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Abstract: Satellite remote sensing is an advanced tool used to characterize seagrass biomass and
monitor changes in clear to less-turbid waters by analyzing multi-temporal satellite images. Seagrass
information was extracted from the multi-temporal satellite datasets following a two-step procedure:
(i) retrieval of substrate-leaving radiances; and (ii) estimation of seagrass total aboveground biomass
(STAGB). Firstly, the substrate leaving radiances is determined by compensating the water column
correction of the pre-processed data because of the inherent errors associated with the geometric and
radiometric fidelities including atmospheric perturbations. Secondly, the seagrass leaving radiances
were correlated to the corresponding in situ STAGB to predict seagrass biomass. The relationship
between STAGB and cover percentage was then established for seagrass meadows occurring in
Merambong, Straits of Johor, Malaysia. By applying the above-mentioned approach on Landsat
Thematic Mapper (TM) acquired in 2009 and Operational Land Imager (OLI) data acquired in
2013, the resulting maps indicated that submerged STAGB in less clear water can be successfully
quantified empirically from Landsat data, and can be utilized in STAGB change detection over time.
Data validation showed a good agreement between in situ STAGB and Landsat TM (R2 = 0.977,
p < 0.001) and OLI (R2 = 0.975, p < 0.001) derived water leaving radiances for the studied seagrass
meadows. The STAGB was estimated as 803 ˘ 0.47 kg in 2009, while it was 752.3 ˘ 0.34 kg in 2013,
suggesting a decrease of 50.7 kg within the four-year interval. This could be mainly due to land
reclamation in the intertidal mudflat areas performed, with a view to increase port facilities and
coastal landscape development. Statistics on dugong sightings also supports changes in STAGB.
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1. Introduction

Quantifying seagrass total aboveground biomass (STAGB) is vital for various inputs of coastal
related studies and ecology. Seagrass biomass in coastal ecosystem has been reported at a regional [1–3]
and local scale [4–6]. It is considered an important indicator of coastal ecosystem health, used for
sustainable coastal development [7], and is used to estimate total carbon as it sequesters. As some
marine species such as dugong and sea turtle use seagrasses as their primary food source, degradation
of seagrass biomass will create their food scarcity and consequently may reduce their abundance and
make those threatened species more vulnerable [8]. Seagrass biomass is a barometer for assessing
impacts of coastal landscape alteration on seagrass dynamics, species composition and water clarity [9].
Being seagrass is a component of coastal ecosystem and has the ability to reflect global climate change,
biomass quantification has gathered more attention in recent studies at global, regional and local
levels. Local level seagrass biomass and associated biophysical (marine environment) changes are
used for assessing changes in seagrass abundance and associated species, and understanding climate

Remote Sens. 2016, 8, 200; doi:10.3390/rs8030200 www.mdpi.com/journal/remotesensing

http://www.mdpi.com/journal/remotesensing
http://www.mdpi.com
http://www.mdpi.com/journal/remotesensing


Remote Sens. 2016, 8, 200 2 of 29

change impacts at regional and global levels. Thus, this seagrass parameter is used as a proxy for
understanding coastal health and developing coastal management plans.

Seagrass naturally has the ability to adapt in a range of water clarities—from mostly clear waters
to rarely less clear waters. The survival, growth and abundance of seagrasses are influenced by the
biophysical factors including underwater light, transparency, nutrients and temperature [10]. Malaysia
has a total of 4809 km coastline, of which 492 km is of Johor [11] that includes 25.2 km Merambong
coastline. Coastal areas of Merambong have experienced rapid coastal development. Although
coastal development brings about prosperous economies, activities related to this makes the seawater
less clear and optimal seagrass biomass growth is retarded. The changes in water clarity and other
environmental settings may cause simultaneous changes in STAGB over the years. The seagrass extent,
coverage and shoot density are important factors that influence the significant changes in the seagrass
biomass [12,13] due to variations of local climate, temperature, population density along the coastal
and urban areas. These changes can be efficiently documented using remote sensing methods. In the
coastal and ecological management perspectives, quantification of submerged STAGB changes using
remote sensing is essential and timely.

Seagrass meadows occurring in coastal waters can be found in two different habitats. The first
is seagrass meadows that remain inundated during low tide known as intertidal and the other is,
seagrass meadows that remain submerged even during the lowest low tide known as subtidal [14].
In the tropical coastal waters, seagrasses are commonly occurring in shallow water (ď5 m). In Malaysia,
the tide height remains lowest for 2–3 h during mid-year to July, particularly in the southern part
of Johor. During this period, intertidal seagrass meadows become exposed to the sun, which allows
seagrass data collection through direct sampling. Quantification of seagrass biomass, either using
field survey or remote sensing methods, can efficiently be perfomed at that golden time. There is
less possibility of coincidence between the subtidal seagrass meadows to be fully exposed and the
satellite overpass time. Hence, monitoring the subtidal and intertidal seagrass meadows of Malaysia
often experiences difficulties particularly when the satellite image acquisition and tide heights do not
synchronize throughout the year. This issue makes STAGB data acquisition and quantification more
challenging. Low water clarity, in other words, high concentration of floating particles, complicates
STAGB estimation from the satellite images.

For monitoring the STAGB changes, if the traditional field-based methods are followed, it will
require multi-temporal visits to seagrass meadows to manually record the seagrass coverage and
those types of survey techniques are expensive, time-consuming and also cause physical damage to
seagrasses during sample collection. STAGB change analysis using a remote sensing method can be
an alternative and effective method because of its cost-effectivenes, and consistent, repetitive and
synoptic coverage. Studies on STAGB changes using remote sensing methods are limited, as evidenced
by fewer publications. The limiting factors include: (a) inherent spatial and spectral characteristics
of multi-spectral sensors; (b) fluctuations of temperature in tropical countries; (c) satellite over pass
time; (d) sampling from remote locations; (e) changes in seagrass biomass over the year. Remote
sensing methods suitable for estimating submerged STAGB under less clear water is rarely reported
and explored. The high annual precipitation in the tropical areas causes water clarity lower than that
of northern and southern latitudes. Similar studies had been conducted in clear coastal waters and
documented in [15,16], that were mostly in clear waters (Case-1) of Australia. Less efforts are required
to obtain good STAGB results from the analysis of the images acquired during low spring tides, and as
when seagrass leaves are exposed. Quantification of STAGB for the seagrasses occurring in Case-2
water coupled with high concentration of yellow matter, may make the task difficult because of light
attenuation in water column. In this paper, a remote sensing approach for STAGB quantification is
implemented for less clear water, which is an extension of earlier research [17,18]. The satellite image
band differencing method is used in detecting STAGB changes. To date, few studies have documented
STAGB changes in submerged seagrasses, occurring especially in less clear waters.
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While STAGB quantification in less clear water is challenging, the water column effect is vital
to handle the challenges mentioned above. Prior to this, the robustness of water column correction
technique called bottom reflectance index (BRI) by [19] to detect the changes in submerged STAGB is
tested on the multi-species seagrass meadow environment. In addition, we applied the empirical
method on Landsat images with 30 m spatial resolution that have a large spatial coverage and are
free to download. Through this study, we intend to highlight the great potential of multi-temporal
Landsat data and remote sensing method for (a) identification and mapping of seagrass extent;
(b) quantification of submerged STAGB in Case-2 coastal water; (c) STAGB change detection and its
assessment. A number of key research questions emerged, including how the dynamic changes of
STAGB can be quantified using spatio-temporal remote sensing data. Hence, this paper emphasized
the changes of STAGB in mixed-species composition, seagrass extent and empirical use BRI on Landsat
Thematic Mapper (TM) and Operational Land Imager (OLI) images to quantify submerged STAGB
in partially turbid coastal shallow Case-2 waters [20] at the southern tip of the Malaysian Peninsula.
Several assumptions are considered including: (a) the tropical coastal region has highly stable climatic
condition and air temperature; (b) insignificant changes occur during monsoon season; (c) less dynamic
changes of seagrass coverage occur over the years; (d) less seasonal variation throughout the year; and
(e) the utilization of similar spatial and spectral specifications of sensor so that variation of satellite
image characteristics is minimal. Subsequently, using the sufficient number of sampling of seagrass at
two year intervals at similar locations, within similar sampling quadrat size, the changes of seagrass
extent, distribution and its STAGB can be performed using remote sensing approach and regional
algorithm of water column correction. Thus, STAGB quantification of submerged shallow seagrass
empirically developed after implementation of water column correction in case-2 water.

2. Materials and Methods

2.1. Study A—Merambong Shoal

Seagrass aboveground biomass data was collected from the seagrass meadows occurring in
Merambong shoal, located in the Sungai Pulai estuary, Straits of Johor, Malaysia (Figure 1). This study
site is in the northeastern side of the Merambong Island, one of the most significant natural marine
frontiers between Malaysia and Singapore. It is 1.8 km in length from north to south and 200 m in
width from east to west, covering latitude of 01˝19.9791 North and longitude of 103˝35.9651 East; total
approximate area is 42.6 km2 which covers Tanjung Kupang and Tanjung Adang.
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It is the largest single tract of seagrass meadow in Malaysia, surrounded by Case-2 water. This area
is home to myriad marine biodiversity and extensive development of subtropical benthic habitat
features in shallow to deep waters [21]. Out of 60 seagrass species found worldwide, 15 species are
found in this region [22,23], and 10 species are found on this shoal. Submerged benthic habitats present
on site during fieldwork were (a) seagrass: Enhalus acoroides, Halophila ovalis, Cymodocea serrulata
and Halodule uninervis; (b) seaweed: Sargassum, Chaetomorpha minima [12,24], and (c) insignificant
population of fringing coral reef [10], with a bottom depth ranging from 0.3 m to 35 m where, typically,
the seagrass habitat is bounded to water depth less than 4 m. Many seagrass patches are always
submerged and randomly distributed in this area. The shoal is mostly covered by Enhalus acoroides
and paddle-shaped Halophila ovalis. Moreover, this area is intensively used for many scientific
research activities.

2.2. Materials

Two main material sets were used in this study, namely the satellite remote sensing data and
field samples from in situ observations used for ground truthings. The Landsat 5 TM and Landsat
8 OLI data, which have different characteristics, were used to detect STAGB changes (see Figure 2).
In addition, hydrographical charts acquired from the National Hydrographic Centre of Malaysia was
used to obtain the depth information.
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Figure 2. Study area viewed from (a) Landsat 5 TM; and (b) Landsat 8 OLI (path/row: 125/59).
Both the scenes are loaded in natural color composites by layer stacking bands 3, 2, 1 for TM and bands
4, 3, 2 for OLI.

An underwater camera and GPS were used during sea truth data collection (15 February 2009
and 8 June 2013) to record the seagrass patchiness, position and coverage during submerged seagrass
meadow condition. The seagrass sampling was performed during low tide, close to satellite over
pass time, and seagrass meadows were almost exposed to the sun. The collected samples were then
physically measured as shown in Table 1. Furthermore, aboveground parts of seagrass sampled within
quadrat was harvested and dried in the oven for 48 h to measure aboveground biomass.

Both the intertidal and subtidal seagrass in situ data were collected. Other sea bottom features
(non-seagrass) information were collected during satellite overpass time using handheld GPS
(horizontal accuracy of 2–3 m) and underwater camera with LED light (record video in average
of 30 seconds for each point). By distinguishing seagrass and non-seagrass features, classification
accuracy was assessed. Time and depth were recorded for calibration of tidal height during image
acquisition. As shown in Figure 1, the actual water depth was derived from corresponding nautical
chart plus the tidal height during collection of sea truth information. A total of 414 and 425 samples
were collected in 2009 and 2013, respectively, using the camera. Ninety six video footages were
analyzed for identification of submerged features for selected locations. Six transects of 30 m to
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100 m were laid on the seagrass meadows during low tide to record seagrass cover in percentage
unit. About 350 samples were collected in Merambong shoal due to the occurrence of the majority of
seagrass multi-species and variations in seagrasss cover density from coarse, medium to high (seagrass
meadows)—whilst the remaining 50 samples are gathered from seagrass patches outside Merambong
shoal, covering the entire study area are mostly mono-species (Ea) with variety of coverage percentages.
One-third of seagrass data collected from the field was used for validation of results.

Table 1. Summary of characteristics of seagrass species at study area based on observations in February
2009 and June 2013. Standard deviation is s.d.

Location/Seagrass Species * Ho Ea Hu Cs Hs

Merambong shoal X XDominant X X X
Leaf length, mean ˘ s.d (cm) 2.82 ˘ 0.52 185.60 ˘ 93.81 15.45 ˘ 7.42 7.24 ˘ 2.45 10.87 ˘ 2.13

Range (cm) 1.02–3.32 44.88–220.52 6.04–18.47 5.68–10.63 7.84–13.3
Leaf width, mean ˘ s.d (mm) 11.5 ˘ 3.4 20.2 ˘ 8.1 8.2 ˘ 1.2 9.8 ˘ 2.5 36.7 ˘ 23.4

Range (mm) 7.4–15.6 12.4–25.6 5.8–9.6 7.4–13.7 28.6–55.5
Tanjung Adang X XDominant X X X

Leaf length, mean ˘ s.d (cm) 2.68 ˘ 0.42 190.24 ˘ 89.67 14.83 ˘ 6.97 8.06 ˘ 2.17 10.87 ˘ 2.15
Range (cm) 1.11–3.29 45.08–222.34 6.21–18.22 6.02–10.65 7.88–13.8

Leaf width, mean ˘ s.d (mm) 10.95 ˘ 3.2 19.87 ˘ 8.2 8.6 ˘ 1.8 9.6 ˘ 2.6 35.9 ˘ 22.8
Range (mm) 7.5–14.9 12.2–23.8 5.6–9.3 8.1–13.5 28.1–53.4

Location/Seagrass Species * Th Hd Cr Hp

Merambong shoal X X X X
Leaf length, mean ˘ s.d (cm) 18.54 ˘ 4.73 2.32 ˘ 2.54 12.87 ˘ 4.51 8.98 ˘ 2.57

Range (cm) 10.72–21.97 1.74–2.77 7.02–15.64 5.97–16.41
Leaf width, mean ˘ s.d (mm) 18.5 ˘ 3.4 5.2 ˘ 0.5 11.2 ˘ 5.6 9.9 ˘ 1.4

Range (mm) 10.1–22.8 8.1–6.3 9.2–13.1 6.4–11.1
Tanjung Adang x X X x

Leaf length, mean ˘ s.d (cm) 18.27 ˘ 4.65 2.54 ˘ 2.03 12.15 ˘ 3.92 x
Range (cm) 10.96–21.65 1.71–2.81 7.06–14.98 x

Leaf width, mean ˘ s.d (mm) 18.7 ˘ 2.8 5.5 ˘ 0.4 11.8 ˘ 5.9 x
Range (mm) 11.1–23.0 8.0–5.9 9.4–14.2 x

* Seagrass Species. Ho = Halophila ovalis; Th = Thalassia hemprichii; Ea = Enhalus acoroides; Hp = Halophila
pinifolia; Hu = Halodule uninervis; Hd = Halophila decipiens; Cs = Cymodocea serrulata; Cr = Cymodocea
rotundata; Hs = Halophila spinulosa.

2.3. Satellite Data Processing

The two main steps (as shown in Figure 3), consisting of four phases of data processing
were involved in this study: (i) data pre-processing including geometric correction, atmospheric
correction, radiometric calibration of satellite image; (ii) detection and mapping of seagrass occurrence;
(iii) determination of STAGB from the resulting seagrass distribution map; and (iv) change detection
analysis of STAGB obtained from the two satellite data sets. Figure 3 illustrates the flowchart of
all these four phases of data processing and their related inputs. The data processing tasks were
performed using digital image processing software ENVI version 5.0 and ArcMap version 10.

2.3.1. Satellite Data Pre-Processing

The data pre-processing phase includes: (i) geometric correction; (ii) sun glint removal;
(iii) conversion of satellite digital number to radiance; and (iv) atmospheric correction. Image subset
was done to keep only the area of interest. To apply image processing procedures on the water covered
areas alone and to ease further analysis, image masking procedure was applied. Land, cloud and
shadow areas were masked out before proceeding to the next pre-processing steps. In this masking
process, the near infrared (NIR) band (0.76–0.89 µm) was used since this band gives good delineation
between land and water [12,14].
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(a) Geometric correction

The geometric correction was performed in order to minimize all geometric distortions inherent
to the image. The image was geo-referenced to the UTM coordinate system, datum WGS-84 area 48N
using a total of 35 ground control points (GCP) which are identifiable in the satellite image and the
corresponding topographic map of the study area. The topographic map of the study area was used as
a reference to correct geometric distortion of both images. Coordinates of these GCPs were refined with
GPS surveys. The second-degree polynomial function was used in relating the satellite image to the
corresponding area. The geometrically transformed images (band blue, green and red) were resampled
to same 30 m pixel size using nearest neighbor resampling scheme so as to maintain the intensity of the
pixels. Coastal blue band of Landsat OLI was not used in this study since the wavelength and width of
this spectral band is not equivalent to blue band of Landsat TM data. Only similar short visible spectral
bands of Landsat OLI and Landsat TM were used for STAGB change detection. Inter-comparison of
Landsat OLI data is suggested to assess combination of coastal aerosol with other band in the next
parallel study.

(b) Sun glint removal

Glittering noise on image was seen on the image, even more obvious on fine spatial resolution in
a tropical country, such as Malaysia, which receives 10–12 h of diurnal intense sunlight. These sun
glints are formed due to the geometrical position between the sun, satellite and sea surface roughness
and do not occur in calm sea surfaces. If not corrected, the sun glint effects will create artefacts
in the result of further processing. Hence, sun glint removal is important prior to detection of sea
bottom features on satellite data [25,26]. The NIR band was chosen because it exhibits maximum
absorption and minimizes water-leaving radiance in such waters due to large light attenuation in
the water column. This band was only used for mask-out land and sun glint removal. The linear
relationship between NIR and visible band was performed using linear regression based on selected
samples. When the linear relationship is known, the glint effect can be derived from NIR value and was
subtracted from the pixel to obtain a glint free image. Removal of the sun glint effect, Ri

1 is performed
in accordance with [27]:

Ri
1 “ Ri ´ bi pRNIR ´MinNIRq (1)

where Ri is the pixel value in band i; RNIR is the pixel value in NIR band; MinNIR is the minimum
pixel value in NIR band and bi is the regression slope derived from visible and NIR band. Despite the
removal of sun glint effect on the image, the original pixel value did not drastically change after this
process, which is also reported by [18,28] in their studies.

(c) Conversion of satellite digital number to radiance

The image was converted to radiance value (Lλ) in order to perform radiometric correction.
The rescaling gains and biases for Landsat 8 OLI satellite data were obtained following [29]:

Lλ “ MLQcal ` AL (2)

where

Lλ = TOA spectral radiance (Watts/(m2 * srad * µm));
ML = Band-specific multiplicative rescaling factor (see Table 2) from the metadata;
AL = Band-specific additive rescaling factor (see Table 2) from the metadata; and
Qcal = Quantized and calibrated standard product pixel values (DN).
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Table 2. Band multiplicative and additive rescaling factors of Landsat 8 (OLI).

Wavelength, λ Multiplicative Additive

Rescaling Factor, ML Rescaling Factor, AL

Band 2-Blue (0.45–0.51 µm) 0.013263 ´66.31272
Band 3-Green (0.53–0.59 µm) 0.012221 ´61.10660
Band 4-Red (0.64–0.67 µm) 0.010306 ´51.52853

Pixels containing DN on Landsat 5-TM 2009 need to be converted into radiance units based on
the following equation:

Lλ “

„

Lmaxλ ´ Lminλ

255



Qcal ` Lminλ (3)

where Lλ is spectral radiance for band λ at the sensor’s aperture in unit of mW/cm2/µm/str, Qcal is
quantized calibrated pixel value in DN, Lminλ is spectral radiance that is scaled to Qcal min and Lmaxλ is
spectral radiance that is scaled to Qcal max [29]. See Table 3 [30] for Lminλ and Lmaxλ respective values.

Table 3. Constant value for rescaling gains and biases for Landsat 5 TM. Source: [30].

Band Lmin Lmax

Band 1-Blue (0.45–0.52 µm) ´1.52 193.0
Band 2-Green (0.52–0.60 µm) ´2.84 365.0

Band 3-Red (0.63–0.69 µm) ´1.17 264.0

(d) Atmospheric correction

In this study, the atmospheric correction for all the spectral bands of Landsat TM and Landsat
OLI was performed using FLAASH program [31] of the ENVI v.5 software. The FLAASH atmospheric
correction was chosen to minimize the atmospheric perturbations of nadir-viewing images with
inclusivity of correcting the adjacency effects. This is crucial for minimizing scattering effects of
neighboring pixels of sea surface to retrieve substrate-leaving radiances. The FLAASH atmospheric
correction is given in Equation (4)

Li “

ˆ

Aρ

1´ ρes

˙

`

ˆ

Bρe

1´ ρes

˙

` La (4)

where

Li = the spectral radiance at sensor pixel;
ρ = the pixel surface reflectance;
ρe = an average surface reflectance for the pixel and a surrounding region;
s = the spherical albedo of the atmosphere;
La = the radiance back scattered by the atmosphere; and
A and B = coefficients that depend on atmospheric and geometric conditions but not on the surface.

2.3.2. Retrieval of Seagrass Features

Prior to STAGB quantification, seagrass-containing pixels were identified by correcting
confounding effect of variable depths, known as water-column effects. Several water column correction
techniques have been introduced for similar purpose. To date, BRI is the most recent approach
that was examined, as it is more effective when depth information is available for the study area.
Water column corrected image datasets facilitate the quantification of submerged STAGB. The BRI
water column correction is a hybrid equation which is derived from the depth invariant index (DII)
by [32]. The applicability of BRI in tropical water with less clarity (typical of water Case-2 water)
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has not been tested earlier and our preliminary work showed that it has great potential especially
when applied to quality images with a view to submerged seagrass detection. The output of BRI is the
substrate-leaving radiances of the area. The BRI is given in Equation (5) as below:

BRI “
pLi ´ Lsiq

rexpp´KigZqs
(5)

where,

Li = measured radiance in band i;
Lsi = deep-water radiance in band i;
Ki = attenuation coefficient for band i;
g = geometric factor to account for the path length through water, and
Z = water depth (m).

The above water column correction approach requires input of radiance at sensor pixel (Li) and
radiance of deep water (Lsi) of a particular band. Use of radiance in BRI is essential for ensuring subtle
changes within the retrieved substrate-leaving radiances.

The applicability of BRI was examined on Landsat images to empirically quantify STAGB for
seagrasses occurring in complex coastal environment. The assumption of this technique is that the
water attenuation coefficients of each pixel in the selected band remains constant over the study area
and independent from benthic substrate types. Differing from previous substrate-retrieval technique,
the DII is independent of water depth and attenuation coefficient which is obtained from the band ratio.
However, depth information of the area yields better output, as examined in this study. The depth
data was combined with water attenuation coefficients to derive the BRI.

The blue band (0.45 µm–0.51 µm), the green band (0.53 µm–0.59 µm) and red band
(0.64 µm–0.67 µm) of both TM and OLI were used for this study since the blue band has short
wavelength that penetrates depth better than other bands while the function of the green band
is quite similar to that of the blue band. The red band 4 (0.64 µm–0.67 µm) was also used to derive BRI,
as it is sensitive to reflectance changes from water surface.

For assessing the correctness of BRI, attenuation coefficient values derived from water-leaving
radiances in respective bands can best serve for internal checks. For each band used, these
water-leaving radiances exhibited an exponentially-related trend when plotted against water depths.
The deep-water radiance (Lsi) of each band was obtained as a mean radiance of 10 selected pixels in
deep water outside the confined area of Merambong and nearby port. To minimize instrument and
environmental noise in such condition, subtraction of two standard deviations from the mean was
done. Moreover, 81 points were selected from the areas with submerged and muddy bottom type at
euphotic zone (2 m to 10 m depth) to calculate the attenuation coefficient (Ki) of each band. The Ki
of each band was extracted from exponential graph between (Li and Lsi) and corresponding depth,
Z by dividing the extracted value with geometric factor, g. The g value was calculated in order to
account for path length of light through water. This value is obtained through a series of mathematical
solutions using the Snell’s Law concept with information of sun elevation angle which is obtained
from metadata of each scene, altitude and field of viewing angle of the sensor and the value is always
~2 for all images of passive sensor including Landsat [19,32]. In this study, g value of Landsat TM 2009
is 2.15 while Landsat 8 OLI is 2.13. Water depth Z of each pixel was obtained through interpolation of
known bottom depth which is obtained from nautical chart. Using all the values of each parameter
in BRI, all remaining pixels will have their unique BRI values. Pixel dominant with seagrass patches
and meadows have their own unique ranges of BRI that can be used to distinguish them from other
substrate classes.

The above BRI output sets were then classified using Maximum Likelihood Classifier (MLC)
supervised classification approach to produce seagrass distribution map. The crucial input of the
classification is the selection of combination of any BRIblue (BRIb), green (BRIg) or red (BRIr) band



Remote Sens. 2016, 8, 200 10 of 29

pair. Combination of BRI of blue and green band (BRIb,g) was used first to be classified, prior to other
combinations including BRIg,r and BRIb,r. The best combination from Landsat OLI and TM data with
highest accuracy is graphically presented in the next section. All seagrass pixels were then used for
empirical quantification of STAGB and to assess changes.

2.4. Sampling of Seagrass Aboveground Biomass

Field sampling for seagrass aboveground biomass estimation took about 90 min during the low
tide, which was carried out before using underwater camera and other instruments. In 1997 and earlier
than that time, visual scale on ground was introduced for estimating seagrass biomass [33]. Here, we
enhanced this visual method by introducing two scales ground-based STAGB quantification based
on the seagrass cover percentages and grouped seagrass species composition within the quadrat into
two groups, small and large. All quadrats 50 cm ˆ 50 cm in size were placed along transects ranging
from 30 m (perpendicular to shoal) to 100 m (parallel to shoal) and seagrass coverage was recorded
in fieldwork sheet for every 5 m interval. Although, in the beginning of this study, it was planned to
generalize all species by measuring STAGB on ground using only a single scale based on mixed-species
composition, it would be unfair, inaccurate and irrelevant because there was a large differences in
physical structure of Enhalus acoroides compared to other species found at Merambong shoal and
Tanjung Adang shoal (referred to Table 1) being ground STAGB of 100% of Ho is remarkably different
when compared to 100% of Ea. Thus, we associated seagrass coverage with STAGB by developing two
new scales. The first scale was used for <50% coverage for dwarf sized seagrass species, such as Ho,
Th, Si, Hu, Hd, Cs, Cr, Hs and Hp. This group has leaf length ranging from 1 to 20 cm with or without
leaf blades whereas Ea has 40 cm to 220 cm leaf length with 3–5 leaf blades from a single rhizome.
Separating seagrass species into two groups allowed submerged STAGB measurements more accurate
on the ground (in situ) as compared to satellite-based submerged STAGB quantification using BRI.
However, this scale was only applied to STAGB measurements on the ground only as we integrated
both scales to the most fitted percentages that represent the seagrass coverage to be correlated with
BRI. Finally, only single STAGB map was generated for each image by considering BRI variation for
mixed-seagrass species detected in 30 m pixel size of Landsat. Figure 4 illustrates typical submerged
and exposed seagrass in the study area.
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Figure 4. Typical mixed seagrass species on Merambong shoal during submergence seen from
underwater video (left) and exposed (right).

To avoid massive destruction of seagrass bed, only 40 aboveground seagrass samples were
harvested in 2013 and an additional 40 samples in 2009 from the Merambong shoal seagrass meadows
were kept in the cold until the drying process in the laboratory. All samples were categorized into
two groups of biomass scales: (a) 20 sampling with presence of Ea and (b) 20 sampling without
presence of Ea, to measure the fresh and dry weight biomass. To obtain the average aboveground
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biomass corresponding to their density, all 20 samples from each group were used for each 5% interval
(5% to 100%). For example, 100% coverage within the quadrat of Ea from two samples recorded
average biomass of 350–355 g¨m´2 and 38–40 g¨m´2. Although 30 m ˆ 30 m pixel of Landsat
contained a mixture of seagrass species, ground-based seagrass biomass measurement could be
set as an indicator for dominant seagrass group at particular area from the satellite data processing
perspectives. Darker pixel on a BRI layer should indicate higher biomass due to increased Ea abundance
or 100% of non-Ea species. Sampled seagrasses were oven dried at 90 ˝C for 48 h, as adopted by [17,34].
The sediment, calcareous epiphytes and sand were cleaned from seagrass leaves using water and
formalin solution before starting oven drying process. The constant weight of all samples was measured
using an electronic scale which is sensitive to 0.1 g.

Merambong shoal was resized and other pixels were masked out. The remaining pixels which
contained majority of seagrasses within 30 mˆ 30 m pixel showed the range of BRI for various seagrass
coverage (0%–100%). Density slicing was used to produce a STAGB map. For comparison, all recorded
STAGB measured in the ground was regressed with BRI values. Field-based depth of water versus
pixel-based STAGB were extracted from satellite image was used to determine the accuracy and root
mean square error (RMSE). To validate and support the results, Water Quality Checker (WQC) model
Horiba U-50 was used to assess multi-parameter water condition while position of patchy seagrass
was recorded by handheld GPS with ˘5 meter level of accuracy. An underwater camera was towed to
record video of seagrass coverage on the seafloor but was constrained with limited visibility due to
floating particles in the water. With all the research instruments and meticulous observation around
this area, seagrass coverage by species living here is shown in Figure 5. This information is important
and is the reason of using two different scales for STAGB quantification.
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Figure 5. Common seagrass species found on Merambong shoal and its vicinity.

2.5. Change Detection of STAGB between 2009 and 2013

Two types of changes were assessed from the visual inspection of Landsat images acquired in
2009 and 2013 and the statistical analysis: (a) changes in spatial distribution of submerged seagrasses
along the Straits of Johor; and (b) changes in STAGB concentrated in Merambong shoal. Band
differencing method was used between the scenes to detect either decreased or increased STAGB
changes. Results were validated with in situ sampled data. The range of differences were categorized
and presented in different color-code for the “no change” to the most significant STAGB changes.

3. Results and Discussions

There are two main set of results obtained from this study; (i) changes in seagrass distribution
within the study periods; and (ii) changes in STAGB between the image-dates. This study also shows
that the water column correction can efficiently be used on atmospheric corrected Landsat images for
seagrass meadow detection. This information can essentially be used in modelling STAGB combined
with in situ corresponding seagrass coverage data.
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Figure 6 shows the differences of visual effect between before and after atmospheric and water
column correction applied to Landsat images.
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Figure 6. Visual appearance of both Landsat 5 TM (a) and Landsat 8 OLI (b) before and after
atmospheric and water column corrections. The RGB color composite is created by layer stacking R:
band 3, G: band 2, B: band 1 for Landsat 5 TM while R: band 4, G: band 3, B: band 2 for Landsat OLI.

It can be clearly seen in (Figure 6) that the perturbation of atmosphere is reduced significantly
after correction. It is well-noted that bands untreated atmospherically over the seagrass area do
not portray significant variations in discriminating seagrass class from other substrates. In contrast,
its enhanced image visual quality after atmospheric perturbation is removed. Further to this, the
significant difference test was performed by analyzing ANOVA between atmospheric uncorrected
and corrected images. The significant differences of this atmospheric correction reported in Table 4
by p-value, shows that they are significantly different at 0.01 and 0.05 levels. By implementation of
atmospheric correction, variability of seagrass is enhanced (larger s.d. range) to portray the submerged
seagrass coverage variation in less clear water.

Table 4. Statistics of before and after atmospheric correction and water column correction.

Satellite Band
Before Atmospheric Correction After Atmospheric Correction

*r *µ *s.d *var *r *µ *s.d *var p-Value **

Landsat
TM

Blue 79.34–85.44 81.70 1.21 1.47 14871–15655 15254.85 177.44 31486.32 ď0.001
Green 64.96–67.84 66.36 0.90 0.81 13575–14597 14186.32 249.20 62101.01 ď0.05
Red 40.17–43.54 41.79 0.85 0.72 10183–11043 10573.97 184.11 33896.15 ď0.001

Landsat
OLI

Blue 83.39–85.00 84.43 0.39 0.15 510–552 538.41 10.90 118.80 ď0.05
Green 64.96–67.84 66.36 0.90 0.86 520–602 578.35 23.66 559.99 ď0.05
Red 34.13–38.10 36.90 0.76 0.57 392–446 415.32 11.41 130.10 ď0.001

Satellite Band Before water column correction After water column correction

Landsat
TM

Blue 14871–15655 15254.85 177.44 31486.32 8.01–12.76 10.37 1.40 1.95 ď0.05
Green 13575–14597 14186.32 249.20 62101.01 4.01–10.87 7.54 1.81 3.28 ď0.05
Red 10183–11043 10573.97 184.11 33896.15 2.00–8.23 4.79 1.80 3.24 ď0.001

Landsat
OLI

Blue 510–552 538.41 10.90 118.80 17.25–22.47 20.75 1.63 2.66 ď0.05
Green 520–602 578.35 23.66 559.99 13.45–16.44 15.28 0.81 0.66 ď0.05
Red 392–446 415.32 11.41 130.10 8.42–13.97 12.37 1.11 1.23 ď0.05

Note: *r = dynamic range; *µ = mean; *s.d = standard deviation; *var = variance, ** ANOVA-test.
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In addition, the effectiveness of the atmospheric correction for the main target-of-interest, the
seagrass reflectances against the main background were also examined. Table 5 summarizes the
average reflectance of seagrass against the surrounding sand background, depicting the absolute
reflectances before and after atmospheric correction as well as the water column correction.

Table 5. Retrieved seagrass reflectances against its main surrounding sand refelcetances, before
and after atmospheric corrections as well as the water column correction: (a) Landsat-5 TM; and
(b) Landsat-8 OLI.

Band
Seagrass Reflectances Sand Reflectances Separability of Seagrass-Sand

Reflectances * (%)

*a *b *c *a *b *c *a *b *c

(a) Landsat-5 TM

Blue 0.20942 0.11201 0.02357 0.23352 0.15387 0.29142 11.51 19.06 1136.40
Green 0.21964 0.12437 0.03895 0.23542 0.24847 0.30854 7.18 99.78 692.14
Red 0.18544 0.10041 0.01964 0.19823 0.27922 0.32254 6.90 178.08 1542.26

(b) Landsat-8 OLI

Blue 0.24557 0.12187 0.03764 0.23014 0.18004 0.27362 6.28 47.73 629.94
Green 0.22864 0.18005 0.07864 0.24567 0.27554 0.31847 7.45 78.35 304.97
Red 0.18665 0.14447 0.04772 0.21444 0.29124 0.37255 14.89 101.59 680.70

* note: a = Average reflectance before atmospheric correction; b = Average reflectance after atmospheric
correction; c = Average reflectance after atmospheric correction and water column correction.

To determine submerged seagrass occurrences, the pixel values were transformed into BRI.
Water column corrected bands of Landsat 2009 and 2013 were then classified for mapping spatial
distribution of seagrasses. MLC was applied to implement supervised classification because there were
well-distributed and sufficient number of sampling data to train and assign each pixel into the most
probable corresponding substrate classes based on probability density function. This classification
approach is proven to be the best for absolutely classifying the underlying substrate features. Prior to
this classification, training areas, such as sand/mud, seagrass and deep water were created based on
in situ observations (Figure 1 shows in situ locations). Figure 7 shows the seagrass distribution map
for 2009 and 2013 derived from Landsat TM and Landsat OLI, respectively. The accuracy of overall
classification along with inter-classes interaction is tabulated in Table 6.

Table 6. Confusion matrix of classification on coastal features using bottom reflectance index BRI on
(a) Landsat 2009 and (b) 2013 by maximum likelihood classifier (MLC). A set of training samples of
each class from in situ data has been assigned to classify the BRI layer.

Classification Data
Reference Data (Pixel) User Accuracy

Seagrass Mud/Sand Row Total

(a) Landsat 5 TM 2009

Seagrass 298 36 334 89.2%
Mud/Sand 16 64 80 80.0%
Column total 314 100 414
Producer accuracy 94.9% 64.0%

Overall accuracy 79.5%

Kappa coefficient 0.7975

(b) Landsat 8 OLI 2013

Seagrass 320 23 343 93.2%
Mud/Sand 12 70 82 85.4%
Column total 332 93 425
Producer accuracy 96.4% 75.3%

Overall accuracy 85.9%

Kappa coefficient 0.8104
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The best Landsat band that shows strong agreement between in situ data and seagrass delineation
result is a combination of blue and red band (BRIb,r) for both TM and OLI as the accuracy is higher
(Table 6) compared to BRIb,g or BRIg,r (overall accuracies: 66.4% and 70.1%; kappa statistics: ď0.6
respectively for OLI; overall accuracies: 63.5% and 68.6%; kappa statistics: ď0.5 for OLI). Prior to such
assessment, in situ verification was performed. Blue band shows the most useful band in shallow
substrate feature detection including seagrasses with varying density classes.

3.1. Changes on the Seagrass Distribution Map between 2009 and 2013 in the Merambong Area

From Figure 7, it can be depicted that seagrasses around the Merambong shoal were submerged
and could only be seen through diving. Intertidal seagrass data can only be collected during low tides.
Table 7 tabulates seagrass changes over the study period.
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(b) 2013.

Table 7. Summary of submerged seagrass area by MLC.

Class Landsat 5 TM (2009) Landsat 8 OLI (2013)
Changes

Status Percentage Changes

Mud 15,546.9 km2 14,637.5 km2 Decrement ´5.8%
Seagrass 23,377.8 km2 14,773.5 km2 Decrement ´36.8%

Deep water 15,562.0 km2 25,058.7 km2 Increment +37.9%
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Peninsula of Malaysia is exposed to two types of monsoons: (a) northeast monsoon
(November–March) and (b) southwest monsoon (April–October). These seasonal changes are more
apparent during transient periods (December and January), which causes severe impact of annual
floods in many states of Malaysia Peninsula, especially the eastern region. Seagrass habitats along
the Straits of Johor become vulnerable due to the southwest monsoon. However, the Sumatera Island
reduces the wind velocity, evades extreme speed of water current towards the confined areas of
Merambong and often causes uprooting of seagrass roots from the ground [35,36], especially to the
Halophila ovalis. However, the impact of monsoon seasons on seagrass growth and decrement is not
significant and prominent due to areas being sheltered by Malaysia Peninsula and Singapore Islands,
located in both north and south, respectively.

As mentioned earlier, blue and red bands were used in this study because blue bands have better
water penetration ability compared to others, while the functionality of green bands are similar to blue
bands but not as good as the blue bands. The coastal aerosol band of Landsat 8 OLI, which has more
powerful penetrative power than the blue bands, was not used in this study because the assessment
of the result is based on the common corresponding wavelength of both satellite data. Red bands
were also used to derive BRI and are highly sensitive to changes in reflectance which is radiated back
from seagrass. Under such a condition, the heterogeneous nature of substrata, low reflectance signal
and greater light attenuation that varies with depths in less clear water may lead to misclassification,
especially in the case of detecting small patches of seagrass where there are high similarities of signal
response between seagrass and seaweed at coarse spectral resolution of Landsat. The results indicate
good agreement with in situ validation test results. The seagrass occurrence areas were classified with
79.5% and 85.9% overall classification accuracies and, 0.7975 and 0.8104 kappa coefficients for Landsat
TM and OLI, respectively.

When submerged seagrass vigorously grows at various densities, the corresponding reflectance is
affected by the water body and thus water column correction is necessary. Based on the result, the
top of the BRI equation (Li ´ Lsi) shows an exponential relationship between corrected radiance with
increasing water depth. It illustrates that substrate-leaving radiance received by the satellite sensor
decreases with increasing water depths due to light attenuation. Blue bands of both Landsat TM and
OLI images are able to receive more accurate bottom reflectance than other visible bands. This trend is
shown on Landsat TM and OLI using BRI at a non-ideal condition of water clarity at various depths in
the Merambong area (Appendices A and B).

From visual inspection, bright BRI pixels indicate medium to low density seagrass coverage and
dark BRI pixels indicate high density seagrass after masking out non-seagrass pixel. Before masking
out non-seagrass pixels, BRI for sandy area is even brighter and deep water pixels are dark in color,
especially at red bands where reflectance from sea bottom surface is almost zero due to its signal
incapability to reach and detect features above the sea floor, only at air–water surface to a few
millimeters of penetration only (Appendices C and D).

In addition, nutrient load in turbid water, however, is relatively high in seagrass areas near the
estuary and subject to rapid changes in its concentration. These nutrients are originated from the
terrestrial sources through water channels and consumed by many marine creatures and aquatic
plants. There are more than 150 active local fishermen that live along the riverside of Pulai River.
Hence, collective nutrients dissipated from food waste, human daily disposal as well as suspended
sediment are directly channeled through river flows and reach seagrass habitat. This might have
enhanced growth, stimulated flowering, and has resulted in high density seagrass coverage in 2009,
about four years after accomplishment and extension of Tanjung Pelepas Port (PTP). In fact, the part of
the Merambong shoal that face off the PTP at this time has high STAGB and less bared sand areas.

In 2013, the significant increase of shipping traffic to PTP had caused increased oil spill from the
huge ship and had made seagrass growth and survival vulnerable, which is opposite to the seagrass
growing condition in early 2009. Massive pollutants such as toxic chemicals from the expanding
number of peoples living along the coastline of Kg. Pok, Kg. Tanjung Adang and Kg. Serong Laut may
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have indirectly diminished the seagrass coverage, retarded shoot regeneration and thus decreased
STAGB. The dynamics of seagrass spatial extent, coverage density and shoot density are the important
factors that influence the significant changes on the seagrass biomass [37]. This is supported by the
statistical report of the local government agencies that stated soil loss from 2009 to 2013 in this area,
which increased due to erosion caused by wave speed from the sea [8]. The impact of sea currents to
the shore with high speeds could be beyond the tolerance of seagrass. Seagrass coverage in this area
were dwindling due to these factors as well as hectic trade shipping routes from and to the port that
threatened seagrass habitat and subsequently decreased STAGB. As a result, the variation of BRI range
on seagrass habitat can represent pixel-based quantification of submerged STAGB at various densities
in near-turbid water where human-induced disturbances are prime contributing factors to its loss and
coastal ecosystem imbalance.

The relationship between water leaving radiance of visible bands and bottom depth at visible
bands (n = 81, well-distributed) shows that the Landsat 5 TM image has better correlations compared
to Landsat 8 OLI for all visible bands. It might be due to low water tide condition when the scene was
acquired on 8 February 2009 (+0.19 m) as compared to the scene acquired on 27 June 2013 (+1.50 m).
This condition significantly enhanced the capability of BRI to detect seagrass effectively and was also
due to low Nephelone Turbidity Unit (NTU), which indicates the turbidity level, measured by WQC
during this time compared to NTU of water in 2013. Red bands showed high correlation with depth
at the Merambong area because of its inability to penetrate deeply into the column of turbid water
as shown by highest Attenuation coefficient, Ki value compared to green and blue bands, meaning
that it is almost perfectly absorbed at the deeper region. Sensitivity of spectral bands of Landsat 8 OLI
was higher than Landsat 5 TM because the OLI sensor has higher quantum level and wider range of
radiometric scale than TM. From this, BRI range is efficiently effective for STAGB quantification on
multispectral bands after performing water column correction to solve ambiguity of bottom reflectance
from less clear water.

The Ki of blue, green and red bands on both the images showed an increasing trend from shorter
(blue band) to longer wavelength (red band) (Table 8). It indicates that light is quickly attenuated when
it passes through the water column at longer wavelength. High Ki would decrease by capturing in
chlorophyll pigments of seagrass leaves, reducing the detectability chances from Landsat. Blue bands
(0.45–0.51 µm) have very good ability to penetrate into the water column in clear water and are still the
best among other visible bands in context of its penetration ability into non-clear water for the areas
(i.e., Merambong shoal). Based on Table 8, all these values are relatively smaller than the Ki of pure sea
water, which are about 0.0064, 0.015 and 0.32 for respective blue, green and red bands. The smallest
Ki of BRI are blue bands, followed by green and red bands susceptible to light attenuation for both
2009 and 2013 images. It means that this water is relatively transparent to the shorter wavelength
(blue band) and seagrass patch and its density can be determined efficiently better than other bands.
This trend is expected to be similar if BRI is applied on visible bands of other satellite imagery; light is
highly attenuated in longer wavelength of visible bands (Table 9). For this reason, blue bands are used
for STAGB quantification in this study after implementation of BRI on both the images.

Table 8. Light attenuation used in water column correction on Landsat image.

Band (Landsat TM) Attenuation
Coefficient, Ki

Geometric
Factor, g

Exponential Relationship of
Depth and Corrected Radian

Determination
Coefficient, R2

2009

Blue (Band 1) 0.0781 2.1456 Li ´ Lsi = 26.682e´0.1676Z 0.3858
Green (Band 2) 0.1843 2.1456 Lj ´ Lsj = 33.513e´0.3954Z 0.5984
Red (Band 3) 0.4274 2.1456 Lk ´ Lsk = 24.04e´0.917Z 0.6711

2013

Blue (Band 2) 0.0942 2.1253 Li ´ Lsi = 22.3e´0.2002Z 0.3341
Green (Band 3) 0.2091 2.1253 Lj ´ Lsj = 18.12e´0.4444Z 0.5374
Red (Band 4) 0.4656 2.1253 Lk ´ Lsk = 18.095e´0.9895Z 0.6618
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Table 9. Deep-water statistics for Landsat 5 TM and Landsat 8 OLI visible bands.

Blue Band Green Band Red Band

TM OLI TM OLI TM OLI

Minimum 65.6425 58.8487 51.8731 45.2182 30.8339 20.1162
Maximum 78.1637 70.7194 68.9461 58.53396 40.1194 38.6417
Mean 67.8431 61.8373 53.4066 47.2820 30.9440 22.1798
Standard deviation 3.5724 4.5876 2.1047 3.0164 3.2086 4.2246

3.2. Changes of STAGB between 2009 and 2013 on the Merambong Shoal

Apart from bigger area changes, this study also concentrated on the intertidal seagrass meadow,
focusing on the Merambong shoal. Figure 8 shows the change analysis of submerged STAGB of
Merambong shoal which was quantified from Landsat OLI data.

At the second stage of the study, an approach was devised to quantify STAGB based on the
correlation of seagrass coverage and weight with the corresponding corrected substrate leaving
reflectance or BRI. The relationship derived from in situ seagrass biomass and density coverage is
very high, whilst the final BRI-seagrass biomass established for final empirical model for estimating
seagrass biomass from satellite for the best bands (blue bands) is given in Figure 9 using another
set of in situ for verification. The BRI of seagrass dominant pixel is relatively higher than previous
study conducted by [19] in clear water. This indicates that the effect of high light scattering amount of
total suspended sediments in water could increase BRI value of seagrass detected pixels due to low
attenuation coefficient.

The classification results were extended to be used for STAGB quantification. Since BRIb,r shows
the most accurate results of the seagrass distribution map, corresponding spectral response of the
BRI of blue bands (BRIb) and red bands (BRIr) is regressed with STAGB quantified in the laboratory.
The BRIb shows higher correlation coefficient (0.5466 and 0.7857 for TM and OLI, respectively) than
BRIr (0.3782 and 0.5291 for TM and OLI, respectively). Hence, the next steps will focus on BRIb of both
TM and OLI only. Trade-off between spectral and spatial properties of Landsat 8 OLI images has shown
relatively more accurate results of STAGB quantification that is very useful for coastal management
if compared to previous series of Landsat imagery. The accuracy of STAGB remote sensing can be
affected by many factors such as image resolution, water clarity, quality and algorithm, depth of
seagrass distribution and density. In order to improve classification accuracy, in situ observation was
checked with information from an underwater camera as a supporting input for seagrass detection and
its coverage on BRI of Landsat data. Moreover, the background of the seafloor was also an important
factor in achieving good results that affect STAGB accuracy level. Sediments of Merambong area are
mainly comprised of sand and mud, which makes it relatively easier to quantify STAGB by the remote
sensing approach.
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The regression analysis was done to create a STAGB map on both scenes and finally detect
the changes occurred within the study periods. The regression graphs are developed based on the
following steps: (i) seagrass coverage versus STAGB measured in the ground or laboratory; and (ii) BRIb
versus STAGB in the ground or seagrass coverage. The results of the STAGB regression analyses are
shown in Figure 10, and the transects analysis is summarized in Table 10.
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In this study, STAGB measured in the ground and STAGB predicted from BRI has been compared.
The result shows that BRIb derived from Landsat OLI is slightly higher than TM even the seagrass
coverage is similar (Table 11), which might be due to influence of higher quantum level of Landsat OLI
and water quality. Moreover, it seems STAGB measured from remotely sensed images overestimated
the biomass matrices compared to manually measured STAGB. Determination coefficient, R2 from
regression plot in Figure 11 between STAGB measured from ground with STAGB quantify from both
images is high, 0.92 and 0.89 for Landsat OLI and TM, with respective RMSE ˘ 469.11 g¨m´2 and
RMSE ˘ 335.99 g¨m´2 for each 30 m pixel resolution.

Table 11. Results of seagrass total aboveground biomass (STAGB) with respect to BRI range.

Seagrass BRIb BRIb STAGBGround (g¨m´2) STAGBLandsat (g¨m´2)
Coverage (%) TM OLI

0–20 13.8–12.8 23.0–21.1 0–80 0–90.5
20.1–40 12.7–11.2 21.0–19.2 80.1–155 90.6–160.5
40.1–60 11.1–10.2 19.1–18.2 155.1–250 160.6–274.1
60.1–80 10.1–9.6 18.1–17.0 250.1–350 274.2–368.8
80.1–100 9.5–9.0 16.9–15.9 350.1–400 368.8–400

Remote Sens. 2016, 8, 200 20 of 29 

 

In this study, STAGB measured in the ground and STAGB predicted from BRI has been 
compared. The result shows that BRIb derived from Landsat OLI is slightly higher than TM even the 
seagrass coverage is similar (Table 11), which might be due to influence of higher quantum level of 
Landsat OLI and water quality. Moreover, it seems STAGB measured from remotely sensed images 
overestimated the biomass matrices compared to manually measured STAGB. Determination 
coefficient, R2 from regression plot in Figure 11 between STAGB measured from ground with 
STAGB quantify from both images is high, 0.92 and 0.89 for Landsat OLI and TM, with respective 
RMSE ± 469.11 g·m−2 and RMSE ± 335.99 g·m−2 for each 30 m pixel resolution. 

Table 11 Results of seagrass total aboveground biomass (STAGB) with respect to BRI range. 

Seagrass BRIb BRIb STAGBGround  

(g·m−2) 
STAGBLandsat

(g·m−2) Coverage (%) TM OLI 
0–20 13.8–12.8 23.0–21.1 0–80 0–90.5 

20.1–40 12.7–11.2 21.0–19.2 80.1–155 90.6–160.5 
40.1–60 11.1–10.2 19.1–18.2 155.1–250 160.6–274.1 
60.1–80 10.1–9.6 18.1–17.0 250.1–350 274.2–368.8 
80.1–100 9.5–9.0 16.9–15.9 350.1–400 368.8–400 

Compared to other seagrass habitat around Malaysia Peninsula, the Merambong shoal is a 
better place for comparison of submerged seagrass occurrence change analysis and demonstrating 
STAGB changes in Case-2 water using satellite remote sensing data due to its accessibility, 
multi-species of massive submerged seagrass and satellite data availability. Since the Merambong 
coastal area is closely surrounded by land, the changes of STAGB can be effectively detected from 
the satellite data after few years interval. Satellite remote sensing data in different monsoon seasons 
of late northeast Monsoon season of 2009 and middle southwest Monsoon season in June 2013 were 
used for STAGB change comparisons. Absence of major natural disturbances such as hurricanes 
and tsunami, temporal variations in submerged seagrass distribution and the STAGB changes in 
these tropical environments are expected to be minimal. Seagrass patches vary in size and density 
around this shoal. The substrate is comprised of unconsolidated soft sediments, including muddy 
to shelly sands with occasional hard bottom substrates. Seagrass meadows are being negatively 
affected by pollution (pollutants may include herbicide runoff, sewage, detergents, heavy metals, 
hypersaline water from desalination plants, and other waste products), algal blooms and high boat 
traffic. All these pressuring factors have catalyzed the decrement of STAGB tremendously [9]. 

 
Figure 11. In situ seagrass biomass versus satellite-based estimation at corresponding location using 
20 inductive sites and 16 test sites. Each plotted marker represents selected quadrats of seagrass 
sampling by 0.5 × 0.5 m quadrat, upscale to be equal to 30 × 30 m Landsat pixel. 

Furthermore, the result shows overestimation of seagrass extent on both the images where 
sparse to moderate percentage of seagrass cover was assumed to be continuous seagrass area. This 

y = 1.102x + 65.839
R² = 0.8923
n=36
ρ≤0.001
RMSE=±469.11 gm-2

0

1000

2000

3000

4000

5000

6000

0 2000 4000 6000

L5
 T

M
 S

TA
G

B 
(g
·m

−2
)

Ground STAGB (g·m−2)

y = 1.0198x + 195.29
R² = 0.9248
n=36
ρ≤0.001
RMSE=±335.99 gm-2

0

1000

2000

3000

4000

0 1000 2000 3000 4000

L8
 O

LI
 S

TA
G

B 
(g

·m
−2

)

Ground STAGB (g·m−2)

Figure 11. In situ seagrass biomass versus satellite-based estimation at corresponding location using
20 inductive sites and 16 test sites. Each plotted marker represents selected quadrats of seagrass
sampling by 0.5 ˆ 0.5 m quadrat, upscale to be equal to 30 ˆ 30 m Landsat pixel.

Compared to other seagrass habitat around Malaysia Peninsula, the Merambong shoal is a better
place for comparison of submerged seagrass occurrence change analysis and demonstrating STAGB
changes in Case-2 water using satellite remote sensing data due to its accessibility, multi-species
of massive submerged seagrass and satellite data availability. Since the Merambong coastal area is
closely surrounded by land, the changes of STAGB can be effectively detected from the satellite data
after few years interval. Satellite remote sensing data in different monsoon seasons of late northeast
Monsoon season of 2009 and middle southwest Monsoon season in June 2013 were used for STAGB
change comparisons. Absence of major natural disturbances such as hurricanes and tsunami, temporal
variations in submerged seagrass distribution and the STAGB changes in these tropical environments
are expected to be minimal. Seagrass patches vary in size and density around this shoal. The substrate
is comprised of unconsolidated soft sediments, including muddy to shelly sands with occasional
hard bottom substrates. Seagrass meadows are being negatively affected by pollution (pollutants
may include herbicide runoff, sewage, detergents, heavy metals, hypersaline water from desalination
plants, and other waste products), algal blooms and high boat traffic. All these pressuring factors have
catalyzed the decrement of STAGB tremendously [9].

Furthermore, the result shows overestimation of seagrass extent on both the images where sparse
to moderate percentage of seagrass cover was assumed to be continuous seagrass area. This is clearly
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seen at certain pixels when overlaid with in situ data collected at the study area, where overestimation
(˘30%) on Landsat 5 TM is higher than Landsat 8 OLI (˘10%). Such estimation possibly comes from
different radiometric resolution, Landsat TM which has only 8-bit (DN range: 0–255) compared to
Landsat 8 OLI with 65,536 grey levels on each pixel (DN range: 0–65,535). It was expected that the
variability of STAGB changes would not successfully be reported in less clear water due to high
sedimentation concentration. However, the results prove contradictory as this technique revealed
that the changes that occur coincide with STAGB quantified manually in the laboratory at specific
selected locations. In the selection of the most appropriate model to quantify STAGB, determination of
coefficient from regression analysis was used as the main indicator. The list of the regression model is
tabulated in Table 12. Thus, the exponential model is the most fitted model for STAGB derivation on
Landsat 5 TM, and the polynomial second order model is the most suited to be used on Landsat 8 OLI.

Table 12. Regression models of STAGB versus BRI derived with TM and OLI.

Regression Model Equation R2

Landsat TM: Linear ** STAGB = ´940.75BRI + 12055 0.44
Logarithmic ** STAGB = ´9986ln(BRI) + 25628 0.44
Polynomial (second order) * STAGB = 67.818BRI2 ´ 2389.1BRI + 19741 0.44
Power ** STAGB = 2E + 09BRI´5.987 0.52
Exponential *** STAGB = 804689E´0.579pBRIq 0.55
Landsat OLI: Linear * STAGB = ´1241.3BRI + 27941 0.83
Logarithmic *** STAGB = ´26292ln(BRI) + 81908 0.83
Polynomial (second order) *** STAGB = 170.73BRI2 ´ 8471.3BRI + 104405 0.85
Power * STAGB = 9E + 27BRI´18.74 0.78
Exponential ** STAGB = 2E + 11e´0.888pBRIq 0.79

Note: significant levels: * p ď 0.05; ** p ď 0.01; ***p ď 0.001.

Merambong shoal and its vicinity is densely covered by Ea, STAGB quantification of STAGB in
this area was expected to produce high content of aboveground biomass. For Landsat 5 TM in 2009,
submerged STAGB was quantified using this empirical model,

STAGBTM “ ae´bpBRIq (6)

where a = 804689; and b = 0.579.
Since the correlation coefficient (R2) of this model shows moderate degree of correlation with BRI

of the satellite image processed (0.50466), the submerged STAGB is considered acceptable for 30 m
pixel of Landsat with 8-bit quantization level. On the other hand, the empirical model for Landsat 8
OLI 2013 is

STAGBOLI “ aBRI2´ bBRI ` c (7)

where a = 170.73; b = 8471.3; and c = 104405
For the equal parameters, BRI of Landsat 8 OLI seems better to quantify STAGB at such water

clarity, indicated by R2 = 0.7857 and significantly different, p < 0.001. This may the ability of the
image with 16 quantization level (DN range 0–655535) to quantify STAGB from BRI range; in fact, to
discriminate seagrass among the other bottom features as well as has good exponential relationship
between depth and attenuation of coefficient (see Figures A1 and A2), compared to Landsat 2009.
From the regression graph, although BRI of Landsat 5 TM had very good correlation with depth, in
terms of STAGB mapping, Landsat 8 OLI showed greater accuracy and higher correlation to STAGB
measured on the ground (refer to regression graph of STAGB satellite versus in situ STAGB, see
Figure A3). Based on this result, it can be stated that Landsat 8 OLI with higher radiometric resolution
has better conformity with BRI to quantify submerged STAGB and yielded better result accuracy
than TM.
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BRI conformity derived from Landsat 5 TM bands 1, 2 and 3, and Landsat 8 OLI bands 2, 3 and
4, were the best in terms of significant trends of Li ´ Lsi plotted against the depths, and deriving the
attenuation coefficients at any respective bands. The evidence of the best to fair applicability of BRI
was derived using blue, green and red bands, respectively. The attenuation coefficients obtained for
the blue, green and red bands for coastal Case-2 coastal water of Merambong shoals and its vicinity
were 0.008,0.016 and 0.027, for respective bands in 2009, and a slight increase in 2013 where they
were 0.009, 0.026 and 0.047, respectively. These values are within expected range in such turbid
water [20,35], i.e., the shorter blue bands having the least attenuation coefficient for deeper penetrable
power. Subsequently, this sequence is followed by green and red bands with less and the least
penetration power, respectively (see Figure A4).

The final seagrass aboveground biomass map for both dates on the entire Merambong shoal at
Straits of Johor is shown in Figure 8, mapped with a total of 411 BRI pixels where each pixel is 900 m2,
yielded a total area of 5.677 ha. The STAGB of Merambong shoal at the end of June 2013 estimated
a total above ground biomass of 752.1 kg, with range between 0.5 g¨m´2 and 380 g¨m´2. This amount
shows a declination trend compared to 2009 where the STAGB was 803.0 kg, with range between
0.6 g¨m´2 and 382 g¨m´2. Hence, the average of pixel-based STAGB of Merambong shoal is 142.14 kg
and 132.45 kg, respectively.

In a future prospectus, the method suggested by [16,38] should be explored for similar purposes
in turbid water and allometric or physical-based model for submerged STAGB quantification
comprehensively. By knowing the physical information of the submerged during the submerging
satellite image acquisition, the forest biomass, using the allometric model [39], might be possibly
integrated to quantify seagrass biomass in clear and less clear water. This work will help to sustain
coastal sustainability and indirectly reduce the impacts of global climate change as reported by [40,41].
After this study, future research dictates that coastal aerosol band could be explored whether using this
technique employing coastal aerosol band could improve accuracy results. With all the assumptions
stated in the introductory section, STAGB changes over less tropical coastal water can be conducted
with satisfying outputs.

Furthermore, applying this technique to different climate regions that experience significant
seasonal changes of weather and temperature around the year to investigate the STAGB variations
with other processing techniques. In addition, hyperspectral images such as Hyperion and ALI
and high spatial resolution satellite images such as Worldview-3, Pleiades, Quickbird and GeoEye-2,
compare with results shown in this study and enable species-based STAGB quantification in a non-ideal
coastal water environment similar to the Merambong area.

Water quality plays an important function in the seagrass growth [38] and STAGB quantified
on Landsat. The dynamics of seagrass recovery and declinations depends on water quality as well.
To investigate the trends of STAGB declination, the water quality parameters between 2009 and 2013
were compared, and presented in Table 13. Values represented by WQC confirm and support the idea
that seagrass biomass is highly correlated with the clean environment.

Table 13. Measurement of water quality parameters at 36 points on Merambong shoal and vicinity.

Parameter
Temperature

(˝C)
pH Conductivity Turbidity Dissolved Total Dissolved Salinity

(mS/cm) (NTU) Oxygen (mg/L) Soild (mg/L) (ppt)

Mean
2013 30.03 7.96 41.01 15.09 4.72 25.14 26.17
2009 30.21 7.24 38.70 13.51 6.41 23.54 25.44

Minimum
2013 29.32 7.72 36.10 4.50 3.53 22.90 22.10
2009 29.51 7.03 33.20 2.90 4.06 19.80 21.60

Maximum
2013 31.42 8.13 43.10 46.60 8.53 26.30 27.70
2009 30.55 7.89 41.80 45.10 9.73 25.10 26.40

Standard
deviation

2013 0.47 0.08 1.44 7.41 0.88 0.64 1.17
2009 0.39 0.01 0.45 6.21 1.20 0.31 1.04
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This study is important to bring a significant impact to three main sectors: society, industry and
environment. It is important to the group of people who depend upon the coastal resources including
fisheries, mangrove forest, tourism as well as management authority of the coastal environment and
the biodiversity of the marine life itself to know how the food security can be sustained at Merambong
area since seagrass is the nursery and the primary food course for other organisms within the food
chain. As the study states that about 50.7 kg biomass was lost within four years, possibly this trend
could be worst in parallel to the rate of development and sand reclamation along the coastline, not
including shipping traffic nearby Singapore and Johor port as well as sediment brought from river
discharge through Pulai River. In fact, development in coastal regions may bring harm not only to
seagrass but also coastal sustainability. However, the impact of the coastal landscape development is
mild to coastal habitat. Most importantly, this study can be one of the indicators in assuring the status
of coastal sustainability besides considering water quality changes, the rate of erosion on mangrove
forest and fish catchment, and mitigation for future environmental threat since the area is become more
actively developed as reclamation of seagrass habitat become prominent, based on our field inspection
and worrying scientist on what are the significant changes that they will bring in and how to encounter
this challenge so that marine life—especially species that live on seagrass bed like pipefish, seahorse,
sea turtle, dugong and sea cucumber—can survive for preservation and conservation, at least to avoid
drastic decline of their population along Johor Straits.

In addition, the STAGB map was correlated with dugong sighting frequency. We implemented
an interview-based approach to survey the sighting frequency and the location of dugong
(Dugong dugon), a sea mammal found in the respective area with seagrass as the main diet. The survey
was conducted involving 60 local fishermen who were inhabitants of the Merambong coastal area
(Pendas Jetty, Kg. Tanjung Adang, Kg. Pok, Kg. Serkat Laut and area of Tanjung Piai). However, only
31 (51.7%) among them had seen dugong from the years before 1999 to 2013. From this survey, it
can be concluded that dugong was sighted more frequently at the Merambong coastline, especially
Merambong shoal nearby Tanjung Kupang where high seagrass biomass is reported. The area nearby
Tanjung Piai and Pulai River shows a decreasing number of dugong sighted, which started from 2000
to 2009 when the seagrass extent was declining. From 2010 to 2013, the area of dugong sighting shifted
to an area close to Merambong shoal and PTP only as seagrass was shrinking. In this period, the
number of dugong sightings increased due to spatial cover of seagrass remaining around this area
only. Figure 12 summarizes the results of dugong sightings in the area.

Remote Sens. 2016, 8, 200 23 of 29 

 

sustained at Merambong area since seagrass is the nursery and the primary food course for other 
organisms within the food chain. As the study states that about 50.7 kg biomass was lost within 
four years, possibly this trend could be worst in parallel to the rate of development and sand 
reclamation along the coastline, not including shipping traffic nearby Singapore and Johor port as 
well as sediment brought from river discharge through Pulai River. In fact, development in coastal 
regions may bring harm not only to seagrass but also coastal sustainability. However, the impact of 
the coastal landscape development is mild to coastal habitat. Most importantly, this study can be 
one of the indicators in assuring the status of coastal sustainability besides considering water 
quality changes, the rate of erosion on mangrove forest and fish catchment, and mitigation for 
future environmental threat since the area is become more actively developed as reclamation of 
seagrass habitat become prominent, based on our field inspection and worrying scientist on what 
are the significant changes that they will bring in and how to encounter this challenge so that 
marine life—especially species that live on seagrass bed like pipefish, seahorse, sea turtle, dugong 
and sea cucumber—can survive for preservation and conservation, at least to avoid drastic decline 
of their population along Johor Straits. 

In addition, the STAGB map was correlated with dugong sighting frequency. We implemented 
an interview-based approach to survey the sighting frequency and the location of dugong (Dugong 
dugon), a sea mammal found in the respective area with seagrass as the main diet. The survey was 
conducted involving 60 local fishermen who were inhabitants of the Merambong coastal area 
(Pendas Jetty, Kg. Tanjung Adang, Kg. Pok, Kg. Serkat Laut and area of Tanjung Piai). However, 
only 31 (51.7%) among them had seen dugong from the years before 1999 to 2013. From this survey, 
it can be concluded that dugong was sighted more frequently at the Merambong coastline, 
especially Merambong shoal nearby Tanjung Kupang where high seagrass biomass is reported. The 
area nearby Tanjung Piai and Pulai River shows a decreasing number of dugong sighted, which 
started from 2000 to 2009 when the seagrass extent was declining. From 2010 to 2013, the area of 
dugong sighting shifted to an area close to Merambong shoal and PTP only as seagrass was 
shrinking. In this period, the number of dugong sightings increased due to spatial cover of seagrass 
remaining around this area only. Figure 12 summarizes the results of dugong sightings in the area. 

 
Figure 12. Location and frequency of dugong sighted by fishermen; where red circles represent 
sighting period between 1999 and before, the yellow circle for 2000–2009 shown in and green circles 
for 2010–2013. 

In confirming the proportionality of biomass and dugong sighting, significant tests were carried 
out for to test the relationships between the decreasing trend of dugong sightings with decreasing 
mean of STAGB in this area. From the test, it was noted that they were significantly different (mean, 

Figure 12. Location and frequency of dugong sighted by fishermen; where red circles represent
sighting period between 1999 and before, the yellow circle for 2000–2009 shown in and green circles
for 2010–2013.



Remote Sens. 2016, 8, 200 24 of 29

In confirming the proportionality of biomass and dugong sighting, significant tests were carried
out for to test the relationships between the decreasing trend of dugong sightings with decreasing
mean of STAGB in this area. From the test, it was noted that they were significantly different (mean,
t-test: p < 0.01), which shows that dugong appearance at this area is indeed highly dependent on
seagrass biomass density in this area.

4. Conclusions

This study has successfully demonstrated the two-step STAGB mapping using appropriate
processing techniques in a complex coastal environment. The robustness of BRI on a four-year interval
of the Landsat image archive including Landsat TM and Landsat OLI imagery is validated. BRI was
used to enable seagrass spatial distribution mapping in turbid water (great light attenuation vertically
towards sea bottom) at Merambong area from two images of Landsat with a four-year interval due to
hardly obtaining images with low cloud coverage in these tropical regions, dry and wet throughout
the year. Sea truth information was used in training datasets in the classification scheme and validated
the features.

The declining seagrass trend has possible connections to active human interferences and rapid
coastal development along the coastline. However, some part of the seagrass bed shows recovery
trends from 2009 to 2013 despite huge losses of seagrass biomass content occurring in the same habitat.
Gradual changes in areas with high seagrass coverage and short term changes occurred in low seagrass
coverage levels. With involvement of the field data set, the technique is validated and tested in a robust
manner. To put it in a nutshell, BRI was not only limited to retrieval of water leaving radiances in
seagrass identification, but was also capable of empirically quantifying STAGB in less clear water from
satellite images.
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Figure A1. The attenuation coefficient of blue, green and red TM band.
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Figure A5. BRI exponential relationships to various water depths (n = 45) in both Landsat images,
L8-OLI (I) and L5-TM (II), and Seagrass mostly live in ď5 m in this area. Thus, BRI range for seagrass
can be seen through this figure. Similar to Table 9, in this range, low BRI indicates high STAGB, and
vice versa. Muddy and sandy flat surface represented by very low BRI range (ď2 for TM, ď5 for OLI).
The middle range consists of shallow substrates heterogeneity at rocky area including submerged
seaweed and rocks of different shapes and sizes, confirmed using underwater video in the identification
of sea bottom features.
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