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Abstract: This study examines the spatial and temporal patterns of the surface urban heat island
(SUHI) intensity in the Phoenix metropolitan area and the relationship with land use land cover
(LULC) change between 2000 and 2014. The objective is to identify specific regions in Phoenix
that have been increasingly heated and cooled to further understand how LULC change influences
the SUHI intensity. The data employed include MODerate-resolution Imaging Spectroradiometer
(MODIS) land surface temperature (LST) 8-day composite June imagery, and classified LULC maps
generated using 2000 and 2014 Landsat imagery. Results show that the regions that experienced
the most significant LST changes during the study period are primarily on the outskirts of the
Phoenix metropolitan area for both daytime and nighttime. The conversion to urban, residential, and
impervious surfaces from all other LULC types has been identified as the primary cause of the UHI
effect in Phoenix. Vegetation cover has been shown to significantly lower LST for both daytime and
nighttime due to its strong cooling effect by producing more latent heat flux and less sensible heat
flux. We suggest that urban planners, decision-makers, and city managers formulate new policies
and regulations that encourage residential, commercial, and industrial developers to include more
vegetation when planning new construction.

Keywords: urban heat island; spatio-temporal pattern; land surface temperature; land use land cover
change; urbanization

1. Introduction

The greater Phoenix metropolitan area in the State of Arizona has a subtropical desert climate that
makes it one of the warmest cities in the United States. It also has the most significant urban climate
effects in the world [1]. Despite the excessive heat in the summer, Phoenix ranks among the fastest
growing cities in the United States. The increasing population has resulted in rapid urban expansion
in the past few decades. Concomitant with this rapid rate of urbanization, the urban heat island
(UHI) phenomenon has been exacerbated. UHI has been linked, among many adverse environmental
impacts, with increased energy consumption [2,3] and water use [4,5]; compromised human health
and comfort [6]; and downgraded air quality [7,8]. These issues have become increasingly prominent
in Phoenix.

The UHI effect has been extensively studied for the Phoenix metropolitan area. For example,
the UHI spatial and temporal properties for the summer between 1949 and 1985 were investigated
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using air temperature data collected from local weather stations [5,9]. It was found that summer
temperatures were the highest in central Phoenix and were rising most rapidly in the downtown
area, while temperatures were decreasing outside of the city [9]. Urban development and expansion,
especially housing development, was the primary contributor of the Phoenix UHI effect from 1990
to 2004 [5,10]. The usage of air temperature data collected from a limited amount of local weather
stations in these studies, however, has restrictions because these data are not continuous. Therefore,
the spatial temperature trends for the entire metropolitan area cannot be adequately quantified in
this case. For this reason, some scientists have turned to the use of remotely-sensed data for UHI
analysis. The surface urban heat island (SUHI) effect is observed by using remotely-sensed thermal
infrared data, such as Landsat and ASTER satellite thermal infrared data, which allow the retrieval
of land surface temperature (LST) [11–15]. The relationship between detailed land use land cover
(LULC) types and LST derived from ASTER imagery was studied by Myint et al. [16]. It has been
discovered that dark impervious surfaces, rather than buildings in the city, are primarily responsible
for extreme heat in Phoenix [16]. This finding has also been confirmed by Imhoff et al. [17]. Zheng et al.
examined the effects of spatial configuration of paved surfaces on LST in Phoenix urban area using
local Moran’s I and suggested that aggregate warming effects were mainly contributed by clustered
paved surfaces [18]. On the other hand, it has been found that increasing irrigated landscape can lower
nighttime temperatures [19], which can be a possible UHI mitigation strategy to prevent daytime
heat storage and help lower LST. This strategy, however, requires a significant amount of water that
is very scarce in a desert city. Using cool and reflective materials has become an effective strategy
to mitigate the UHI effect in the urban built environment [20–23]. However, it is recommended that
this strategy needs to be determined on a city-by-city basis because the mitigation potential of those
materials depends on different urban environmental factors [24].

Although metropolitan Phoenix’s UHI effect has been well studied, much of the literature neglects
the area’s long-term spatio-temporal pattern of SUHI intensity and its relationship with LULC change.
It is necessary to identify regions that are being increasingly heated and cooled in order to further
understand how LULC change influences the SUHI effect. The main objective of this study is to
examine which regions within the Phoenix metropolitan area have experienced statistically significant
LST increases and decreases compared to surrounding non-urbanized areas for both daytime and
nighttime. In addition, this research explores the relationship between LULC change and urban LST
variations in Phoenix.

2. Study Area

The Phoenix metropolitan area is located in central Arizona, USA, and is the sixth largest
U.S. city, with an estimated population of 4.4 million [25], encompassing a total area of approximately
2800 km2 (Figure 1). It is located in the northeast part of the Sonoran Desert and receives an average
annual precipitation of 204 mm (8.03 in.) [26]. The daily high temperature exceeds 37.8 ˝C
(100 ˝F) for an average of 110 days every year, which normally occurs from late May until early
September. The highest temperature can reach more than 43.3 ˝C (110 ˝F) for an annual average of
18 days. The study area has diverse LULC types, including commercial, industrial, residential areas,
undisturbed desert, agriculture, grassland, and water bodies.
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Figure 1. Map of study area. 

3. Data and Methods 

3.1. Data 

Satellite remote sensing offers a great opportunity to acquire continuous LST data without direct 
physical contact with the surface, with sufficient spatial resolution to distinguish between urban and 
surrounding rural areas. The MODerate-resolution Imaging Spectroradiometer (MODIS) global LST 
product is one of the most widely used remotely-sensed LST dataset for SUHI studies [17,27–32]. This 
study uses MODIS LST 8-day composite imagery (MOD11A2) from 2000 to 2014 for both daytime 
and nighttime. Although the spatial resolution of MODIS LST imagery (1000 m) is slightly coarse, a 
total number of 2766 pixels are evaluated for the entire Phoenix metropolitan area that gives a 
relatively large sample size. For this study, we restrict the analysis to June as Phoenix has relatively 
hot, dry, clear, and calm weather conditions for most of the month. It is, therefore, considered an ideal 
time period for urban LST evaluations [5,33]. Four MODIS LST June images are available—1 June, 9 
June, 17 June, and 25 June—during the selected time frame except for 2001, which has only two 
images available—1 June and 9 June. Hence, a total of 58 pairs of daytime and nighttime LST images 
are collected for the entire study period. 

LULC maps of 2000 and 2014 are used to study the relationship between LULC change and 
urban LST variations. One is generated using a Landsat 5 Thematic Mapper (TM) image acquired on 
14 June 2000 (Figure 2a), and the other is generated using a Landsat 8 Operational Land Imager (OLI) 
image from 21 June 2014 (Figure 2c). Both images have 30 m spatial resolution and have been 
classified into six major LULC classes that include water, impervious surface, vegetation, 
urban/residential area, open soil, and fallow cropland (Figure 2b,d) using the Iterative Self-
Organizing Data Analysis (ISODATA) unsupervised classification algorithm. The “impervious 
surface” class refers to asphalt and pavements such as parking lots, roads, and highways, whereas 
the “urban/residential” class represents built-up areas such as large commercial buildings and 
houses. A minimum of 50 sample points per LULC class were generated using a stratified random 
sampling approach for the classification accuracy assessment. The assessment was done using Google 
Earth with the help of local area knowledge. The producer’s accuracy, user’s accuracy, overall 
accuracy, and Kappa coefficient are calculated from the error matrix and reported in Table 1. The 
overall accuracy of image classification exceeds 85% for both LULC maps (Table 1).
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3. Data and Methods

3.1. Data

Satellite remote sensing offers a great opportunity to acquire continuous LST data without direct
physical contact with the surface, with sufficient spatial resolution to distinguish between urban and
surrounding rural areas. The MODerate-resolution Imaging Spectroradiometer (MODIS) global LST
product is one of the most widely used remotely-sensed LST dataset for SUHI studies [17,27–32].
This study uses MODIS LST 8-day composite imagery (MOD11A2) from 2000 to 2014 for both daytime
and nighttime. Although the spatial resolution of MODIS LST imagery (1000 m) is slightly coarse, a total
number of 2766 pixels are evaluated for the entire Phoenix metropolitan area that gives a relatively
large sample size. For this study, we restrict the analysis to June as Phoenix has relatively hot, dry, clear,
and calm weather conditions for most of the month. It is, therefore, considered an ideal time period for
urban LST evaluations [5,33]. Four MODIS LST June images are available—1 June, 9 June, 17 June, and
25 June—during the selected time frame except for 2001, which has only two images available—1 June
and 9 June. Hence, a total of 58 pairs of daytime and nighttime LST images are collected for the entire
study period.

LULC maps of 2000 and 2014 are used to study the relationship between LULC change and urban LST
variations. One is generated using a Landsat 5 Thematic Mapper (TM) image acquired on 14 June 2000
(Figure 2a), and the other is generated using a Landsat 8 Operational Land Imager (OLI) image from
21 June 2014 (Figure 2c). Both images have 30 m spatial resolution and have been classified into six major
LULC classes that include water, impervious surface, vegetation, urban/residential area, open soil, and
fallow cropland (Figure 2b,d) using the Iterative Self-Organizing Data Analysis (ISODATA) unsupervised
classification algorithm. The “impervious surface” class refers to asphalt and pavements such as parking
lots, roads, and highways, whereas the “urban/residential” class represents built-up areas such as large
commercial buildings and houses. A minimum of 50 sample points per LULC class were generated using
a stratified random sampling approach for the classification accuracy assessment. The assessment
was done using Google Earth with the help of local area knowledge. The producer’s accuracy, user’s
accuracy, overall accuracy, and Kappa coefficient are calculated from the error matrix and reported in
Table 1. The overall accuracy of image classification exceeds 85% for both LULC maps (Table 1).
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Figure 2. Landsat color infrared (CIR) imagery (a and c) and classified LULC maps (b and d) for the Phoenix metropolitan area. The six LULC classes include open 
soil, fallow cropland, impervious surface, urban/residential area, vegetation, and water.Figure 2. Landsat color infrared (CIR) imagery (a and c) and classified LULC maps (b and d) for the Phoenix metropolitan area. The six LULC classes include open

soil, fallow cropland, impervious surface, urban/residential area, vegetation, and water.
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Table 1. Image classification accuracy assessment.

LULC Types 2000 Landsat 5 TM Image 2014 Landsat 8 OLI Image

Producer’s Accuracy User’s Accuracy Producer’s Accuracy User’s Accuracy

Open soil 79% 83% 77% 85%
Fallow cropland 79% 80% 84% 76%

Urban/Residential 83% 86% 79% 85%
Vegetation 100% 90% 98% 94%

Impervious surface 80% 85% 78% 81%
Water 97% 92% 97% 89%

Overall accuracy 86% 85%
Kappa coefficient 0.83 0.82

3.2. MODIS LST Image Processing and Data Analysis

SUHI is normally defined as the LST difference between urban and its surrounding suburban
background [34,35], denoted by ∆Tu-r in the subsequent context. Using this definition, a 10–20 km
buffer region is first created for the non-urbanized areas surrounding the Phoenix metropolitan
boundary in ArcMap software. This buffer is selected because there is no converted natural landscape
in this region. In order to avoid confusion and for a fair comparison, mountainous regions and large
water bodies within the buffer are manually removed, and only areas that have an elevation that falls
within two standard deviations from the mean elevation of the city are retained.

The metropolitan and rural buffer pixels are extracted from the MODIS LST images and pixel
values are converted to LST in degrees Celsius (˝C) for both daytime and nighttime images. The mean
metropolitan and buffer LST images are then calculated by averaging four June LST images for every
year (two images for 2001), resulting in 15 daytime and 15 nighttime mean LST images. Finally, the
mean LST is calculated for the entire buffer region for every year and subtracted from each Phoenix
metropolitan pixel to generate LST difference maps. These maps are named Level-1 products. The pixel
values, ∆Tu-r, now represent LST differences between the metropolitan and non-urbanized buffer area.

Using the year sequence of 2000 to 2014 as the independent variable and ∆Tu-r as the dependent
variable, a time-series trend analysis is then performed using ordinary least square (OLS) regression
on every single pixel to examine if ∆Tu-r has significantly changed during the study period. Since this
study is designed to examine pixels that have experienced statistically significant changes in ∆Tu-r, the
regression results that have a p-value less than 0.05 are retained for all Level-1 products. This procedure
generates a p-value map, an R-squared value map, and a regression slope coefficient map for both
daytime and nighttime. These maps are named Level-2 products. The detailed LST image processing
and data analysis workflow is shown in Figure 3.
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images. The separated pixels (1000 m resolution) are used to mask 2000 and 2014 Phoenix LULC maps 
(30 m resolution) respectively, resulting in eight LULC maps (30 m resolution) for the specific areas 

Figure 3. Image processing flowchart.

3.3. LULC Change Analysis

This step analyzes LULC change in the Phoenix metropolitan area and its relationship with
∆Tu-r variations between 2000 and 2014. All the pixels in Level-2 products that have experienced
statistically significant increases and decreases in ∆Tu-r are separated for both daytime and nighttime
images. The separated pixels (1000 m resolution) are used to mask 2000 and 2014 Phoenix LULC maps
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(30 m resolution) respectively, resulting in eight LULC maps (30 m resolution) for the specific areas
of daytime increasing ∆Tu-r; daytime decreasing ∆Tu-r; nighttime increasing ∆Tu-r; and nighttime
decreasing ∆Tu-r for 2000 and 2014, respectively.

The total area of each LULC class from all the maps generated above are then calculated and
compared between 2000 and 2014. The area percentage difference of each LULC class within the same
1000 m Level-2 product pixel is also calculated. The area percentage difference is positive if there
is an area increase, and negative if the area percentage decreases. For example, in 2000 there was
30% urban/residential area, 40% open soil, 20% vegetation, and 10% impervious surface within one
particular 1000 m Level-2 product pixel. The area percentages became 60% urban/residential area,
10% open soil, 10% vegetation, and 20% impervious surface in 2014. The area percentage differences
are +30%, ´30%, ´10%, and +10% for urban/residential area, open soil, vegetation, and impervious
surface, respectively, within that particular Level-2 product pixel. For the analysis of the impact of
LULC change on LST variation, the LULC area percentage difference values (x-variable) are then
analyzed against the regression slope coefficient values from Level-2 products (y-variable) using
Pearson’s correlation analysis. The correlation coefficients (r) and p-values are reported.

4. Results

4.1. Ordinary Least Squares Regression Results

The regression results (Figures 4–6) show that the Phoenix metropolitan area has experienced
very significant ∆Tu-r changes between 2000 and 2014 for both daytime and nighttime. For the
slope coefficients we neglect all the slope values between ˘0.143 ˝C/year. A slope value between
˘0.143 ˝C/year approximately represents a mean ∆Tu-r change of less than 2 ˝C between 2000 and
2014, which is negligible for SUHI intensity studies. The red pixels have positive slope coefficients
representing the areas with increasingly higher LST than the surrounding non-urbanized areas, while
the areas that have negative slope coefficients (blue pixels) represent an increasingly lower LST than
the non-urbanized areas during the study period (Figure 4). The greater the absolute value of the slope
coefficient is, the higher the ∆Tu-r change will be.
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significant increase of ΔTu-r encompassing a total area of 410 km2, which is more than twice as large 
as the daytime areas. The highest ΔTu-r increase at night was 5.35 °C and can be observed mostly in 
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daytime ΔTu-r. 

Figure 4. Slope coefficient maps for daytime and nighttime LST trend analysis.

These results indicate that most significant changes of SUHI intensity have taken place on the
outskirts of the city with no significant changes observed in existing, developed, urban areas. The areas
being continuously cooled during the daytime are all located on the city outskirts and the total
area is approximately 47 km2. The largest drop of ∆Tu-r is approximately 4 ˝C from 2000 to 2014.
Most increasing daytime ∆Tu-r areas are found in the southeastern (e.g., southeast Chandler) and
western (e.g., west Phoenix) parts of metropolitan Phoenix that encompass a total area of 176 km2,
which is almost three times larger than the areas being cooled. ∆Tu-r has increased significantly from
2000 to 2014 during the daytime, ranging from 2 ˝C to 7.35 ˝C with the highest increase of ∆Tu-r found
in the western part of Phoenix.

The nighttime images demonstrate a similar spatial distribution pattern, but no significantly
decreasing trend was found for nighttime ∆Tu-r. In fact, all pixels in the nighttime images show a very
significant increase of ∆Tu-r encompassing a total area of 410 km2, which is more than twice as large as
the daytime areas. The highest ∆Tu-r increase at night was 5.35 ˝C and can be observed mostly in the
southeastern part of the Phoenix metropolitan area (e.g., southeast Chandler and south Gilbert).

The R-squared (Figure 5) and p-value (Figure 6) images show that the regions that have experienced
the highest significant changes of ∆Tu-r for the daytime are in the southeast (e.g., southeast Chandler and
south Gilbert), west (e.g., west Phoenix), and northwest (e.g., west Surprise and southwest El Mirage).
At night, the southeastern (e.g., southeast Chandler and south Gilbert) and western (e.g., west Phoenix
and north Goodyear) parts of the metropolitan area have the highest R2 values (Figure 5) and all pixels
are significant at the 0.01 level (Figure 6). The nighttime ∆Tu-r changes are found to be much more
significant and the relationships are much stronger than the daytime ∆Tu-r.
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4.2. LULC Change Analysis Results

The total area of LULC types for those regions that have experienced significant ∆Tu-r changes for
2000 and 2014 are shown in Figure 7. Note that the urban/residential and impervious surface areas
increase dramatically in each scenario, while the areas of water, fallow cropland, and open soil decrease.
For the daytime increasing ∆Tu-r regions (Figure 7a), the urban/residential area has increased more
than four-fold from 10.58 km2 to 45.57 km2, and the impervious surface area has almost tripled from
14.9 km2 to 41.63 km2. The decrease of vegetation area from 86.03 km2 to 40.85 km2 is the most notable
among all the other LULC types. The same LULC change pattern was also found for the regions where
∆Tu-r has increased at night (Figure 7b). In this case, the total area of the urban/residential class has
increased from 35.33 km2 to 134.52 km2 and impervious surface area has increased from 35.96 km2 to
89.97 km2, while all the other LULC types, including vegetation, have decreased. This suggests that
urbanization is the major LULC change characteristic between 2000 and 2014 for those regions that
have experienced increasing ∆Tu-r. Figure 7c shows LULC areas for the regions where daytime ∆Tu-r

has significantly decreased. While both the urban/residential and impervious surface areas for these
regions increased, vegetation also increased from 10.48 km2 to 16.1 km2. This suggests that vegetation
increase can help lower daytime urban surface temperature.
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Figure 7. Area change of each LULC type between 2000 and 2014 for regions that have experienced
statistically significant increasing ∆Tu-r for the daytime (a); decreasing ∆Tu-r for the daytime (b); and
increasing ∆Tu-r for the nighttime (c). Note: no significant decreasing ∆Tu-r has been observed for
the nighttime.

The correlation analysis results (Table 2) further explain how LULC changes influence ∆Tu-r

variation and which LULC change has the most significant effect on the variability of the SUHI intensity.
Both open soil and impervious surface areas have significant positive correlations (p < 0.05) with the
regression slope coefficient for both daytime and nighttime, indicating a heating effect contributed to
the UHI effect. The correlation between open soil areas and slope coefficient is much weaker for the
nighttime scenario (r = 0.1237, p < 0.05) than the daytime (r = 0.4287, p < 0.01), while urban/residential
areas tend to have a stronger heating effect at night (r = 0.3009, p < 0.01). Vegetation cover has a highly
significant negative correlation with the slope coefficient for both daytime (r = ´0.6087, p < 0.01) and
nighttime (r = ´0.4157, p < 0.01), which means that the vegetation has a strong cooling effect that
can mitigate the UHI effect in Phoenix. In addition, fallow cropland is also found to have a potential
cooling effect at night, but the correlation is relatively weak although it is still highly significant
(r = ´0.1463, p < 0.01).

Table 2. Correlation analysis between slope coefficient values from LST trend analysis and LULC
change for both daytime and nighttime.

Open
Soil

Fallow
Cropland Urban/Residential Vegetation Impervious

Surface Water

Slope
(daytime)

0.4287 *
(0.0000)

0.0564
(0.4016)

0.1136
(0.0905)

´0.6087 *
(0.0000)

0.3631 *
(0.0000)

0.0253
(0.7076)

Slope
(nighttime)

0.1237 *
(0.0122)

´0.1463 *
(0.0030)

0.3009*
(0.0000)

´0.4157 *
(0.0000)

0.3399 *
(0.0000)

0.0209
(0.6729)

Note: LULC change here means the area percentage difference between 2000 and 2014. See Section 3.3 for details.
The p-values are in parentheses. The correlation coefficients that are statistically significant at the 0.05 level are
marked by an asterisk (*).

5. Discussion

The SUHI intensity in the Phoenix metropolitan area has increased dramatically in the past
15 years. The most significant changes occurred most often on the metropolitan outskirts, with
little change observed in existing developed areas, such as downtown Phoenix, Tempe, and Mesa.
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Although LST can be very high in these developed areas, LST changes over time are insignificant
because there were no obvious LULC changes.

Although the nighttime SUHI intensity for the entire Phoenix metropolitan area is slightly lower
than that of the daytime (Figure 4), the total area that suffers increasing UHI effect is much larger at
night. The LST increasing trend is much stronger (Figure 5) and more statistically significant (Figure 6)
for the nighttime, resulting in the metropolitan Phoenix area’s UHI effect becoming more and more
prominent at night.

Urbanization in Phoenix has quickly converted geographic terrains from natural landscapes, such
as grasslands, open soil, and undisturbed desert area, and cultivated vegetation, such as croplands, to
manmade engineered surfaces and infrastructure. The effect of the built-up environment manifests
itself by impacting turbulent transport radiative heat exchange and hydrological processes, especially
in urban canopies [36]. Schatz and Kucharik also demonstrated in their paper that the built-up
environment was the primary driver of the spatial change in temperature patterns in the urban area [37].
They found that urban environments, together with their dark impervious surfaces and reduced
vegetation cover, normally have large heat capacity and high thermal conductivity rates [34,38–42].
This not only causes less incoming solar radiant energy to be reflected, but also less of the energy to be
converted to latent heat associated with evaporation and transpiration [43].

Manmade materials, especially dark impervious surfaces, absorb shortwave radiation and store
heat during the daytime. They then release longwave radiation slowly at night, heating up the lower
atmosphere [38,40,44]. The correlation analysis results (Table 2) indicate that it is the percentage
increase of impervious surfaces, rather than the urban/residential buildings, that have the highest and
most significant positive correlation with the regression slope coefficients. This finding is consistent
with some other studies [11,16]. In addition, anthropogenic activities also have a great impact on
urban climate by generating and releasing heat and water into the atmospheric boundary layer [45–47],
by way of fuel burning, air conditioning, automobiles, and machinery, that cannot be quickly
dispersed [43]. As rural landscapes are being continuously converted to built-up environments, larger
rural areas suffers significant LST increase and UHI effect. All the aforementioned mechanisms explain
why most significant increase of ∆Tu-r occurs on the city outskirts but not within the city’s developed
areas. It also explains why the ∆Tu-r increasing trend is much stronger and a much larger area of SUHI
intensity has been observed for the nighttime rather than the daytime.

Vegetation evapotranspiration can lower LST by releasing more latent heat flux but less sensible
heat flux from the surface to the atmosphere. Research has reported that normally lower LSTs are
found in areas with higher vegetation cover [11], and increasing vegetation cover area is considered
an effective mitigation strategy to reduce UHI effects [48–52]. In addition, controlled irrigation of
green spaces in cities can help to reduce thermal stress and building energy consumption during hot
seasons [53]. Our correlation analysis shows that the increase of vegetation cover has the strongest and
most significant negative relationship with the regression slope coefficients (Table 2), indicating that
an increase of vegetation cover can lower LST in the urban area.

The reduction of green spaces (Figure 7a,b) in Phoenix has also caused significant increases of
∆Tu-r for both daytime and nighttime (Table 2). By 2014, more than half of the vegetated area has
disappeared for the daytime scenario (Figure 7a), and about 44% of the vegetation cover has been
converted for the nighttime scenario (Figure 7b). Conversely, for daytime decreasing ∆Tu-r areas,
the vegetation cover area was increased by almost 60% although the urban/residential area and
impervious surface area have also dramatically increased (Figure 7c).

The correlation analysis results (Table 2) also demonstrate that the absolute values of the
correlation coefficients for the vegetation cover for both daytime and nighttime scenarios are higher
than the urban/residential areas and impervious surfaces. This finding demonstrates that the
cooling effect of increased vegetation cover is actually stronger than the heating effect due to urban
development and expansion. This is consistent with a previous finding that anthropogenic heat has
a smaller effect than albedo and vegetation cover [54]. Therefore, the increased vegetation cover is
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the primary contribution to the decreased ∆Tu-r. As shown in the 2014 Landsat image, the most
increased vegetated areas are irrigated croplands and golf courses. We, therefore, suggest that planting
vegetation could effectively mitigate the UHI effects in a desert city like Phoenix for both daytime
and nighttime.

Large water bodies have greater specific heat capacity and they have been found to provide
a potential cooling effect during the daytime [55]. Phoenix is a desert city, so large open-air water
bodies are very scarce. The lack of variation in open water surfaces, together with potential image
classification error, means that there is no statistically significant relationship between the change of
water body area and LST variation in this research.

6. Conclusions

Phoenix is a subtropical desert city that is also one of the warmest cities in the United States.
Excessive heat in the urban area has been a major concern for decades, especially during the summer
months. This heat compromises human health and comfort, as well as causes water and energy
consumption issues, and poor air quality. This research identified the regions in the Phoenix
metropolitan area that have experienced the most significant changes of SUHI intensity from 2000 to
2014 using MODIS LST imagery. The relationship between LULC changes and LST variations has also
been studied using classified LULC maps created from Landsat imagery.

For both daytime and nighttime, the regions that have experienced the most significant ∆Tu-r

changes between 2000 and 2014 include the southeastern and western parts of the metropolitan area.
Regions where ∆Tu-r has decreased are only observed for the daytime and are most often located on
outskirts of metropolitan Phoenix. The increase of daytime ∆Tu-r is slightly higher than the nighttime.
The areas that have experienced significant increases of SUHI intensity are, however, much larger
at night.

Urbanization is the primary cause for increased SUHI intensity during the study period.
Despite the dramatic increase of urban/residential and impervious surface areas, some areas have
decreasing ∆Tu-r during the daytime due to increased vegetation cover for those areas. This study
found that the cooling effect of increased vegetation cover is stronger than the heating effect of
urbanization for the Phoenix metropolitan area.

In conclusion, the UHI effect in the metropolitan Phoenix has been gradually exacerbated by the
rapid development and expansion of the urban area since 2000. More sustainable landscape planning
for future city development becomes more pressing, as Phoenix’s rapid population and economic
growth continues. Based on the results and findings from this research, we would recommend that
increase in vegetation cover, with the trade-off between water and energy carefully studied, can be
a potentially effective means to mitigate the UHI effect in those high SUHI intensity areas. It is an easy,
low-cost, and feasible way to lower the UHI effect and conserve energy.

In addition, we suggest that urban planners, decision-makers, and city managers formulate new
policies and regulations that encourage residential, commercial, and industrial developers to include
vegetation, such as trees, shrubs, and grass, when planning new construction. These policies should
include setting certain percentages of vegetation cover or numbers of small trees with exact height
and crown coverage or shrubs before structures are built. This would prevent the clearing of land
for built-up areas that typically leaves no vegetation cover, resulting in large areas of exposed open
soils, buildings, and impervious surfaces. The concentration of these manmade surfaces elevates LST
dramatically over the long run. Keeping existing vegetation or adding vegetation during construction
offsets the heat retained by these surfaces. This is especially true for desert cities. Thus, we believe that
this is an emerging issue that policy-makers and city planners need to pay attention to.
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