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Abstract: According to Monteith’s theory, crop biomass is linearly correlated with the amount
of absorbed photosynthetically active radiation (APAR) and a constant radiation use efficiency
(RUE) down-regulated by stress factors such as CO2 fertilisation, temperature and water stress.
The objective was to investigate the relative importance of these stress factors in relation to regional
biomass production and yield. The production efficiency model Copernicus Global Land Service-Dry
Matter Productivity (CGLS-DMP), which follows Monteith’s theory, was modified and evaluated for
common wheat and silage maize in France, Belgium and Morocco using SPOT VEGETATION for the
period 1999–2012. For each study site the stress factor that has the highest correlation with crop yield
was retained. The correlation between crop yield data and cumulative modified DMP, CGLS-DMP,
fAPAR, and NDVI values were analysed for different crop growth stages. A leave-one-year-out
cross validation was used to test the robustness of the model. On average, R2 values increased from
0.49 for CGLS-DMP to 0.68 for modified DMP, RMSE (t/ha) decreased from 0.84–0.61, RRMSE (%)
reduced from 13.1–8.9, MBE (t/ha) decreased from 0.05–0.03 and the index of model performance
(E1) increased from 0.08–0.28 for the selected sites and crops. The best results were obtained by
including combinations of the most appropriate stress factors for each selected region and cumulating
the modified DMP during part of the growing season that includes the reproductive stage. Though
no single solution to the improvement of a global product could be demonstrated, our findings
encourage an extension of the methodology to other regions of the world.

Keywords: dry matter productivity; yield estimate; SPOT VEGETATION; water stress; maize;
common wheat

1. Introduction

Regional to global scale crop monitoring and yield forecasting are important for agricultural
management and food security [1,2]. Satellite remote sensing enables assessment of agricultural
crop growth and yield across large territories [3–7]. Various Biomass Proxies (hereafter BPs) have
been developed from remote sensing imagery to be used in empirical regressive models that monitor
agricultural crop growth and estimate crop yield [8–10]. NDVI, fAPAR, LAI (Leaf Area Index), GAI
(Green Area Index) and EVI (Enhanced Vegetation Index) are examples of BPs that have been derived
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from remote sensing and that are used in vegetation monitoring and crop yield forecasting [5,7,11–16].
Though relationships between BPs and yield have been established, few studies relate Dry Matter
Productivity (DMP) to crop yield [17,18].

Vegetation productivity can be defined in several ways. Gross primary productivity (GPP) is
the rate at which plants capture and store atmospheric carbon dioxide (CO2) to generate oxygen
and energy as biomass [19]. Net primary productivity (NPP) is the difference between GPP and the
energy lost during plant autotrophic respiration. NPP is thus the rate of atmospheric carbon uptake
through the process of photosynthesis and represents the daily accumulation of standing biomass.
DMP is analogous to NPP, but expressed in different units (kgDM/ha/day instead of gC/m2/day),
for agro-statistical purposes [20]. The efficiency of the conversion between carbon and dry matter is on
average 0.45 gC/gDM [21].

Three types of models are used to estimate the photosynthetic carbon uptake and understand its
spatio-temporal variability [22–24]. The first group consists of empirical models often with a limited
applicability outside the area where they have been calibrated. The second group of models is based
on major biophysical and biochemical processes of photosynthesis and respiration measured under
laboratory conditions [25]. These models have a high computational demand. The third group of
models are parametric models driven by remote-sensing-derived variables and weather data, calibrated
with flux monitoring. Constant parameters are used to link measurements to biophysical processes
rendering these models particularly suitable for the local scale. While such assumptions may be
difficult to hold at global scale, parametric models may offer a balance between simplicity and process
description [23].

Production efficiency models, such as Monteith parametric models, have been developed to
monitor the primary production of vegetation [26,27]. Monteith suggested that crop growth under
non-stressed conditions linearly correlates with their Radiation Use Efficiency (RUE) times the
amount of Absorbed Photosynthetically Active Radiation (APAR) [28,29]. According to a review
of experimental studies [30], RUE values for C3 species range from 1.32–3.50 gDM/MJ of intercepted
PAR and for C4 species from 1.48–4.32 gDM/MJ of intercepted PAR during different crop development
stages. The seasonal variability of photosynthetic activity, however, depends on environmental
constraints [22]. For example, RUE is negatively related to water stress and positively related to
temperature for annual crops [22]. Water stress has been estimated as a function of soil moisture [31,32],
water deficits [33] or satellite-derived land surface water index [34].

Production efficiency models have been widely used to estimate regional or global carbon balances
in crops, grasslands and forests due to the simplicity of the RUE concept and the availability of remotely
sensed data [17,31,32,35–41]. However, their performance has been shown to vary in describing the
carbon budget [42]. A comparison of modelled gross and net primary productivity [26] of six different
models, CASA [43], GLO-PEM [44], TURC [45], MOD17 [46], BEAMS [47] and C-Fix [48], illustrates
how the various methodologies used to calculate vegetation productivity can be generalized in the
following two equations:

GPP “ PARˆ f APARˆ RUEMAX ˆ Stress f actors (1)

NPP “ GPP´AR (2)

where PAR is Photosynthetically Active Radiation (MJ/m2), fAPAR is the Fraction of Absorbed PAR
(dimensionless), RUEMAX is the maximum Radiation Use Efficiency (gC/MJ) (i.e., RUE under no
stress), which is downregulated by a coefficient that encompasses the effects of all stress factors such
as temperature stress or water stress, and AR is Autotrophic Respiration (gC/m2/day). In general,
variation among the models is caused by the differences in RUE, the incorporation of stress factors,
and AR [26]. The initial model conditions, model parameters, model structures and accuracy of input
data also play an important role [42,49]. Uncertainties in global GPP/NPP monitoring also relate to
the determination of RUE, AR and the quality of meteorological and the biophysical data [26,46,50,51].
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In this study, we analyse the Copernicus Global Land Service-Dry Matter Productivity
(CGLS-DMP) product. This model is part of the operational processing chain of SPOT VEGETATION
and the following Proba-V at the Vlaamse Instelling Voor Technologisch Onderzoek (VITO).
The parametric CGLS-DMP model estimates carbon mass fluxes at local, regional and global scales [48],
and has proved usefulness in vegetation productivity studies such as grasslands and forests [52–54].
For a given location, carbon fluxes are estimated on a decadal basis using SPOT VEGETATION
and resulting in a DMP product. Different DMP versions have evolved since the early 1990s [55].
The C-Fix approach (a variant of Monteith’s approach) was applied, to monitor the overall carbon
balance over Europe in terms of NPP [37]. In the late 1990s, an operational chain was established
to retrieve dekadal DMP images over Belgium based on C-Fix using SPOT VEGETATION for crop
monitoring. Around 2000, a consortium was established for JRC-MARS. There have been different
MARSOP projects in operation (MARSOP1 from 2001–2003, MARSOP2 from 2004–2007, MARSOP3
from 2008–2014, MARSOP4 from 2015–2019). The DMP coverage has been global except for MARSOP1
which was the Mediterranean Basin, part of the Commonwealth of Independent States (CIS—former
Soviet Union), Mercosur in South-America, and the Horn of Africa. The procedure for MARSOP1
was the same as C-Fix. The RUE in optimal conditions has been taken as 1.10 kg¨C/GJ for NPP and
2.45 kg¨DM/GJ for DMP. It is considered constant for all land cover types, while differences exist
between biomes, causing the operational DMP product to over/underestimate reality [22,56]. The RUE
value is subsequently reduced by normalised temperature and CO2 fertilisation dependency factors.
With the start of MARSOP2, the temperature errors were corrected using T12 for temperature and CO2

fertilisation efficiencies, and T24 for autotrophic respiration instead of simply using mean temperature
(Equations (3) and (4)).

T12 “ 0.75` pTmin ` Tmaxq (3)

T24 “ 0.50` pTmin ` Tmaxq (4)

where Tmin is the minimum daily temperature and Tmax is the maximum daily temperature. The grid
of the meteorological data has been changed from 1˝ to 0.25˝ with MARSOP3. For all projects, while
calculating CO2 fertilisation efficiency, the CO2 value used was fixed at 355.61ppmv, the global mean
level of the year 1994. For MARSOP1 and 2, in order to estimate fAPAR, the linear relationship
between NDVI and fAPAR was used. For MARSOP3 and 4, the global fAPAR is computed based
on [20]. The DMP has been produced in the CGLS since 2014 using the same meteo data, algorithm
and constants as the MARSOP4 DMP [57]. As mentioned in [57], some remarks should be taken into
consideration when interpreting the product. Firstly, since no direct water stress factor is implemented
in the DMP algorithm, the retrieved values should be considered as optimal values. The CGLS-DMP
model is only partially water limited through the sensitivity of fAPAR to vegetation water stress [37].
For the C-Fix model, Verstraeten et al. [48] therefore proposed to limit RUE by using estimates of soil
moisture content and water vapour deficit which required several empirical coefficients tuned to local
vegetation conditions [58]. Maselli et al. (2009) successfully introduced a water stress index to the
C-Fix model, which in turn enabled simulations of the gross and net carbon fluxes of Mediterranean
forest ecosystems [54]. Secondly, although RUE values differ between biome types, it is considered as
a global constant for all land cover types. Thirdly, the temperature stress factor was parameterized
for European forests, and reflects neither the difference between C3 and C4 plants nor the differences
within one plant type. Fourthly, although the CO2 level increases each year, it is considered as
a global constant. Finally, the AR is a linear function of daily mean temperature and is assumed
biomass-independent [59]. The average value of the original AR fraction is around 0.7 for Europe and
is an overestimation compared to other values found in the literature [1,42,60–62].

We hypothesise that the relative importance of the stress factors strongly contributes to explaining
regional differences in biomass production and yield. An accordingly modified DMP product could
therefore serve as a better proxy for crop yield than the currently available CGLS-DMP, and perhaps also
outperform other simpler satellite-derived biophysical proxies such as fAPAR and NDVI. The present
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study aims to parameterise the dry matter productivity approach specifically for wheat and maize and
to compare this modified DMP model with the original CGLS-DMP and with other BPs derived from
satellite imagery. The value of this improvement is evaluated in the context of arable productivity
at the regional administrative or agro-ecological level. The model performance is assessed using
statistical metrics based on the comparison between regional cumulated BPs and regional crop yield
statistics of silage maize and common wheat for selected sites in Belgium, France and Morocco during
the period 1999–2012.

2. Materials

2.1. Study Areas and Crops

The selected study sites are located in Belgium, France and Morocco (Figure 1). Silage maize and
common wheat are the most dominant crops in the selected sites.

Figure 1. Study areas with study crops in Belgium, France and Morocco.

From Northern Europe to Northern Africa, the average daily temperature and potential
evapotranspiration increases, and the average cumulative rainfall decreases. The regions were selected
to capture this trend in climate regimes. Figure 2 shows the long term averages of temperature,
precipitation, Penman-Monteith potential evapotranspiration (PET) and water balance computed per
region based on meteorological data obtained from the JRC-MARSOP project [63]. The water balance
was calculated using the Thornthwaite-Mather method as precipitation minus PET [64]. Water and heat
stress are the major factors that influence arable yields in Belgium [65,66] and France. The total annual
water used for irrigation across France can amount to 80% of the crop water use during dry periods,
while on average 10%–20% is used during a typical growing season [67]. In Morocco, most arable
crops are rain fed, having frequent dry periods with high temperatures and irregular rainfall [68].
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Figure 2. Cumulative monthly rainfall, PET (potential evapotranspiration), water balance (accumulated
monthly water deficit/surplus) (mm) and average monthly temperature (˝C) during the 1999–2012
period for study sites in Belgium (a); France (b) and Morocco (c). Error bars show the standard
deviation for the meteorological indicators.
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2.2. Data Description

Daily meteorological data were obtained from JRC-MARSOP [63] and 10-daily fAPAR and NDVI
from SPOT VEGETATION (1 km) [69] for the period 10/1998–10/2012. Temperature and solar radiation
are at a 25 km grid, while rainfall, PET and AET are at a 0.25˝ grid.

A cropland mask was retrieved from ESA GlobCover 2009 [70]. The classes used were
“Post-flooding or irrigated croplands (or aquatic)”, “Rainfed croplands”, “Mosaic cropland
(50%–70%)/vegetation (grassland/shrubland/forest) (20%–50%)” and “Mosaic vegetation (grassland/
shrubland/forest) (50%–70%)/cropland (20%–50%)”. The soil water holding capacity was retrieved
from the European soil map [71] and Digital Soil Map of the World [72] and used in AgroMetShell [73].
AgroMetShell provides a toolbox for agrometeorological crop monitoring and forecasting developed
by FAO. This toolbox includes a database with the weather, climate and crop data used to analyse the
impact of weather on crops [74]. AgroMetShell also contains crop-specific water balance parameters
for different crop growth stages. In this study, we used the meteorological data from JRC-MARSOP
and used AgroMetShell to compute the actual evapotranspiration (AET) for every season during the
period 1999–2012. The soil types and textures of the different regions show a high suitability for arable
agriculture due to the presence of silt (Table 1).

Table 1. The soil types and textures of the study sites.

Soil Type Soil Texture

Wheat

BE
Polders Calcaric Regosols + Calcaric Fluvisols Loam + Silt loam
Sandy Loam Region Dystric Podzoluvisols + Orthic Luvisols Sandy loam + Loam

FR
Eure-et-Loir Gleyic Luvisols + Orthic Luvisols Clay Loam + Loam
Somme Orthic Luvisols Loam

MAR
El Jadida Calcic Kastanozems + Vertisols + Eutric Fluvisols Loam + Silty Clay + Silt Loam
El Kelaa Eutric Gleysols + Calcic Xerosols Clay Loam + Loam

Maize

BE
Loam Region Orthic Luvisol + Dystric Podzoluvisol Loam + Sandy Loam
Liège Region Stagno-Gleyic Luvisol + Orthic Luvisols +

Dystric Cambisol
Clay Loam + Loam + Silt
Loam

FR
Ain Gleyic Luvisols + Orthic Luvisols + Eutric

Cambisols
Clay Loam + Loam + Silt
Loam

Haut Rhin Gleyic Luvisols + Orthic Luvisols Clay Loam + Loam

The information for the planting dekad and the length of the growing season as required in
AgroMetShell were extracted from the MARS database [63] for Belgium and France; and obtained
from [68] for Morocco (Table 2).

Table 2. Crop growing periods for maize and common wheat in the case study sites.

January February March April May June July August September October November December

Wheat

BE

Polders

Sandy
Loam
Region

FR
Eure-et-Loir

Somme

MAR
El-Jadida

El-Kelaa
des Sraghna

Maize

BE

Loam
Region

Liège
Region

FR
Ain

Haut-Rhin



Remote Sens. 2016, 8, 170 7 of 24

Official crop yield statistics for common wheat and silage maize for the period 1999–2012 were
obtained from the national statistical services. The coefficient of variation is 54% for Morocco, 9% for
France and 7% for Belgium for wheat, and 16% for France and 7% for Belgium for maize.

Annual global MOD17A3 GPP and NPP data for 14 years (2000–2013) with a spatial resolution of
30-arcsec were downloaded from the Numerical Terradynamic Simulation Group at the University
of Montana [75]. This dataset was used to compute NPP/GPP ratio which was compared with the
autotrophic respiration fraction computed by the CGLS-DMP and the modified DMP.

3. Methods

3.1. Algorithm Description of the DMP Model

The CGLS-DMP model [37] uses the following equation for calculating Dry Matter Productivity
except for the last efficiency, εH2O:

DMP “ Rˆ εp ˆ fAPARˆ εRUEMAX ˆ εT ˆ εCO2 ˆ εAR ˆ
“

εH2O
‰

(5)

where DMP is daily dry matter productivity (kgDM/ha/day). R is total shortwave incoming solar
radiation (0.2–3.0 µm) (GJ/ha/day). εp is the ratio of effective photosynthetically active radiation (PAR)
(0.4–0.7 µm) to the total incident radiation. Because the energy in the PAR band at the surface of the
earth is approximately 48% of global radiation, a value of 0.48 has been used in the model [37]. fAPAR
is the fraction of PAR absorbed by green vegetation and is estimated based on remote sensing [76].
εRUEMAX is the maximum Radiation Use Efficiency (RUE). In order to make a distinction between C3

and C4 crops, we use 2.75 kgDM/GJ for wheat and 3.5 kgDM/GJ for maize [30]. εT is the normalized
temperature effect [77] and indicates the role of air temperature in the photosynthesis efficiency [78].
εCO2 is the normalized CO2 fertilization effect and takes into account the thermodynamic properties
of the carboxylation/oxygenation reactions during photosynthesis [37]. εAR is the fraction kept after
Autotrophic Respiration (AR). We introduced in Equation (5) the reduction factor “εH2O” to account
for water stress. The details of the changed parameters are explained in the following sections.

3.1.1. Temperature Stress Factor

Plant species show characteristic variations in the way photosynthetic processes respond to
temperature [79]. For instance, wheat, as a C3 plant, has an optimum temperature around 20 ˝C and
maize, as a C4 plant, has an optimum temperature around 30 ˝C [80–85]. Different crop varieties may
have different temperature responses to dry matter accumulation (e.g., [86]). The focus in this study is
on crop type rather than variety. The temperature stress factor (εT) in CGLS-DMP is parameterised for
C3 plants (blue line in Figure 3) [37]. The temperature response function by [85] is used for maize (red
line in Figure 3).

Figure 3. The temperature functions of εT used in this study for wheat and for maize.
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3.1.2. CO2 Fertilisation Effect

The CO2 fertilisation effect is the increase in carbon assimilation due to CO2 concentrations above
the atmospheric reference level [37]. The CO2 concentration level in CGLS-DMP was fixed to a constant
value, although the globally averaged records show a tendency to increase from 1980–2012 and beyond
(Figure 4). In Figure 5a, the dots represent the CO2 fertilisation effect of CGDL-DMP at a fixed CO2

level with variable temperature (from ´20 ˝C–40 ˝C). In order to simulate the measured CO2 increase,
the yearly variable CO2 values were used in the modified DMP.

Figure 4. Yearly (blue line) and monthly (red line) globally averaged CO2 records (source: [87]).

In the CGLS-DMP model, the CO2 fertilisation effect was parametrised for C3 plants. For more
details on the equation, we refer to [37]. Above-ground dry matter increases with elevated CO2 for C3

plants [88–90]. The blue to red lines in Figure 5b show the increase of the CO2 fertilisation effect for C3

plants from 1999–2012.
For C4 plants little evidence of biomass accumulation in response to CO2 enrichment was observed

over a wide range of temperatures [88,91]. Based on the CO2 assimilation rate of C4 at lower CO2

partial pressures [92], the evolution of εCO2 for C4 plants can be rewritten (Equation (6)).

εCO2 “
FCO2

Fref
CO2

“
CCO2 ˚ Vpmax

CCO2 `Kp
˚

Cref
CO2

`Kp

Cref
CO2

˚ Vpmax
(6)

where FCO2 is the CO2 assimilation rate in year x, Fref
CO2

is the CO2 assimilation rate in the reference
year 1833, CCO2 is the actual CO2 concentration, Vpmax is the maximum PEP (phosphoenolpyruvate)
carboxylase activity, Cref

CO2
is the CO2 concentration in the reference year 1833 (281 ppmv (or µbar))

and Kp is the Michaelis–Menten constant for CO2 (80 µbar according to [92]). Since the variability in
CO2 assimilation rates of C4 plants is dependent on CO2 concentration, the changes from one year to
another are very small (dotted green line in Figure 5c).
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Figure 5. Evolution of εCO2 both for CGLS-DMP (Copernicus Global Land Service-Dry Matter
Productivity) at the fixed rate of CO2 value (dots) (a); modified DMP variable CO2 rates for C3

(blue to red lines represent the change in temperature from ´20 ˝C–40 ˝C) (b); and C4 plants (dashed
green line) (c); for the years 1999–2012.

3.1.3. Water Stress Factor

The water stress factor (εH2O, Equation (7)) is included in the algorithm to account for the
immediate effect of water stress on the vegetation at each dekad. The model uses a simple water stress
factor computed on the basis of PET and AET estimates [58]. AgroMetShell was used to compute AET
from total evaporation, actual rainfall and crop coefficients between planting and harvesting dates [74].
The theoretical base of this index is the same as the water scalar in the CASA model [31,35]. According
to the CASA model, water availability up to a maximum of 50% can limit the photosynthesis which
may be complemented by a subsequent fAPAR decrease to account for long-term water stress [31,58].
There is no direct water limitation in the CGLS-DMP and water stress is incorporated indirectly through
the impact on fAPAR corresponding to a visible impact on the vegetation [20]. Maselli et al. [53,58]
demonstrated that this modification is effective in improving the C-Fix model simulations for periods
affected by significant water stress in Mediterranean tree ecosystems.

εH2O “ 0.5` p0.5ˆ
AET
PET

q (7)

εH2O can vary between 0.5, when strong water shortage reduces photosynthesis to half of its potential
value, and 1, when there is no water shortage and photosynthetic reduction [58].
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3.1.4. Autotrophic Respiration Factor

The autotrophic respiration factor in CGLS-DMP (εAR, Equation (8)) is dependent on daily
temperature only [37].

εAR “ 1´ p´3.049` p0.01145ˆ T24qq (8)

where T24 is the daily mean air temperature (in ˝K). The model performance is improved by introducing
biomass information in the modified DMP model, as in the GLOPEM2 model [32]. A semi-empirical
relationship accounts for above-ground biomass (Equation (9)).

εAR “ 1´ pp´3.049` p0.01145ˆ TMqq ˆ p0.53ˆ p
W

W ` 50
qqq (9)

where TM is ten daily mean composite of mean air temperature and W is above ground biomass,
according to

W “ 7166.1ˆ
´

ρ´2.6
min

¯

(10)

The variable ρ´2.6
min is the minimum reflectance in the red channel of AVHRR in the GLOPEM2

model. The lower ρ´2.6
min , the higher the biomass [93]. [94] argue that visible reflectance is positively

related to standing biomass and canopy closure. We used the ten daily minimum composite values
of the red channel of SPOT VEGETATION assuming both instruments reach comparable minimum
values in similar conditions.

The long term average autotrophic respiration fraction computed from both the original and
modified formula was compared to the annual MOD17A3 NPP/GPP ratio in order to detect similarity
and differences. The MODIS dataset is the only large scale estimate available for the NPP/GPP ratio.
The long term average values of MODIS NPP and GPP were calculated separately, whereafter the
NPP/GPP ratio was computed.

Table 3 presents a summary of unchanged and changed parameters in the DMP equation for both
the CGLS and the modified version.

Table 3. Summary of unchanged and changed parameters in the DMP equation from CGLS as compared
to the modified version.

CGLS-DMP Modified DMP

R Obtained from JRC-MARSOP on a daily basis at a 0.25˝ grid

εp εp “ 0.48

fAPAR Derived from 10-daily SPOT VGT imagery at 1km² resolution

εH2O No water stress factor Water stress factor based on AET

C3 plants (wheat) C4 plants (maize)
εRUEMAX 2.54 kgDM/GJ for all C3 plants 2.75 kgDM/GJ for wheat 3.5 kgDM/GJ for maize

εT Blue curve in Figure 3 Blue curve in Figure 3 Red curve in Figure 3
εCO2 Blue to red dots in Figure 5a Blue to red lines in Figure 5b Dashed green line in Figure 5c

εAR
Figure 7a, range: 0.65–0.85 for

study regions Figure 7b, range: 0.5–0.7 for study regions

3.2. Regression Analysis

The relative importance of CO2 fertilisation, temperature effect and water stress was determined
through different combinations of these stress factors per site and crop type. Previous studies showed
that NDVI and fAPAR were used to define site specific relations with crop yield [4–6,13,95,96].
Therefore NDVI and fAPAR were compared with both CGLS derived and modified DMP.

The regression analysis was done to relate remote sensing Biomass Proxies (BPs) and crop yields
of silage maize and common wheat for the period 1999–2012 in Belgium, France and Morocco. A linear
regression was calculated between official yield statistics and a regional BP value cumulated over
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the different periods during the growing season [6] for each crop type and region. Different dekadal
combinations of BPs were explored, e.g., the maximum BPs, maximum BPs plus number of dekads, end
of season BPs and sum of BPs between flowering and ripening. Although the optimal temporal window
varies with crop type and region, the cumulated period of the BPs in the majority of cases includes the
reproductive stage. The model performance was assessed using the coefficient of determination (R2).
The p-value, calculated by Pearson correlation, was also given to assess whether the relations between
the crop yields and calibrated BPs were statistically significant.

A leave-one-year-out cross validation enabled testing the model robustness and goodness of
fit using the best combination of variables in the regression analysis. The root mean square error
(RMSE), the relative RMSE (RRMSE), mean bias error (MBE) and the index of model performance (E1)
were presented to evaluate the model performance. E1 is a dimensionless index of model-observation
agreement [97]. E1 takes the value of 1 for perfect agreement. Although not negatively bounded, the
value of 0 indicates that such a model has no more ability to predict the observed values than the
observed mean (i.e., a null model). All values below 0 reflect a model that performs worse than the
null model.

4. Results

An overview of spatio-temporal information containing a comparison of modified DMP for C3

and C4 versions with CGLS-DMP is provided for Liège Region (BE) (Figure 6). These absolute values
are estimated from the modified DMP for C3 and C4, and CGLS-DMP versions for different time
periods during the growing season. The figure presents a clear difference between three versions
of DMP.

Figure 6. Comparison of modified DMP for C3 and C4 versions with CGLS-DMP for Liège Region (BE).

4.1. Autotrophic Respiration Fraction (εAR)

The range for the ratio of NPP to GPP (which represents the εAR term in the DMP model) varies
with land use type. The values of this ratio are 0.5 at the global scale [42,60,98]; 0.4 for corn and
soybeans [1]; 0.4–0.6 for forest, 0.55 for cropland and 0.6 for grassland [61]; and 0.3–0.6 for maize, rice
and wheat [62].

The modified εAR showed a better agreement with the values found in the literature and with
the MODIS NPP/GPP ratio as compared to the original CGLS-DMP (Figure 7). Although it is
expected to have higher εAR values in high altitudes and in places with higher temperatures, the
differences between the modified DMP and MODIS NPP/GPP ratio are relatively large, particularly
in mountainous and desertified regions. The main reason could be that the standing biomass was
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parameterised on the growing season reflectance value. The areas with very high εAR values in
Figure 7b are sparsely vegetated [94] and fall outside cropland area (the scope of this study). Figure 7
presents the εAR versions and the MODIS NPP/GPP ratio for a visual interpretation of difference.
In order to support the difference/similarity between the raster data presented (Figure 7), a numerical
comparison was performed and difference maps created (see Supplementary Materials).

Figure 7. Average εAR calculated with CGLS-DMP (a); modified DMP (this study) (b) for the period
1999–2012; and MODIS NPP/GPP ratio from 2000–2013 (c) with the study sites extent.

4.2. Linear Regression Analysis

Figure 8 shows the highest R2 values for the relationship between the official yield statistics
and each regional cumulative modified DMP computed with different stress factor combinations.
In Belgium common wheat has the highest correlation with DMP, without any stress factors in the
Polders and with DMP including CO2 fertilisation effect in the Sandy Loam Region. In France
common wheat has the highest correlation with DMP, with water stress in Eure-et-Loir and DMP
with CO2 fertilisation effect and temperature stress in Somme. In Morocco common wheat has the
highest correlation with DMP, with all three stress factors in both El Jadida and El Kelaa des Sraghna.
In Belgium silage maize has the highest correlation with DMP, with temperature and water stress
factors in both the Loam and Liège regions. In France silage maize has the highest correlation with
DMP, with all three stress factors in Ain and Haut-Rhin.

The highest correlations for modified DMP per region and crop type (Figure 8) are compared
with CGLS-DMP, fAPAR and NDVI in Figure 9. In each study region the modified DMP has a higher
correlation than the CGLS-DMP, and in general performs better than fAPAR or NDVI. The correlations
are significant for all study sites and BPs, except for fAPAR in the Sandy Loam Region (BE), NDVI
in Somme (FR) and CGLS-DMP in Liège Region (BE). The correlations between observed yield and
calibrated BPs were significant at the 0.01 level for modified DMP in all regions, but displayed a mixed
picture in the case of CGLS-DMP, fAPAR and NDVI.



Remote Sens. 2016, 8, 170 13 of 24

Figure 8. R2 for a linear regression between official yield statistics and regional cumulative modified
DMP computed with different stress factors or combinations. CO2: with CO2 fertilisation effect; H2O:
with water stress factor; Temp: with temperature stress factor and combinations of these stress factors.
The cumulative periods of modified DMP for each study region are presented in dekads.
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Figure 9. Cumulative period of BPs (modified DMP, CGLS-DMP, fAPAR, NDVI), p-value (calculated
by Pearson’s correlation for r2) and coefficient of determination (R2 for the linear model) for wheat and
maize per region.

The best combination of BPs from the regression analysis were calibrated with a leave-one-out
cross validation. The RMSE (t/ha), the RRMSE (%), MBE (t/ha) and E1 values calculated in the
validation analysis are presented in Figure 10. The modified DMP has lower RMSE values than the
other BPs which range from 0.25 t/ha–0.44 t/ha for common wheat and 0.68 t/ha–1.41 t/ha for silage
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maize. In general the RRMSE values are lowest for the modified DMP. The RMSE values followed
a similar trend as RRMSE. The MBE values are between ´0.05 t/ha–0.05 t/ha except for the Liège
Region (BE), Ain (FR) and Haut Rhin (FR) for all BPs. Overall, higher E1 values were recorded for
modified DMP compared to the other BPs. In addition, E1 values show that the model is not performant
for maize in Belgium and France (except Ain).

Figure 10. RMSE (t/ha), RRMSE (%), MBE (t/ha) and E1 based on the correlation between the calibrated
BP (modified DMP, CGLS-DMP, fAPAR, NDVI) and yield statistics per region for wheat and maize
using a leave-one-out cross validation.

Figure 11 presents the temporal trends of the actual crop yield and predicted yield of BPs calibrated
by the leave-one-out cross validation throughout the study period from 1999–2012. In general, the
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modified DMP followed a similar trend as the observed yield although there are some discrepancies
for maize in the Loam Region (BE), Liège Region (BE) and Haut Rhin (FR).

Figure 11. Temporal trends of predicted yield calibrated by leave-one-out cross validation technique
confronted with the actual yield for 1999–2012 period per region.



Remote Sens. 2016, 8, 170 17 of 24

5. Discussion

The modified DMP, the empirically identified model, is in general more efficient in describing the
yield variability for maize and wheat yield across the study sites when different combinations of stress
factors are included in the BPs regression analysis together with official statistics. Overall, the modified
DMP correlates better with crop yield statistics than the CGLS-DMP, fAPAR and NDVI. On average, R²
values increased from 0.49 for CGLS-DMP to 0.68 for the modified DMP, RMSE (t/ha) decreased from
0.84–0.61, RRMSE (%) reduced from 13.1–8.9, MBE (t/ha) decreased from 0.05–0.03 and E1 increased
from 0.08–0.28. In general, the cumulative BPs with the highest correlations coincide with periods that
include the reproductive stage, which is in agreement with previous studies [14,99–101]. These periods
are the most critical stages where any water stress may result in reduced crop yields [14]. In Canada,
Mkhabela et al. [14] reported RMSE values ranging from 104 kg/ha–697 kg/ha from arid zones to
sub-humid zones when relating MODIS-NDVI and spring wheat yield. In China, Ren et al. [102]
reported a RMSE value of 214 kg/ha when relating MODIS-NDVI and wheat yield. The values for
maize in Figure 10 are similar to those recorded by [103] when relating MODIS WDRVI (Wide Dynamic
Range Vegetation Index) and maize yield in the US. However, E1 values demonstrated that for maize
the modified DMP model is performant only in Ain, which is also evident for the other BPs. In general,
E1 values for the modified DMP are higher than the CGLS-DMP. Hansen & Indeje [104] reported
RMSE values ranging from 0.962 t/ha–1.195 t/ha when predicting field-scale maize yields simulated
by CERES-maize in Kenya. In agro-ecological zones of Belgium, Klein [105] reported RMSE values
fluctuating from 550 kg/ha–1430 kg/ha when relating the simulations of the B-CGMS crop growth
model and winter wheat, and from 2150 kg/ha–7730 kg/ha for maize.

The modified DMP includes plant specific parameterisations for C3 and C4 plants, introduces
potential water limitation and incorporates the impact of different stress factors during the most
sensitive cropping periods. According to the results, the inclusion of different stress factors can
improve local empirical models. The results indicate that the stress factors play different roles in
different climate regimes and for different C3 and C4 plants. For instance, the water stress index in
CGLS-DMP proved to be a limiting factor, particularly in Morocco. AgroMetShell was used to generate
AET estimations for each crop during different stages of the growth period of 1999–2012; this water
balance model requires time for collecting the necessary data and computation. An alternative to
AgroMetShell is LSA-SAF MSG AET [106] which has been available at the continental scale since 2009
and provides estimations closer to eddy covariance (EC) measurements [107]. Since the available years
from MSG derived AET are too few for this study, we used AgroMetShell to compute AET. Another
stress factor is the CO2 fertilisation effect which is highly dependent on plant species, soil properties
and soil nutrient status [108–110]. Study sites in Belgium were more responsive to this stress factor
compared to the poor soils in Morocco. Irrigation can alleviate the effect of stress factors such as
drought and temperature, while fertilisation alleviates plant nutrition stress [111]. However, the model
approach used in this study did not take into account either irrigation or fertilisation. The autotrophic
respiration fraction is overestimated in the CGLS-DMP model. We therefore proposed a new εAR

which followed a similar trend as the findings in [98]. For example, densely vegetated areas in Europe
have lower εAR values. However, the values in sparsely vegetated and high altitude areas are different
than the values in [98]. These areas are beyond the scope of this study and should be disregarded.

The modified DMP could explain more variation in irradiation conditions, short term
environmental stresses and respiration costs compared to NDVI and fAPAR. Thus, it could be a more
robust choice, although it has several modelling assumptions. Similar to the findings in [112–114],
Phillips et al. [115] found that NDVI underestimated productivity due to backscatter effects in the lower
values and saturation in the higher values. Additionally, the frequency and intensity of extreme weather
events could have significant impacts on biomass production and crop yields [116,117]. For example,
floods and droughts can harm crops, reduce yields and increase crop prices. The amplitude of
extreme events can be much larger at regional scales than at global scales [118]. For example, the
2003 heat wave affected the local natural environment, society and economy in many parts of Europe.
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Van der Velde et al. [67] reported that 2003 maize yield loss in France equalled 1.5 t/ha compared to
the 2000–2006 average. This trend can also be seen in the study sites in France within BPs used in this
study. The modified DMP is therefore better suited than CGLS-DMP to the extreme event in 2003 (e.g.,
for Ain, the predicted yield from the BPs calibrated for maize yields are 10 t/ha for modified DMP,
14 t/ha for CGLS-DMP, 10 t/ha for fAPAR and 9 t/ha for NDVI, while the actual yield is 8 t/ha).

Although the proposed method shows promising results in crop yield forecasting for the study
sites, there are a number of limitations. Cereal yields depend on the harvest index which is the
fraction of the total aboveground biomass allocated to the grains [13]. Different yields for the same
amount of aboveground biomass can be obtained because the harvest index varies with crop varieties,
management practices, and water and nitrogen availability [13], all of which play at the field scale.
For this reason, the harvest index was not in the scope of our regional study. A limitation to predicting
yield is the amplitude of the inter-annual crop yield variability. López-Lozano et al. [6] showed that
the regression analysis performs better when the inter-annual variability is high, which is confirmed
in this study: higher performance was seen in Morocco where the inter-annual variability is higher.
In addition, many weeds, pests and fungi flourish under warmer temperatures, wetter climates and
increased CO2 levels [116], and affect yields.

We used products derived from SPOT VEGETATION, a sensor with a coarse 1 km spatial
resolution, and we applied a mask to these products using the GlobCover 2009 crop map in order
to minimize the influence of non-agricultural land cover types. DMP is subsequently calculated per
pixel located in cropland assuming wheat (C3) or maize (C4) cover. The two resulting maps could be
combined using weights corresponding to the proportion of each crop, provided that the share per crop
is known in a particular year. However, this proportion is not available before the end of the season,
and it is beyond the scope of this paper to explore the feasibility of such extension. Furthermore,
crop-specific maps could minimise the effects of mixed signals through unmixing techniques or by
selecting subsamples of purer pixels [119], thus improving the yield estimations [120]. The impact
of stress is important for estimating dry matter productivity of cereal crops. The research could be
extended to include other agricultural regions and arable crops. The incorporation of new generation
remote sensing products with higher spatio-temporal resolutions into the DMP model is likely to
improve yield estimates.

6. Conclusions

A modified DMP model was developed to include water stress based on actual evapotranspiration
calculated with AgroMetShell and to adapt the existing factors (CO2 fertilisation effect, temperature
stress and autotrophic respiration). The best results were obtained by including different combinations
of stress factors for each selected region and cumulating the modified DMP between the flowering
and ripening period. A linear regression between the modified DMP and crop yield statistics showed
an increased model performance as compared to the CGLS-DMP. On average, for all sites and
crops studied, RMSE (t/ha) decreased from 0.84 for CGLS-DMP to 0.61 for modified DMP, RRMSE
(%) reduced from 13.1–8.9, MBE (t/ha) decreased from 0.05–0.03 and E1 increased from 0.08–0.28.
Although results did not differ much from what can be obtained using simpler BPs such as fAPAR
and NDVI, obtaining similar results remains encouraging as the DMP approach may lend itself better
to extrapolation in more extreme conditions. The results showed the potential of using the modified
DMP for estimating crop yield at the regional scale. A combination of different stress factors produces
better local yield estimates, but no single solution to the improvement of a global product could be
demonstrated. The inter-annual variability of official yield statistics is low in Belgium and France,
and high in Morocco. The latter enabled a better exploration of stress factors. With more accurate
crop masks becoming available than the currently used GlobCover 2009, crop yield estimations
might even further improve the results. Including appropriate stress factors and their impact during
sensitive stages improves dry matter productivity estimates of cereal crops. For improving real RUE
estimations, different remote sensing methods will be available such as chlorophyll-related vegetation
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indices, passive measurement of solar-induced chlorophyll fluorescence (SIF), and the photochemical
reflectance index (PRI).

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/3/170, Figure S1:
Difference maps of εAR calculated with modified DMP (this study) & CGLS-DMP (a); MODIS NPP/GPP ratio from
2000–2013 & εAR calculated with CGLS-DMP (b) and MODIS NPP/GPP ratio from 2000–2013 & εAR calculated
with modified DMP (this study) (c); Figure S2: Scatterplots of εAR calculated with modified DMP (this study)
& CGLS-DMP (a); MODIS NPP/GPP ratio from 2000–2013 & εAR calculated with CGLS-DMP (b) and MODIS
NPP/GPP ratio from 2000–2013 & εAR calculated with modified DMP (this study) (c). The dotted lines are the 45˝

reference lines and the red lines are trend lines.
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