The deforestation rate in Vietnam has been among the highest in the tropics in the
last few decades, and those in Cambodia and Lao are increasing rapidly. L-band ALOS PALSAR
mosaic data were used for the detection of forest disturbances and regrowth, because L-band SAR
intensities are sensitive to forest aboveground biomass loss. The methodology used here combines
SAR data processing, which is particularly suited for change detection, forest detection and forest
disturbances and regrowth detection using expectation maximization, which is closely related to
fuzzy logic. A reliable training and testing database has been derived using AVNIR-2 and Google
Earth images for calibration and validation. Efforts were made to apply masking areas that are
likely to show different SAR backscatter temporal behaviors from the forests considered in the study,
including mangroves, inundated forests, post-flooding or irrigated croplands and water bodies, as
well as sloping areas and urban areas. The resulting forest disturbances and regrowth map (25-m
resolution) indicates disturbance rates of −1.07% in Vietnam, −1.22% in Cambodia and −0.94% in
Lao between 2007 and 2010, with corresponding aboveground biomass losses of 60.7 Tg, 59.2 Tg
and 83.8 Tg, respectively. It is expected that the method, relying on free of charge data (ALOS and
ALOS2 mosaics), can be applied widely in the tropics.
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1. Introduction

Forests act as a carbon source through deforestation and degradation [1] and as a carbon sink
through forest regrowth [2]. However, major uncertainties exist in the estimates of the carbon
emissions that result from forest disturbances and in the uptake of carbon through forest regrowth.
At present, forest destruction is a major source of carbon emissions and a primary factor in the
loss of biodiversity [3]. In the tropics, deforestation is considered to contribute approximately 15%
of man-made global emissions [4], though the rate of tropical deforestation has been reported to
have decreased from 0.16 Mkm2·y−1 in the 1990s to 0.13 Mkm2·y−1 in the first decade of the 21st
century [5]. Estimates of tropical forest area and change still contain considerable uncertainty,
impeding the estimation of the carbon emissions caused by deforestation and forest degradation
in the tropics [1]. The call to reduce uncertainties in estimating changes in tropical forest cover is
also driven by the reporting needs outlined in the Reducing Emissions from Deforestation and forest
Degradation (REDD+) program.
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Remote sensing offers considerable potential for supporting forest monitoring, because it
provides long-term and repetitive observation over large areas. The main remote sensing data source
is optical sensors, with Landsat data being the most frequently-used dataset for mapping forest cover
and its changes. Among the most cited studies, the Landsat-based detection of Trends in Disturbance
and Recovery (LandTrendr) approach allows the spectral trajectories of land surface changes to be
extracted from yearly Landsat time series stacks [6]. A companion interpretation approach needed
for the expert interpretation of the image stacks themselves and, thus, the derivation of reference data
has been developed and integrated in a software package known as TimeSync [7]. A new algorithm
for continuous change detection and classification (CCDC) based on all available Landsat data was
recently developed by [8]. In addition, Landsat data have been used to map global forest loss and
gain from 2000 to 2012 (and yearly updated since 2012) at a spatial resolution of 30 m [9]. In this
study, 654,178 Landsat 7 Enhanced Thematic Mapper Plus (ETM+) scenes were analyzed to create a
set of cloud-free image observations; this process required the use of one million central processing
unit-core hours on 10,000 computers. In tropical regions, infrequent cloud-free data and the fast
recovery of vegetation can hamper the detection of changes in forest cover. Some studies have also
raised doubts regarding the validity of Hansen’s map [10,11].

Synthetic aperture radar (SAR) is one of the most promising remote sensing methods for the
mapping of forest disturbances. SAR enables imaging in all weather conditions at any time of day
or night, and long-wavelength radar data are sensitive to forest aboveground biomass (AGB) [12–14]
at HH [15,16] and HV polarizations [17–20]. However, SAR data are rarely used for mapping forest
disturbances, because SAR data are not systematically available and because the forest and carbon
community is more familiar with optical data. Note that Shimada et al. [21] recently used Advanced
Land Observing Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR) and
ALOS2 PALSAR2 mosaics to produce global maps (25-m resolution) of forest and non-forest cover
(2007 to 2010), from which some maps of forest losses and gain were generated based on thresholds.
However, these maps are not currently available.

The goal of this paper is to assess forest disturbances and regrowth in tropical regions
between 2007 and 2010 using 25-m resolution ALOS PALSAR data. The targeted area is Southeast
Asia, specifically Vietnam, Cambodia and Lao People’s Democratic Republic (PDR). This area
plays an important role in environmental protection and biodiversity and is of interest with
regard to its socio-economy and the living conditions of forest-dependent populations. Thus,
Southeast Asia’s tropical forests are of importance in the context of the global carbon balance.
The deforestation rate in Southeast Asia has been among the highest in the tropics [22]. In
its global Forest Resources Assessment (FRA) in 2010, the United Nations Food and Agriculture
Organisation (FAO) reported a net annual forest area loss in Southeast Asia of 2.4 Mha
in the 1990s, with values of 0.4 Mha and 1.0 Mha for 2000 to 2005 and 2005 to 2010,
respectively [5], resulting in a forest area loss of 29.5 Mha between 1990 and 2010. Stibig
et al. [23] estimated a drop in Southeast Asia’s total forest cover from approximately 268 Mha
in 1990 to 236 Mha in 2010, resulting in a forest area loss of 32 Mha between 1990 and 2010.
In 20 years, a forested area comparable to the size of Vietnam, or approximately 6.5% of the
region’s total land area, disappeared. The dominant patterns of forest change relate to forest
conversion, logging, the replacement of natural forests by forest plantations, shifting cultivation, new
infrastructures and burning. Vietnam is among the countries with the greatest annual changes in
primary forest area and planted forest area in the last 20 years. According to the FAO, the extent of
primary forest in Vietnam decreased at rates of 6.94%, 15.6% and 1.21% in 1990 to 2000, 2000 to 2005
and 2005 to 2010, respectively, whereas the extent of planted trees increased at rates of 7.8%, 6.4% and
4.7% in the same periods. The FAO currently considers Vietnam to be a reforesting country because
tree plantations are included as forests in the FRA process. Monoculture plantations cover extensive
areas of Southeast Asia, with dominant species including oil palm, rubber, wattles and coconut.
Forest plantations are interesting because they are believed to increase the carbon sequestered from
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the atmosphere and to mitigate future climate change, although forest plantations achieve 28%
less carbon storage than natural forest [24]. To reduce greenhouse gas emissions, extending the
rotation length in forest management was highlighted in Article 3.4 of the Kyoto Protocol as a
way to help countries meet their commitments [25]. However, there is a general trend towards
decreasing the rotation length to optimize yields. Note that in Southeast Asia, large Vietnamese
companies have recently leased vast tracts of land for plantations in Lao PDR and Cambodia, with
disastrous consequences for local communities and the environment. By the end of 2012, 2.6 Mha
of land in Cambodia had been leased (1.2 Mha for rubber), and at least 1.1 Mha has been given
to land concessionaires in Lao PDR through a process marked by a lack of consultation and forced
evictions [26].

In this paper, we assess forest disturbances and regrowth using a new semi-automated method.
The method is adapted for large-scale forest disturbance monitoring using free of charge ALOS or
ALOS2 mosaic data for tropical regions where the deforestation rate is still high. This method
combines SAR data processing, which is particularly suited for change detection from SAR, masks
areas that may induce misdetection or false alarms (such as inundated crops/forests and high
terrain slopes) and expectation maximization (EM). EM is very closely related to fuzzy classification
approaches and has the advantage of requiring no binary decisions regarding class memberships.
EM has been successfully applied to SAR data, but mainly over small test areas [27–29]. In this study,
PALSAR’s 25-m spatial resolution is preserved by using a multi-image speckle filter, which is crucial
for the detection of small change areas, followed by the masking of areas that may show temporal
SAR backscatter behaviors that could be incorrectly attributed to disturbed forest or regrowth.

Section 2 provides information on the study region and data. Section 3 describes the approach
used for forest disturbance and regrowth detection, and Section 4 discusses the results.

2. Study Sites and Data

2.1. Study Sites

The study area includes Vietnam, Cambodia and Lao PDR, which are located in Continental
Southeast Asia, from ∼9 to 24◦N and from ∼100 to 110◦E. Most of Southeast Asia is warm to hot
year round, and the climate is dominated by the annual monsoon cycle, with its alternating wet and
dry seasons.

Vietnam is located between ∼9 and 23◦N and covers a total area of more than 332,000 km2.
This country has a single rainy season during the south monsoon (from May to September) with
abundant rainfall, which annually exceeds 1000 mm in nearly every region. The annual rainfall is
even higher in the hills, especially those facing the sea, and ranges from 2000 to 2500 mm. The country
is mountainous in the northwest and in the central highlands facing the South China Sea, with
peaks reaching up to 2450 m. In the north near Hanoi and in the south near Ho Chi Minh City,
there are extensive low-lying regions in the Red River delta and the Mekong delta, respectively.
Cambodia is located ∼10–13◦N of the equator, and its surface area exceeds 181,000 km2. The mean
daily temperature rises and falls in the summer and winter months, respectively, but does not
correspond exactly to the wet and dry seasons, effectively creating four annual seasons in this country.
Lao PDR is a landlocked country located from ∼20 to 26◦N and from ∼100 to 107◦E. This country
covers a total area of approximately 237,000 km2, three quarters of which are mountains and plateaus,
which are mostly in the north. Lao PDR enjoys a tropical climate with two distinct seasons; the rainy
season lasts from the beginning of May to the end of September, and the dry season spans October
to April.

2.2. Remote Sensing Data

Five hundred four ALOS PALSAR mosaic tiles with 25-m resolution over all of Vietnam,
Cambodia and Lao PDR were supplied by the Japan Aerospace Exploration Agency (JAXA). Mosaic
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data were available yearly from 2007 to 2010 and are spatially square (approximately 112× 112 km
or 1◦ of latitude and 1◦ of longitude). The signal was converted into γ◦ values using the
following equation:

γo = 10.log10(DN2) + CF (1)

where γ◦ is the normalised backscatter divided by the cosine of the local incidence angle, DN is the
digital number and CF is the calibration factor described in [30].

Digital elevation models (DEMs) from the Shuttle Radar Topography Mission (SRTM) were used
to derive terrain slopes. In addition, high- to very high-resolution (VHR) optical data were used
to derive a spatially-explicit training and testing database (refer to Section 2.3 below) to calibrate
the method and assess forest disturbances and regrowth. To this end, we used 33 ALOS Level 1.5
geocoded Advanced Visible and Near Infrared Radiometer 2 (AVNIR-2) (10-m resolution), processed
by JAXA, and VHR Google Earth images [31]. As introduced by Dorais and Cardille [32], Google
Earth images are actually a relatively untapped new source of validation data for remote sensing
studies. These images are captured at a wide variety of dates, are mostly cloud free and have
sufficient resolution to very easily distinguish many types of land covers and land uses, including
forest disturbances.

2.3. The Training and Testing Database

We extracted several polygons of natural forests and disturbed and regrowth areas in test sites
through visual interpretation of the AVNIR-2 and Google Earth images. The disturbance polygons
were drawn in reference to at least two AVNIR-2 images acquired close in time to two PALSAR
observation dates. Only clear-cut areas were extracted as disturbance polygons. Selective logging
was not considered because the 25-m resolution is not sufficient to detect such small disturbances.
The forest regrowth polygons were drawn in the same way and were mostly located in tree
plantations. To assess false positives, natural forest areas that were very unlikely to have undergone
human-induced disturbances, such as parts of protected national parks located far from villages,
roads and rivers, were analyzed. The numbers and sizes of the reference polygons are shown in
Table 1, and their spatial distribution is shown in Figure 1. Note that the number of polygons and the
surface areas related to forest disturbances and regrowth polygons, e.g., 428 and 144 ha, respectively,
are very small compared to the surface area of the whole study site (75 Mha).

Table 1. Numbers and sizes of the reference polygons constituting the training and testing database
for forest disturbances and regrowth assessment.

No. of Areas Mean Size (ha) Surface (ha)

No Disturbances 59 209.1 12,333
Disturbances 86 5.3 428

Regrowth 23 2.7 144
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Figure 1. Polygons of natural, disturbed and regrowth forest areas in Vietnam, Cambodia and Lao
PDR between 2007 and 2010 drawn by visual interpretation of high- and very high-resolution optical
images superposed over HV-polarized 2010 ALOS mosaics.

3. Forest Disturbances and Regrowth Detection Method

3.1. ALOS PALSAR Mosaic Generation and Pre-Processing

The goal of a change-detection algorithm is to detect significant changes while rejecting
unimportant ones. Preprocessing steps, including, for example, geometric and intensity adjustments,
are used to filter out common types of unimportant changes before making the change-detection
decision [33]. Initially, the 504 ALOS images used in this study were processed by JAXA using
the large-scale mosaicking algorithm described in [34]. This algorithm includes ortho-rectification,
slope correction and radiometric calibration between neighboring strips. The resulting images
were perfectly overlaid, and the equivalent number of looks (ENL) of ALOS PALSAR data was
16. However, the presence of speckle noise can induce a high number of false alarms in the
change-detection procedure. A filter was therefore applied to decrease the speckle effect while
preserving the spatial resolution and the fine structure present in the image; this strategy is
particularly suited for change detection. The method used [35,36] provides images with reduced
speckle effects from multi-temporal and multi-polarized images (four dates at HH and HV
polarizations in our case). It is based on the following relation:

Jk(ν) =
〈Ik(ν)〉

N

N

∑
i=1

Ii(ν)

〈Ii(ν)〉
with k = 1, ..., N (2)

where Jk(ν) is the radar intensity of the output image k at pixel position ν, Ii(ν) is the radar intensity
of the input image i, 〈Ii(ν)〉 is the local average intensity of the input image i, 〈Ik(ν)〉 is the local
average intensity of the input image k and N is the number of images. The resulting ENL is 112, with
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associated standard deviation of the backscatter γo caused by speckle noise of approximately 0.4 dB.
The 504 images were then geolocated (latitude/longitude coordinates were assigned to each pixel)
using the coordinates of the four image corners and mosaicked.

Considering the multi-temporal data, environmental sources of noise mainly consist of soil
and vegetation moisture. All of the images were acquired during the same (rainy) season, thereby
minimizing temporal changes caused by these environmental effects. However, the rainy season
is not the most appropriate season for forest disturbances and regrowth assessment because the γ◦

differences between forest and disturbed areas decrease as the accumulated precipitation increases, as
highlighted by Motohka et al. [37]. However, the backscatter contrast over forest and bare soil remains
sufficient for our purpose, even during the rainy season, as will be shown in Section 4.1. To further
minimize temporal changes caused by environmental conditions or the SAR radiometric stability,
the multi-temporal intensity data were normalized to have approximately the same temporal mean
and variance over the ‘forest pixels’ using the methodology of Du et al. [38]. In this method, pixels
at the same location in two different scenes form corresponding pixel pairs. A selection of dense
forest pixel pairs was performed, avoiding the obviously changed (i.e., deforested) ones. Pixels were
selected by applying principal component analysis over the forest pixels (see Section 4.2 for details
about the selection of the forest pixels). Only pixels with low absolute values on the second principal
component axis were chosen to ensure that the first principal component axis would show strong and
significant Pearson correlation coefficients, i.e., greater than 0.9. When only two scenes acquired at
two different times were involved (for example, scene year 2010 as the master and 2009 as the slave),
under a linear relationship assumption, the formula for the radiometric transform of scene year 2009
should be:

˜γ09(ν) = γ09(ν).G09 +O09

= γ09(ν).
σ10

σ09
+ µ10 −

σ10

σ09
.µ09

(3)

where G09 is the gain associated with scene year 2009, O09 is the offset associated with scene year
2009, γ09(ν) is the uncorrected intensity of scene year 2009 at pixel position ν and ˜γ09(ν) is the
corrected signal value for scene year 2009. The means and standard deviations for the two scenes
are (µ10, µ09) and (σ10, σ09), respectively. Because we aimed to assess forest disturbances from 2007 to
2010, considering the data from 2010 as a reference reveals:

G10 = 1

O10 = 0

G09 =
σ10

σ09

O09 = µ10 −
σ10

σ09
.µ09

G08 =
˜σ09

σ08
=

σ09

σ08
.G09.G10

O08 = ˜µ09 −
˜σ09

σ08
.µ08 = µ09 −

σ09

σ08
.µ08.G09.G10 +O09

G07 =
˜σ08

σ07
=

σ08

σ07
.G08.G09.G10

O07 = ˜µ08 −
˜σ08

σ07
.µ07 = µ08 −

σ08

σ07
.µ07.G08.G09.G10 +O08

(4)

All intensity images were corrected using the gains and offsets from Equations (4) and
used below.
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3.2. Masking Undesirable Areas

L-band SAR backscatter at both HH and HV polarizations is sensitive to forest AGB, but
HV-polarized backscatter is less sensitive to environmental sources of noise. Therefore, we first
extracted forest pixels by applying a threshold to γHV . Mangroves have characteristic forest-floor
changes caused by tidal shifts and may show different temporal SAR backscatter behaviors than
the forests considered in this study. Because the present study did not check the applicability
of the method to mangroves, mangroves were masked using the World Conservation Monitoring
Centre (WCMC) world map of mangrove distribution (WMD) [39]. Similarly, significant temporal
backscatter variations at both HV and HH polarizations have been observed over flooded forests
because of changing water elevations. Therefore, we masked land areas subject to inundations using
data from the Digital Chart of the World [40]. Topographical heterogeneities are a major source
of uncertainties in radar backscattering. Thus, we discarded pixels with a terrain slope exceeding
20◦. To assess the possible underestimation of forest disturbances resulting from the slope masking
process, we estimated the neglected forest surface area over slopes exceeding 20◦. To this end, we
used the Landsat Vegetation Continuous Fields tree cover layers (VCF) [41] that contain estimates of
the percentage of horizontal ground in each 30-m pixel covered by woody vegetation greater than
5 m in height. We degraded the VCF resolution by averaging the pixels to the resolution of the
terrain slope, e.g., 90 m, and considered VCF pixels as forest if their value was ≥ 50%. We found
that forests over slopes exceeding 20◦ represent 5.3% of the whole study area and 11.3% of total
forest area. We assume that the underestimation of forest disturbances is much smaller than 11.3%,
assuming that most human-induced changes do not occur over such steep slopes (although natural
disturbances may occur). Some crops, such as rice, may also exhibit significant temporal backscatter
variations depending on whether they are inundated, newly sowed or fully developed. Post-flooding
or irrigated (or aquatic) croplands were masked using the GlobCover 2009 land cover map [42], as
were urban areas and water bodies.

3.3. Forest Disturbances and Regrowth Detection Indicators

The classical change-detection approach in SAR remote sensing involves using the ratio of the
local means in the neighborhood of each pair of colocated pixels because of the multiplicative nature
of speckle. This approach assumes that a change in the scene will appear as a modification of the
local mean value of the image. This detection method is robust to speckle noise, but it is limited to the
comparison of first-order statistics. Bujor et al. [43] studied higher-order statistics for change detection
in SAR images and concluded that the ratio of means was useful for step changes and that the second-
and third-order log-cumulants were useful for progressive changes appearing in consecutive images
in multi-temporal series. Because we aimed to detect larges changes at one-year temporal frequency
in this study (three years for forest regrowth), we assumed that a modification of the local mean
value is sufficiently reliable to detect changes. An analysis window is required for the computation
of the local mean value estimation used here. An inappropriate window size can produce mis- and
over-detections, and small analysis window sizes are required to yield high-resolution change maps.
The key problem is how to choose the largest window size that robustly detects the changes while
being small enough to preserve the resolution of the final map without creating misdetections [44].

The choice of the polarization (or combination of polarizations) to be used is controversial. Some
studies have used HV-polarized L-band data [37,45,46] or a combination of HH- and HV-polarized
data to detect forest changes [3]. PALSAR multi-temporal γHV and γHH for intact forest, deforested
and reforested areas calculated using the database described in Section 2.3 are shown in Figure 2.
The numbers of samples used in the analysis for each class were 6144, 6848 and 2304, respectively.
A part of the intact forest database is used in this analysis to ensure comparable statistics computed
for each class.
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Figure 2. PALSAR multi-temporal γHV and γHH for intact forest, disturbed areas between 2007 and
2008 (Dist.7–8), 2008 and 2009 (Dist.8–9) and 2009 and 2010 (Dist.9–10) and regrowth areas between
2007 and 2010 (Reg.), calculated using the database described in Section 2.3. The average (filled point)
and standard deviation (vertical bar) are shown.

To assess the potential of each polarization for forest disturbances and regrowth detection,
we used receiver operating characteristic (ROC) curves. In fact, trade-offs between detections and
false alarms can be assessed by plotting the probability of true positive detection, Ptd, against the
probability of false positive alarm, Pf a. For a given threshold, Ptd is defined as the fraction of the
deforested or reforested area for which the change measure exceeds the threshold, whereas Pf a is
the equivalent fraction for undisturbed forest. The ROC curves based on our training and testing
database (Section 2.3) and derived separately for the ratios of γHV , γHH , γHV/γHH and E(γHV ,γHH),
where E is the average value, are shown in Figure 3. Each point on the ROC curves corresponds
to a particular threshold. For forest disturbance detection (left, Figure 3), the four indicators exhibit
significant differences, e.g., for Pf a = 10%, the Ptd values for γHV , γHH , γHV/γHH and E(γHV ,γHH)
are 98%, 75%, 54% and 89%, respectively. For forest regrowth detection (right, Figure 3), for
Pf a = 10%, the detection probabilities for the four indicators are 97%, 86%, 38% and 92%, respectively.
The ratio of γHV showed the best results for the detection of both forest disturbances and regrowth.
Therefore, we decided to use the time series ratios in γHV for this study.

Figure 3. Receiver operating characteristic (ROC) plot comparison of γHV , γHH , γHV/γHH and
E(γHV ,γHH), where E is the average value. (Left) Forest disturbances versus intact forest detection;
and (right) forest regrowth versus intact forest detection.

In the following, we assumed gamma-distributed multilook SAR intensities. Local statistics can
deviate from the Gamma distribution in the presence of texture, but in our case of forest or bare
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soil, the texture can be considered as negligible at about a 25-m resolution. The probability density
function of the intensity ratio R between two images HV1 and HV1 R(ν) = 〈HV1(ν)〉|〈HV2(ν)〉 of a
homogeneous region is found to depend only on the ratio of average intensities 〈HV1〉|〈HV2〉 and not
directly on the average intensities 〈HV1〉 and 〈HV2〉:

p(R(ν)\Σi) =

R(ν)N−1
N

∏
k=1

(2N − k)

(N − 1)! ΣN
i .(1 + R(ν)

Σi
)2N

(5)

where Σi is the class ωi mean ratio. A significance test can be performed on the ratio image to assign
an unknown pixel to the class ωi:

R(ν) ∈ ωi if
p(R(ν)\Σi)

p(R(ν)\Σj)
> τ ∀j 6= i (6)

where τ is a threshold, assuming that a priori probabilities of occurrence of the classes are unknown,
e.g., uniformly distributed. Given a set of three classes (intact natural forest, disturbances and
regrowth, corresponding to i = [1, 2, 3]), each ratio can be assigned to one of these classes by
considering the normalized probability of class membership:

R(ν) ∈ ωi =
p(R(ν)\Σi)

3
∑

j=1
p(R(ν)\Σj)

(7)

The most obvious approach is to threshold the ratio image. However, a problem associated
with thresholding approaches is that the classification result tends to lose detail because of the
linearly-fixed boundaries. Fuzzy set theory is conceptually different from the conventional crisp set
theory in which an element either belongs or does not belong to a set. In fuzzy set theory, objects can
be assigned grades of membership in a fuzzy set from zero to one [47].

3.4. The EM Algorithm

EM is closely related to fuzzy classification approaches. In EM, each pixel is assigned, with
different degrees of class membership, to all possible classes in a way that maximizes the posterior
probability of the assignment with respect to a mixture model describing the constellation of classes.
It has the advantage of requiring no binary decisions about class memberships; additionally, all
possible assignments can be considered in parallel [48,49]. The EM classification algorithm used
in this study tries to assign pixels to the three classes, while the optimal set of class centers
Σ = (Σ1, Σ2, Σ3) remains to be found by the classifier. The EM algorithm starts with an initial guess of
class centers Σ0

i . To this end, the sample means for i = [1, 2, 3] are estimated as maximum-likelihood
estimates of the unknown real Σ0

i :

Σ0
i =

1
Ni

∑
ν∈ωi

R(ν) (8)
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where Ni is the number of pixels in ωi. Initial seed regions can be randomly selected or manually
determined. Then, the a posteriori probabilities pk

ν,i that a pixel belongs to class i, given its ratio R(ν)
and the set of class centers (Σ0

1, Σ0
2, Σ0

3), are estimated in the so-called expectation step:

pk
ν,i =

p(R(ν)\Σk
i )

3
∑

j=1
p(R(ν)\Σk

j )

pk
ν,i ∈ [0, 1] ∀ν, i and

3

∑
i=1

pk
ν,i = 1 ∀i

(9)

where k is the current iteration step. Using the estimated pk
ν,i, an updated set of class centers can be

assessed in the next maximization step:

Σk+1
i =

N

∑
ν=1

pk
ν,iR(ν)

N

∑
ν=1

pk
ν,i

(10)

The EM algorithm stops when a certain termination criterion is met. In this study, we chose the
convergence of class centers between two subsequent iterations:

1
N

√
∑
ν,i
(Σk+1

i − Σk
i )

2 (11)

If the difference between two subsequent class centers falls below 1% for each class, the iteration
process stops, and each pixel is assigned to the most likely class, following the decision:

ν ∈ ωi if pk
ν,i > pk

ν,j ∀j (12)

3.5. The Forest Disturbances and Regrowth Detection Algorithm

We decided to perform the forest disturbance detection at a one-year temporal frequency using
data acquired between 2007 and 2008, 2008 and 2009 and 2009 and 2010, i.e., three times, to observe the
temporal evolution of the disturbances. The forest regrowth detection was achieved over a three-year
interval using data acquired between 2007 and 2010, i.e., once, because the regrowth phenomenon is
slow, and its detection at a temporal frequency of one year would be strongly affected by error. For
each time, a pixel is assigned to the forest disturbance or regrowth class if:

• The pixel was not masked by the procedure described in Section 3.2;
• The condition in Equation (12) is fulfilled;
• γHV ≥ −14 dB before the forest disturbance event and γHV < −14 dB after the forest disturbance

event for forest disturbance class; and
• γHV < −14 dB before the forest regrowth event and γHV ≥ −14 dB after the forest regrowth

event for the forest regrowth class.

The threshold −14 dB has been chosen because it corresponds to the best average between the
true positive and true negative detection probabilities when classifying forest and non-forest areas,
as explained in Section 4.2.

In this study, the disturbances or regrowth rates (r) are calculated according to the equation
from [50]:

r =
1

t2 − t1
.ln(

A2

A1
) (13)
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where A1 and A2 are the forest areas at time t1 and t2, respectively.
A flowchart summarizing the forest disturbances and regrowth detection method is shown in

Figure 4.

Figure 4. Flowchart representing the forest disturbances and regrowth detection method. SRTM DEM
is the Shuttle Radar Topography Mission digital elevation model; WCMC WMD is the World
Conservation Monitoring Centre world map of mangrove distribution; and PD is the probability
density. 〈HV1〉 is the average intensity at Date 1; R(ν) = 〈HV1(ν)〉|〈HV2(ν)〉 is the intensity ratio
of a homogeneous region centered at pixel position ν in the image; Σk

i is the mean ratio of class ωi;
and k is the current iteration step.

3.6. Uncertainties Assessment

3.6.1. Uncertainties Related to Areas of Forest Disturbance

To assess uncertainties related to areas of forest disturbance, we applied the method presented
in [51]. This method takes advantage of the map and accuracy assessment data by: (1) estimating
accuracy (e.g., user’s, producer’s and overall accuracies); (2) estimating the area of forest
disturbances and regrowth using the accuracy assessment sample data to adjust the area for map
classification errors; and (3) estimating confidence intervals for the error-adjusted area estimates.
The confidence interval provides a range of values for the area of forest disturbances and regrowth,
taking into account the uncertainty of the sample-based estimate (e.g., the estimation of the accuracy
from the database defined in Section 2.3). Other sources of uncertainty exist, but are minimized by
using a SAR data processing particularly suited for change detection (Section 3.1) and by masking
areas that may exhibit SAR backscatter that could be incorrectly interpreted as disturbed forest or
regrowth (Section 3.2). Note that we did not propagate in the forest disturbance and regrowth
detection algorithm the error related to the backscatter because of the presence of speckle noise
to avoid excessive computational time. In addition, this error may be considered to be small (in
Section 3.1, we estimated the standard deviation of the backscatter to be approximately 0.4 dB after
SAR data pre-processing) relative to the intensity ratio of a disturbance event (mean > 5 dB, as shown
in the next Section 4.1).
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In this paper, the rows of the error matrix show the intact forest (Intact), the annual forest
disturbances between 2007 and 2008, 2008 and 2009 and 2009 and 2010, and the forest regrowth
between 2007 and 2010 (where i ranges from one to five), as assigned by the detection method. The
columns indicate the reference polygons from the database derived as explained in Section 2.2 (where
j ranges from one to five). We estimate the error matrix of the estimated area proportions p̃ij from the
error matrix of the sample counts nij as follows:

p̃ij = Wi
nij

ni.
(14)

where Wi is the proportion of the area mapped as class i relative to the total area Atot and ni. is the
sum of the samples in row i in the error matrix of the sample counts. In the results section, we report
the areas of forest disturbances and regrowth that were obtained directly from the map classification
(which are usually biased) and also present an unbiased estimation of these areas (Ãj for the estimated
area of class j) following [51]:

Ãj = Atot. ∑
i

Wi
nij

ni.
(15)

The estimated standard error of the estimated area proportion for class j is [52]:

S( p̃.j) =

√√√√ 5

∑
i=1

W2
i

nij
ni.
(1− nij

ni.

ni. − 1
(16)

where p̃.j is the sum of the samples in column j in the error matrix of the estimated area proportions.
The standard error of the error-adjusted estimated area is:

S(Ãj) = Atot.S( p̃.j) (17)

The approximate 95% confidence interval for Aj is 2× S(Ãj).

3.6.2. Uncertainties Related to Carbon Emission Estimates

From the obtained disturbed areas, we estimated AGB loss using the AGB values from the maps
of Saatchi et al. [53] and Baccini et al. [54]. The former provide a continuous uncertainty map, whereas
the latter do not provide a pixel-level uncertainty map. When assessing AGB loss using the map
from [53], we also used their uncertainty map. Because the uncertainty map includes uncertainties
(shown as εtot,ν) associated with AGB and below-ground biomass (BGB) at pixel position ν, we
calculated the error related to AGB only:

εAGB,ν =

√
ε2

tot,ν − 23.22

1 + 0.892 (18)

Relative errors at the regional scale (shown as εAGB,reg) are computed by summing the errors
from all pixels:

εAGB,reg =

√
∑N

i=1(AGBi.εAGB,i)2

∑N
i=1 AGBi

(19)

where AGBi is the AGB at pixel i and N the number of pixels in the region.

3.6.3. Propagation of Uncertainties

Errors related to the areas of forest disturbances and Saatchi’s map [53] were propagated by
Monte Carlo simulations (1000 simulations) to yield a standard deviation associated with the AGB
loss estimates. For these simulations, these errors were assumed to follow a normal distribution.
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For each simulation, the errors were randomly and independently drawn from the error distributions,
and a new AGB loss estimate was calculated. We finally calculated the standard deviation of the AGB
loss based on 1000 AGB replicates.

4. Results and Discussion

4.1. Characteristics of Backscatter for Natural Forest, Disturbed and Regrowth Areas

Distributions of the intensity ratio R based on γHV are presented in Figure 5 over intact forest,
disturbed areas and regrowth areas. Between 2007 and 2008, 2008 and 2009 and 2009 and 2010, the
distributions of disturbed areas showed mean R values of 5.18± 1.65, 6.57± 5.85 and 7.28± 2.04 dB,
respectively, whereas the distributions of intact forest showed values of 0.12± 1.00, 0.22± 1.30 and
0.13± 1.10 dB, respectively. Regarding forest regrowth, R was−4.93± 2.09 dB between 2007 and 2010.
According to these results, the intensity ratio R of γHV is a reliable indicator of forest disturbances
and regrowth, even during the wet season.

Figure 5. Distributions of the intensity ratio R based on γHV drawn over intact forest between 2007
and 2008 (Intact. 7–8), 2008 and 2009 (Intact. 8–9) and 2009 and 2010 (Intact. 9–10), disturbed areas
between 2007 and 2008 (Dist. 7–8), 2008 and 2009 (Dist. 8–9) and 2009 and 2010 (Dist. 9–10) and
regrowth areas between 2007 and 2010 (Reg. 7–10). R based on γHV is a reliable indicator of forest
disturbance and regrowth, even during the wet season.

4.2. Masking Undesirable Areas

Table 2 shows the results of the masking process described in Section 3.2. Pixels were labeled
as “forest” when γHV exceeded −14 dB, corresponding to the best average between the true positive
(93.6%) and true negative (96.7%) detection probabilities, as shown in Figure 6. This threshold is
similar to the results in [37] (−14 dB in Sumatra). In total, 37.9%, 50.8% and 58.6% of Vietnam,
Cambodia and Lao PDR, respectively, were classified as forest. As a comparison, the General
Statistics Office of Vietnam [55] reported forest coverage of 38.7% in 2008 in Vietnam, and the FAO
reported 39.7% in 2005 [56]. The FAO also indicated 59.2% forest coverage in Cambodia in 2005 [56].
The difference between the extents of forest coverage estimated by the FAO and here lies in the fact
that a large part of the inundated lands masked in Cambodia and, thus, not taken into account in
this study, corresponds to an inundated forest located between the city of Battambang and Tonle
Sap Lake. This difference would decrease if the forest pixels were extracted during the dry season.
The estimation of the forest extent in Lao PDR is more controversial. According to Lao’s Department
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of Forestry, 41% of Laos was forested in 2011; this value is significantly lower than those estimated by
the FAO in 2005 and 2010 (69.9% and 68%, respectively). The 58.6% forest coverage in this study thus
represents an intermediate value.

Slopes exceeding 20◦ represent 18.1% and 21.7% of Vietnam and Lao PDR, respectively, and only
1.7% of Cambodia, which is a relatively flat country. Approximately 14.3% of Cambodia is covered
by inundated lands, whereas in Vietnam and Lao PDR, these values are 2.2% and 0.8%, respectively.
Mangroves were only noted in Vietnam and Cambodia (0.4% and 0.3%, respectively). Vietnam and
Cambodia are also more urbanized than Lao PDR (8.7% and 9.4% versus 0.6%, respectively).

Table 2. Masking process results over Vietnam, Cambodia and Lao PDR. Forest and non-forest areas
were first separated, and then, terrain slopes 20◦, inundated lands, mangroves and urban areas were
filtered out.

Vietnam Cambodia Lao PDR

Forest (%) 37.9 50.8 58.6
Slope >20◦ (%) 18.1 1.7 21.7

Inundated lands (%) 2.2 14.3 0.8
Mangroves (%) 0.4 0.3 0

Urban (%) 8.7 9.4 0.6

Figure 6. Average between true positive ptpd and true negative ptnd forest detection with varying
thresholds applied to γHV using ALOS PALSAR data between 2007 and 2010. The bold line represents
the whole period.

4.3. Forest Disturbances and Regrowth Assessment

In order to estimate as best as possible forest disturbances and regrowth areas and AGB loss, the
whole database has been used to calibrate the proposed forest disturbance and regrowth detection
method (whereas two parts of the database are used for calibration and validation in the next
Section 4.4 for the evaluation of the method). The proposed forest disturbance and regrowth detection
method, detailed in Figure 4, converged after eight iterations according to the termination criterion in
Equation (11). The final class centers were Σ1 = 0.09 dB, Σ2 = 3.85 dB and Σ3 = −2.35 dB. The best
results were found using the smallest window (3× 3) required for the estimation of the local mean
value. The results slightly decrease as the window size increases. This finding is opposite that of [3],
where a surprisingly large window size (23× 23) was required to obtain the best results. The window



Remote Sens. 2016, 8, 217 15 of 22

size is partly related to the characteristic scale of change in the respective region. However, the small
window size in our study demonstrates that effective speckle reduction was achieved before the
change-detection algorithm was applied, thereby preserving the resolution of the final map without
substantial misdetections.

Figure 7 shows the forest disturbances and regrowth maps of Vietnam, Cambodia and Lao PDR
between 2007 and 2010. Figure 8, which shows the map in Figure 7 at the pixel scale in 12× 12 km
areas, highlights the various sizes and distributions of disturbed areas.

Figure 7. Forest disturbances and regrowth maps between 2007 and 2010 over Vietnam, Cambodia
and Lao PRD at 25-m resolution.
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Figure 8. Forest disturbances and regrowth maps between 2007 and 2010 at 25-m resolution over
12 × 12 km areas in Cambodia and Vietnam, highlighting the various sizes and distributions of
disturbed and regrowth areas.

The assessment of disturbance rates and regrowth rates is shown in Table 3. For comparison
purposes, Table 3 also presents the disturbance rates estimated by [9]. The largest disturbance rate
was found to occur in Cambodia (−1.22% in this study and −1.58% in [9]), followed by Vietnam and
Lao PDR.

To assess the AGB loss, for the disturbed areas detected by our algorithm, we overlaid the AGB
values from the maps of Saatchi et al. [53] and Baccini et al. [54] at the pixel level. However, the
level of uncertainty is very high at this small scale. Because the uncertainties that stem from random
errors at high levels of estimate aggregation tend to cancel each other out, we also averaged the
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AGB values and associated uncertainties following Equation (19) over regions in the FAO’s Global
Ecological Zones map [57] to assess AGB loss. Paradoxically, the lowest AGB loss (calculated at
the pixel level) according to the maps of Saatchi and Baccini was found to occur in Cambodia
(59.2 Tg and 43.1 Tg, respectively, versus 83.8 Tg and 64 Tg in LAO PDR and 60.7 Tg and 45.2 Tg in
Vietnam) because the mean AGB from [53] over Cambodia is lower than those over Vietnam and Lao
PDR. The large disturbance rate in Cambodia is not balanced by a significant regrowth rate (0.49%).
On the contrary, Vietnam exhibited the greatest regrowth rate (0.82%). In fact, Vietnam has
experienced a relative resurgence in forest cover over recent years, mainly because of several
internal political, socioeconomic and land-use processes [58]. Additionally, recorded wood imports
have increased substantially, and large quantities of illegal logs entered the country, mostly from
Cambodia [59] and Lao PDR [60]. Thus, Vietnam outsourced deforestation to Cambodia and Lao
PDR [61]. Note that the disturbance rates from [9] systematically exceed those determined here. Bellot
et al. [62] reported a similar conclusion, i.e., substantial overestimation of deforestation in Indonesia
by [9].

Table 3. Assessment of the disturbance rates in Vietnam, Cambodia and Lao PDR in this study and
by Hansen et al. [9] between 2007 and 2010.

Vietnam Cambodia Lao PDR

Disturb.rates (%) −1.07 −1.22 −0.94This study

Disturb. rates (%) −1.16 −1.58 −0.96Hansen

Regrowth rates (%) 0.82 0.49 0.35This study

The forest disturbance rates were not found to be geographically homogeneous. In Vietnam,
for example, between 2007 and 2010, the southeast region where rubber tree crops have traditionally
been grown experienced the largest loss (2438 km2), followed by the central highlands, which were
affected by bauxite mining and the building of hydropower plants (1475 km2), and the north central
coast (1094 km2). The lowest forest loss occurred in the Mekong River delta (63 km2), where there is
very low forest coverage. The forest disturbance rates were not found to be annually homogeneous.
Over Vietnam, the disturbance rates were −1.57%, −0.95% and −0.74% between 2007 and 2008, 2008
and 2009 and 2009 and 2010, respectively. For the same years, the disturbance rates were −1.96%,
−0.79% and −0.96% over Cambodia and −1.29%, −0.85% and −0.54% over Lao PDR, respectively.
The overall temporal decrease of the forest disturbances could be explained by the global financial
crisis in 2008. Following the financial crisis, the global demand for timber decreased, leading to
a suspension of plantation clear-cutting. In contrast, the disturbance rates found by [9] increased
systematically between 2007 and 2010. In Vietnam, for example, the disturbed forest areas reported
by [9] were 1157 km2, 1427 km2 and 1814 km2 between 2007 and 2008, 2008 and 2009 and 2009 and
2010, respectively.

The error-adjusted estimated disturbed, intact and regrowth total areas and associated 95%
confidence intervals, calculated following Equations (15) and (17), were 13,523 ± 339 km2,
368,870 ± 114 km2 and 6972 ± 77 km2, respectively. The corresponding total disturbance and
regrowth rates are −1.23 ± 0.03% and 0.61% (with a negligible confidence interval), respectively.
Using the averaged AGB values and associated uncertainties over regions in the FAO’s Global
Ecological Zones map [57], total AGB losses were 269.3 ± 30 Tg and 229.8 ± 5.7 Tg according to
Saatchi’s and Baccini’s maps, respectively. Note that the latter do not provide a pixel-level uncertainty
map, which explains the lower uncertainty related to AGB losses.

In Figure 9, the temporal series of AVNIR-2 data used to derive the training and testing database
(Section 2.3), PALSAR data, our PALSAR-derived forest disturbances and regrowth map and the
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Landsat-based disturbances map from [9] over a 17× 15 km area are visually compared. This example
highlights the effect of the Landsat 7 defective scan line corrector, which decreases Hansen’s map
quality. Note that Hansen’s map has the merit of being global, unlike the map derived in this study.

Figure 9. Visual comparison of the temporal series of AVNIR-2 data used to derive the training
and testing database (Section 2.3), PALSAR data, our PALSAR-derived forest disturbances and
regrowth map and the Landsat-based disturbances map from [9]. The 17× 15 km scene is centered at
∼12.56◦N–105.46◦E. This example highlights the effect of the Landsat 7 defective scan line corrector,
which decreased Hansen’s map quality.

4.4. Validation

The forest disturbances and regrowth map was evaluated using an error matrix of sample counts
and of estimated area proportions. The area proportions for each class are calculated following
Equation (14). In Table 4, the rows show the different classes (intact forest, forest disturbances and
regrowth) assigned by the classifier, whereas the columns indicate the reference polygons derived
from the database, as explained in Section 2.3. The training samples represented 10% of the database.
The numbers of samples used in the validation step (90% of the database) were 177,598, 1164, 1462,
3540 and 2071 for intact forest, disturbances between 2007 and 2008, 2008 and 2009 and 2009 and 2010
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and regrowth between 2007 and 2010, respectively. Based on estimated area proportions, the mean
producer’s accuracy (PA) was 84.7%, and the mean user’s accuracy (UA) was 96.3%.

Table 4. Validation of the forest disturbance and regrowth detection method. In the error matrix of
sample counts nij and of estimated area proportions p̃ij [51] (shown as nij/ p̃ij in the error matrix),
rows show the intact forest (Intact), the annual forest disturbances between 2007 and 2008 (Dist.7-8),
2008 and 2009 (Dist.8-9) and 2009 and 2010 (Dist.9-10) and the forest regrowth between 2007 and 2010
(Reg.7-10), as determined by the detection method. Columns indicate the reference polygons from the
database derived as explained in Section 2.2. The validation samples represent 90% of the database
described in Section 2.3. Based on estimated area proportions, the mean PA was 84.7%, and the mean
UA was 96.3%.

In situ
Intact Dist.7-8 Dist.8-9 Dist.9-10 Reg.7-10 UA (%)

Classification

Intact 177,570/0.95 195/1.e−2 266/1.4.e−3 477/2.5.e−3 383/2.e−3 99.3
Dist.7-8 0/0 963/1.4.e−2 51/7.e−4 48/7.e−4 0/0 90.7
Dist.8-9 9/10.e−4 3/0 1139/7.7.e−3 78/5.e−4 0/0 92.7

Dist.9-10 19/0 3/0 6/0 2937/6.7.e−3 0/0 99.1
Reg.7-10 0/0 0/0 0/0 0/0 1688/1.6.e−2 100

PA (%) 100 92.8 78 63.9 88.6

The change map has a PA of intact forest, disturbances between 2007 and 2008 and regrowth of
100%, 92.8% and 88.6%, respectively. The low PAs of 78% and 63.9% for disturbances between 2008
and 2009 and 2009 and 2010 are due to the fact that the proportions of these two classes in the final
change map are lower than other classes. In fact, an assessment of the PA for disturbances between
2009 and 2010, based on sample counts, gives a PA of 83%. Note that UA is higher than 90% for
all classes.

5. Conclusions

Approximately 15% of the world’s tropical forests are located in Southeast Asia [63]. However,
Stibig et al. [23] estimated a drop of the total forest cover of Southeast Asia from approximately
268 Mha in 1990 to 236 Mha in 2010. In this paper, forest disturbances and regrowth in Vietnam,
Cambodia and LAO PDR were assessed between 2007 and 2010 using 25-m resolution ALOS PALSAR
mosaic data by applying a new semi-automated method that combines SAR data processing, which is
particularly suited for change detection from SAR, and EM. A reliable training and testing database
was derived from VHR AVNIR-2 and Google Earth images. The forest disturbances and regrowth
map indicated disturbance and regrowth rates of −1.23 ± 0.03% and 0.61% (with a negligible
confidence interval), respectively. Using the averaged AGB values and associated uncertainties over
regions in the FAO’s Global Ecological Zones map [57], total AGB losses were 269.3 ± 30 Tg and
229.8± 5.7 Tg according to Saatchi’s and Baccini’s maps, respectively. This study proves that reliable,
large-scale maps of forest disturbances and regrowth can be derived using SAR data, even under
cloudy weather conditions. This method can be easily applied to other tropical regions using data
from ALOS2, which was launched in May 2014, and the P-band Biomass mission planned for 2020.

Acknowledgments: This research is conducted under the Kyoto and Carbon (K&C) Initiative. The authors
wish to thank Masanobu Shimada and his team from JAXA for providing the ALOS PALSAR data and for
pre-processing the PALSAR mosaic data. Many thanks to Jordi Inglada of Centre d’Études Spatiales de la
BIOsphère (CESBIO), Toulouse, France, for many useful conversations about change detection. The authors
gratefully acknowledge financial support from CNES (TOSCA program).

Author Contributions: Stéphane Mermoz performed the technical work and wrote the manuscript.
Thuy Le Toan assisted in interpreting the results and revising the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2016, 8, 217 20 of 22

References

1. Harris, N.L.; Brown, S.; Hagen, S.C.; Saatchi, S.S.; Petrova, S.; Salas, W.; Hansen, M.C.; Potapov, P.V.;
Lotsch, A. Baseline map of carbon emissions from deforestation in tropical regions. Science 2012,
336, 1573–1576.

2. Lewis, S.; Lopez-Gonzalez, G.; Sonké, B.; Affum-Baffoe, K.; Baker, T.; Ojo, L.; Phillips, O.; Reitsma, J.;
White, L.; Comiskey, J.; et al. Increasing carbon storage in intact African tropical forests. Nature 2009,
457, 1003–1006.

3. Whittle, M.; Quegan, S.; Uryu, Y.; Stüewe, M.; Yulianto, K. Detection of tropical deforestation using
ALOS-PALSAR: A sumatran case study. Remote Sens. Environ. 2012, 124, 83–98.

4. Van der Werf, G.R.; Morton, D.C.; DeFries, R.S.; Olivier, J.G.; Kasibhatla, P.S.; Jackson, R.B.; Collatz, G.J.;
Randerson, J. CO2 emissions from forest loss. Nat. Geosci. 2009, 2, 737–738.

5. FAO. Global Forest Resources Assessment; Technical Report; Food and Agriculture Association of the
United-States: Rome, Italy, 2010.

6. Kennedy, R.E.; Yang, Z.; Cohen, W.B. Detecting trends in forest disturbance and recovery using yearly
Landsat time series: 1. LandTrendr—Temporal segmentation algorithms. Remote Sens. Environ. 2010,
114, 2897–2910.

7. Cohen, W.B.; Yang, Z.; Kennedy, R. Detecting trends in forest disturbance and recovery using yearly
Landsat time series: 2. TimeSync—Tools for calibration and validation. Remote Sens. Environ. 2010,
114, 2911–2924.

8. Zhu, Z.; Woodcock, C.E. Continuous change detection and classification of land cover using all available
Landsat data. Remote Sens. Environ. 2014, 144, 152–171.

9. Hansen, M.; Potapov, P.; Moore, R.; Hancher, M.; Turubanova, S.; Tyukavina, A.; Thau, D.; Stehman, S.;
Goetz, S.; Loveland, T.; et al. High-resolution global maps of 21st-century forest cover change. Science 2013,
342, 850–853.

10. Sannier, C.; McRoberts, R.E.; Fichet, L.V. Suitability of global forest change data to report forest cover
estimates at national level in Gabon. Remote Sens. Environ. 2015, 173, 326–338.

11. Holmgren, P. Can we trust country-level data from global forest assessments? For. News 2015. Available
online: http://blog.cifor.org/34669/ (accessed on 1 December 2015).

12. Le Toan, T.; Beaudoin, A.; Riom, J.; Guyon, D. Relating forest biomass to SAR data. Geosci. Remote Sens.
IEEE Trans. 1992, 30, 403–411.

13. Le Toan, T.; Quegan, S.; Woodward, I.; Lomas, M.; Delbart, N.; Picard, G. Relating radar remote sensing of
biomass to modelling of forest carbon budgets. Clim. Chang. 2004, 67, 379–402.

14. Mermoz, S.; Réjou-Méchain, M.; Villard, L.; Le Toan, T.; Rossi, V.; Gourlet-Fleury, S. Decrease of L-band
SAR backscatter with biomass of dense forests. Remote Sens. Environ. 2015, 159, 307–317.

15. Santos, J.; Lacruz, M.; Araujo, L.; Keil, M. Savanna and tropical rainforest biomass estimation and
spatialization using JERS-1 data. Int. J. Remote Sens. 2002, 23, 1217–1229.

16. Santoro, M. Estimation of Biophysical Parameters in Boreal Forests from ERS and JERS SAR Interferometry.
Ph.D. Thesis, Department of Radio and Space Science, Chalmers University of Technology, GÃűteborg,
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