remote sensin !
?J & bpy

Article

Monitoring and Assessing the 2012 Drought in the
Great Plains: Analyzing Satellite-Retrieved
Solar-Induced Chlorophyll Fluorescence, Drought
Indices, and Gross Primary Production

Siheng Wang "2, Changping Huang '*, Lifu Zhang !, Yi Lin 3, Yi Cen ! and Taixia Wu !

1 The State Key Laboratory of Remote Sensing Science, Institute of Remote Sensing and Digital Earth,

Chinese Academy of Sciences, Beijing 100101, China; wangsh@radi.ac.cn (5.W.); zhanglf@radi.ac.cn (L.Z.);
cenyi@radi.ac.cn (Y.C.); wutx@radi.ac.cn (T.W.)

University of Chinese Academy of Sciences, Beijing 100049, China

Institute of Remote Sensing and Geographic Information Systems, School of Earth and Space Science,
Peking University, Beijing 100871, China; yi.lin@pku.edu.cn

*  Correspondence: huangcp@radi.ac.cn; Tel.: +86-10-6480-6207

Academic Editors: Clement Atzberger and Prasad S. Thenkabail
Received: 19 November 2015; Accepted: 8 January 2016; Published: 27 January 2016

Abstract: We examined the relationship between satellite measurements of solar-induced chlorophyll
fluorescence (SIF) and several meteorological drought indices, including the multi-time-scale standard
precipitation index (SPI) and the Palmer drought severity index (PDSI), to evaluate the potential of
using SIF to monitor and assess drought. We found significant positive relationships between SIF
and drought indices during the growing season (from June to September). SIF was found to be more
sensitive to short-term SPIs (one or two months) and less sensitive to long-term SPI (three months)
than were the normalized difference vegetation index (NDVI) or the normalized difference water
index (NDWI). Significant correlations were found between SIF and PDSI during the growing season
for the Great Plains. We found good consistency between SIF and flux-estimated gross primary
production (GPP) for the years studied, and synchronous declines of SIF and GPP in an extreme
drought year (2012). We used SIF to monitor and assess the drought that occurred in the Great Plains
during the summer of 2012, and found that although a meteorological drought was experienced
throughout the Great Plains from June to September, the western area experienced more agricultural
drought than the eastern area. Meanwhile, SIF declined more significantly than NDVI during the
peak growing season. Yet for senescence, during which time the reduction of NDVI still went on,
the reduction of SIF was eased. Our work provides an alternative to traditional reflectance-based
vegetation or drought indices for monitoring and assessing agricultural drought.

Keywords: drought monitoring; solar-induced chlorophyll fluorescence (SIF); drought indices; gross
primary production (GPP); Great Plains; hyperspectral remote sensing

1. Introduction

Drought-induced reduction of vegetation production threatens both the global ecological balance
and food security. The frequency and intensity of drought is increasing under the warmer temperatures
resulting from global climate change [1,2]. From 2000 to 2009, global terrestrial net primary production
(NPP) declined by 0.55 Pg of carbon because of drought [3]. Hence, the timely monitoring and precise
assessment of large-scale drought are important for food security and for understanding vegetation
responses to climate change.
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However, drought is very complex and difficult to monitor for two reasons. First, drought is
not universally defined. In general, drought can be categorized into meteorological, agricultural,
hydrological, and socioeconomic droughts [4], and thus it is hard to define what a “real drought” is.
Second, the onset and end point of a drought are indistinct [5,6]. Thus, drought is hard to detect in
its early stages. Drought indices, such as the Palmer drought severity index (PDSI), which is derived
considering both precipitation and temperature [7], and the standard precipitation index (SPI), which
is directly calculated from the precipitation over a certain historical period [8,9], have been proposed
to simplify the evaluation of drought conditions. Because drought indices are generally calculated
from meteorological data, they are able to monitor meteorological drought effectively [10].

However, for terrestrial plants, drought conditions might be affected by non-meteorological
factors such as underground water storage and agricultural irrigation with the result that drought
indices alone are insufficient to monitor agricultural drought. Remotely-sensed satellite data,
providing spatiotemporally continuous observations on vegetation, have been employed to evaluate
drought-related vegetation conditions. Reflectance-based vegetation indices (VIs), such as the
normalized difference vegetation index (NDVI), can indicate the greenness of terrestrial plants.
Other water-sensitive VIs, such as the normalized difference water index (NDWI) [11], or other
drought-oriented advanced indices, such as the vegetation condition index (VCI) [12] and the scaled
drought condition index (SDCI) [10], are also widely used to study agricultural drought. Because
VIs and drought indices are considered as proxies for green biomass and meteorological drought,
respectively, and there is a close relationship between vegetation vigor and available soil moisture,
especially in unirrigated arid regions, the relationships between vegetation and drought indices
directly indicate the response of vegetation to drought and provide a simple method to study
meteorologically-induced agricultural drought (e.g., [6,10,13]).

Although previous studies of drought have shown the effectiveness of satellite data,
remotely-sensed data have intrinsic limitations for drought monitoring and assessment. One major
shortcoming is that the lag in the response of satellite-measured VIs to drought is significant. This is
because the spectral characteristics of the vegetation canopy do not change immediately when water
stress occurs. For example, the NDVI can still remain high when plants are heavily stressed by
short-term drought. Generally, the lag for the NDVI to response precipitation is about one to two
months [14,15], while for central North America, this lag is more significant in early summer than in
late summer [16]. Despite the improved performance of other VIs (e.g., NDWI, VCI, and SCDI) in
monitoring drought, these reflectance-based indices fail to indicate rapid changes in drought stress
because they have no direct link to photosynthetic functioning beyond their sensitivity to canopy
structure and pigment concentration changes [17]. This makes it difficult to monitor drought in
a timely fashion from space when using VIs. Moreover, these satellite products cannot indicate primary
production precisely because they are related to potential rather than actual plant photosynthesis.
Thus, accurately assessing drought is difficult when these products are used.

Under natural illumination, a part of the unused absorbed photosynthetically active radiation
(APAR) is emitted by vegetation as fluorescence, and is referred to as solar-induced chlorophyll
fluorescence (SIF) [18]. Recent studies have successfully extracted a global time-series of SIF from
satellite observations [18-20]. SIF provides an alternative method for monitoring global vegetation
from space, because it is different from traditional reflectance-based vegetation indices. SIF is directly
related to the photosynthesis of vegetation and is likely to reflect rapid changes in the water stress of
a canopy [21,22]. The relationship between the gross primary production (GPP), APAR, and the light
use efficiency (LUE) is as follows:

GPP = APAR x LUE 1)

SIF = APAR x SIFyield @)

where SIFyielq is the SIF emitted per photon absorbed [23]. According to Equation (2), if the
ratio of SlFy;q and LUE remains relatively stable, which has been confirmed under moderate
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illumination [24], SIF will have a linear relationship with GPP [25]. A good consistency between
space-borne SIF and flux-measured GPP has been found in different biomes [26], and the SIF-driven
NPP model helps to improve the estimation of crop yield [27]. As with the LUE, SIFy;eq4 is sensitive to
environmental stresses, such as water or heat stress [28,29], so SIF is expected to respond rapidly to
agricultural drought and to directly indicate drought-induced reductions of vegetation production.
Lee et al. [28] used SIF extracted from the Greenhouse gases Observing Satellite (GOSAT) to evaluate the
drought-induced reduction of forest production in Amazonia. Yoshida ef al. [25] monitored the Russian
drought in 2010 using SIF extracted from the Global Ozone Monitoring Instrument 2 (GOME-2) and
found that drought-related declines in LUE and APAR produced losses in SIF and GPP. Sun et al. [30]
also reported positive relationships between the SIF and soil water content (SWC) anomalies in Texas
and the central Great Plains. However, the relationships between the widely used meteorological
drought indices and satellite measurements of SIF have not been examined. Whether the lag between
remotely-sensed vegetation parameters and precipitation also holds for SIF has not been confirmed.
In addition, the spatiotemporal patterns of drought monitored by drought indices, the NDVI, and SIF
have not been compared and discussed.

Our objective in this study was to investigate satellite-measured SIF responses to drought by
analyzing the relationship between various meteorological drought indices and SIF, and to examine
whether SIF is more sensitive to short-term drought conditions than are reflectance-based VlIs.
Our study examined the feasibility of directly using satellite-measured SIF to monitor and assess
drought. There was an extreme drought in the Great Plains of the USA in 2012, and we compared SIF
and ground-based GPP among dry and humid years. We used SIF to monitor the drought during the
summer of 2012, and applied a simple model to make an assessment of the drought-induced reduction
of GPP throughout the Great Plains. We compared drought patterns derived from meteorological
drought indices, SIF, and the NDVI, and discuss our results below.

2. Data

2.1. Study Area

The Great Plains lie in a climate zone that varies from semi-arid to semi-humid. The main
land-cover comprises grassland and cropland, which are sensitive to precipitation and soil moisture.
Figure 1 shows the three states used in this study: South Dakota (coded as 39), Nebraska (25),
and Kansas (14). Vegetation is continuously distributed in the region, making it appropriate for
large-scale drought studies and analyses (e.g., [6,13,16]). The land-cover types were obtained from
the MOderate-Resolution Imaging Spectroradiometer (MODIS) land-cover product (MCD12Q1, 2013).
Some of the results and analysis in this manuscript are based on the climate division (CD) defined by
the National Climate Data Center (NCDC).

2.2. Drought Indices

Drought indices have been used as proxies for meteorological drought conditions in studies of
drought using remote sensing [6,10,13,31]. We used two of the most widely used drought indices, SPI
and PDSI. The SPI was calculated by fitting historical precipitation to a Gamma probability distribution
function and transforming the Gamma distribution to a normal distribution, with a mean of zero and
standard deviation of one [8], which allowed precipitation to be determined over different historical
periods. The relationships between various different time scales of SPI and SIF (VIs) indicate the
vegetation response to water stress over different historical periods. To compare the sensitivity of
SIF and Vs to short-term drought conditions, this study used SPIs based on one month (SPI-1), two
months (SPI-2), and three months (SPI-3). The PDSI is based on a simple water balance model that uses
an algorithm to compare monthly precipitation to a value required to sustain a climatically appropriate
water balance for that month, considering the long-term record for precipitation and temperature.
The PDSI can synthetically evaluate the drought condition induced from both water and heat stress.
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The relationship between the PDSI and SIF indicates a change in photosynthesis under temperature
and water stress. Monthly SPI and PDSI for the CDs studied from 2008 to 2013 were obtained from the
NCDC website: http://gis.ncdc.noaa.gov/.
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Figure 1. Study area. The numbers in the bottom left subfigure are the codes for the three states, while
the numbers (from 1 to 9) in the main subfigure are the climate division (CD) codes. The CDs are
referred to as the combination of the state code and the CD code hereafter. Ne-1, Ne-3, Kon, and KFS
are the names of the flux sites used in this study and the red (cropland) and blue (grassland) circles are
their geographic positions.

2.3. GOME-2 SIF and MODIS Vs

The Fraunhofer lines, which are the result of absorption in the solar spectra through the
atmosphere, allow SIF to be measured from space. Joiner et al. [18] successfully extracted SIF around
740 nm (SIF-740) using the GOME-2 spectrometer onboard the MetOp-A satellite. The GOME-2 SIF-740
product had similar spatial patterns to the SIF extracted from the GOSAT, but was gridded with a
finer spatial resolution, and has been used to estimate global GPP and track phenology [23,26,27,29,32].
This study used the monthly averaged gridded SIF-740 data (level 3, v26) from 2008 to 2013, with a
spatial resolution of 0.5° latitude x 0.5° longitude.

In order to make a comparison between the drought sensitivity of SIF and reflectance-based
vegetation indices, we took NDVI and NDWI as references. NDVI and NDWI are most widely used as
indicators of vegetation vigor, and are calculated as:

NDVI = PNIR — PR )
OPNIR + PR
and B
NDWI = PNIR — PSWIR 4)

PNIR + PSWIR

where pr, on1r and pswir represent the reflectance of the red, near-infrared, and shortwave-infrared
bands, respectively. Monthly NDVI and NDWI were obtained from the MODIS Terra product,
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MOD13A3 (website: https:/ /ladsweb.nascom.nasa.gov /). Because Rhee et al. [10] found no significant
discrimination among the relationships between drought indices and NDWI using MODIS bands 5,
6, and 7 (as an SWIR band), we calculated NDWI using MODIS bands 2 and 7, as provided by the
MOD13A3 product.

2.4. Flux Tower GPP

We used the gap-filled 0.5-hourly GPP based on measurements made by an eddy covariance
instrument set on a flux tower. The flux data were obtained from the AmeriFlux website:
http:/ /ameriflux.lbl.gov/. We used all available flux sites in the focal area, with observations
covering the period from 2008 to 2013. Table 1 gives details of the four flux sites and Figure 1
shows their positions.

Table 1. Flux sites used in this study.

Site Name Longitude Latitude Vegetation Type Time Range References
KFS —95.19 39.06 grass 08-13 (09 missing) [33,34]
Kon —96.56 39.08 grass 08-13 [33,34]
Ne-1 —96.29 41.10 irrigated maize 10-12 (May to October) [35,36]
Ne-3 —96.44 41.18 rain-fed maize 10-12 (May to October) [35,36]

3. Methodology

We first examined the response of SIF to drought by analyzing the relationship between SIF and
several drought indices, and comparing the results of VIs and drought indices. As mentioned above,
meteorological drought indices fail to indicate real drought conditions for terrestrial plants when
they are irrigated, and therefore we selected CDs that were mainly covered by grass to study the SIF
response to drought. Relationships were obtained and discussed by month (from June to September)
according to the adjacent CDs over a six-year period. Although previous studies have shown that
the GOME-2 SIF correlates well with ground-based GPP, contrasts and analyses between humid and
drought years have rarely been made. Here we examined the seasonal cycle and the consistency of
GOME-2 SIF and flux-estimated GPP for both dry and humid years. Finally, we applied a simple
model using SIF and NDVI to monitor and assess agricultural drought, and made comparisons with
the spatiotemporal pattern of the meteorological drought monitored by drought indices. Figure 2
shows our technical methodology.
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Figure 2. A flow diagram showing the methodology and principles used in this study.
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4. Results

4.1. Response of SIF to Drought

Figures 3-5 show the correlation between GOME-2 SIF and the multi-time-scale SPI. Two adjacent
CDs with similar land cover were grouped together to increase the number of samples used in the
regression. We found significant positive correlations (p < 0.05) between SIF and all the drought
indices for almost every CD from June to September, but the correlation coefficients varied by month
and for different SPI time scales. The correlation coefficients between SIF and SPI-1 were no lower
than those between SIF and SPI-2 or SPI-3, but were even higher for CDs 1401 /1404 and 3901/3905,
indicating that SIF was influenced by the precipitation of the past one to three months. The correlation
coefficients between SIF and SPI-1 for CDs 1406/1409 and CDs 2501 /2502 were lower. These CDs
were near the Mississippi Basin, which has a moist soil [31], and the meteorological drought was eased
by ground water. There were no significant correlations between SIF and SPI-2 or SPI-3 in June for
CDs 3901/3905, which were located at a higher latitude. However, for CDs at a lower latitude (CDs
1401/1406 and 2501/2502), the correlation coefficients between SIF and SPI-3 in June were higher than
in other months. The phenology of plant growth at higher latitudes was later than that for plants at
lower latitudes [6]. Thus, SIF responded more significantly to precipitation in April, May, and June,
when the grass at lower latitudes started to grow, while grass at higher latitudes was not yet growing.
The correlation coefficients between SIF and SPI in September were generally lower than in other
months. Although drought impacts vegetation production throughout the growing season [37], the
sensitivity of plants to water stress varies according to their phenology [38,39]. Photosynthesis is most
intensive during the peak greenness season (July and August), but is weaker in the senescence period
(September). Thus SIF is more sensitive to drought in the peak growing months.
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Figure 3. Relationship between the one-month standard precipitation index (SPI) and Global Ozone
Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF). The “r” in the figure
represents the correlation coefficient, while “**” and “***” represent the significance levels p < 0.05 and

p <0.01, respectively.
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Figure 4. Relationship between the two-month standard precipitation index (SPI) and Global Ozone

Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF). The “r”

in the figure

represents the correlation coefficient, while “**” and “***” represent the significance levels p < 0.05 and

p <0.01, respectively.
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Figure 5. Relationship between the three-month standard precipitation index (SPI) and Global Ozone

Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF). The “r” in the figure

represents the correlation coefficient, while “**” and “***” represent the significance levels p < 0.05 and

p <0.01, respectively.

Figure 6 shows the correlation coefficients of the SPI and SIF, and the NDVI or NDWI during the
peak growing season (from June to August). Figure 6 shows that the correlation coefficients of the SPI-1
and SIF are higher than those of the SPI-1 and VIs, while the correlation coefficients between the SPI-3
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and SIF are lower than those between the SPI-1 and NDVI. The correlation coefficients between the
SPIs and NDVI or NDWI increased significantly when the time scale of the SPI was expanded, which
concurred with a previous study [6], indicating that VIs respond more strongly to precipitation over a
longer historical period. For SIF, the correlation coefficients increased slightly as the SPI time scale was
expanded in subfigures (a) and (b), while in subfigures (c) and (d), the strongest relationships were
found for SPI-2 and SPI-1, respectively. This means that the relationship between SIF and historical
precipitation remained relatively stable over the past one to three months, but that SIF responds more
strongly to more recent precipitation. It is reasonable to conclude that significant positive relationships
were found between GOME-2 SIF and multi-time-scale SPIs.
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Figure 6. Correlation coefficients of short-term standard precipitation indices (SPIs) and solar-induced
chlorophyll fluorescence (SIF), normalized difference vegetation index (NDVI), and the normalized
difference water index (NDWI) from June to August. Results for CD 1401, CD1404, CD2501, and
CD3901 are indicated by (a—d), respectively. The “n” in the subfigure represents the sample number of

"

the regression analysis while the “p” represents the lowest significance level of the linear relationship
between SIF and SPI.

Figure 7 shows the relationship between SIF and PDSI. The PDSI indicates the current drought
condition for vegetation considering both heat and water stress. We found a significant positive
relationship for all CDs in June, July, and August, while in September the relationship was weaker.
Water and heat stress both restrained the photosynthetic rate [40,41]. Briantais et al. [41] found an
increase in the minimum level of chlorophyll fluorescence when the heat stress was aggravated, which
was assumed to result from an increase in non-photosynthetically-used APAR. Recent ground and
aerial-based experiments have shown that SIF tends to decrease under drought stress [42], and the
drought-induced reduction of SIF is considered a result of the increase in heat dissipation [43] and
a decline in the LUE and APAR [25]. More comprehensively, A¢ et al. [44] reported that both water
and heat stress lead to a decline in chlorophyll fluorescence. In this study, the positive correlations
between GOME-2 SIF and PDSI indicate that plants emit weaker SIF under the combined stress of heat
and water.

The main conclusion that can be drawn from the correlations between SIF and the various drought
indices is that GOME-2 SIF responds significantly to drought over seasons and years, and positive
correlations between SIF and drought indices were found. This provides the basis for the use of
satellite-measured SIF to monitor large-scale droughts.
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Figure 7. Relationship between the Palmer drought severity index (PDSI) and Global Ozone
Monitoring Instrument 2 (GOME-2) solar-induced chlorophyll fluorescence (SIF). The “r” in the figure
represents the correlation coefficient, while “**” and “***” represent the significance levels p < 0.05 and
p < 0.01, respectively.

4.2. Consistency of SIF and GPP

To directly use SIF to assess the impact of drought on GPP, we examined the consistency of
flux-estimated GPP and GOME-2 SIF over long periods. Figure 8 shows the inter-annual and seasonal
patterns of GOME-2 SIF and GPP. For the four sites, the two variables displayed similar seasonal
patterns. For grassland, a significant increase in SIF and GPP occurred in May, but for cropland GPP
tended to increase in June, when SIF was already high. The significant difference in the spatial scale,
which is 40 x 40 km for GOME-2 SIF and dozens of meters for flux measurements, also introduced
uncertainties into the comparison of seasonal patterns for GPP and SIF. Although a slight difference
was apparent in the seasonal patterns, the GOME-2 SIF was consistent with GPP at seasonal and
inter-annual scales.

There was an extreme drought in the central Great Plains in 2012. The seasonal rainfall failed
to occur during May to August [45]. We found some anomalies in the patterns of GOME-2 SIF and
GPP in 2012. For sites without irrigation, i.e., KFS (Figure 8a), Kon (Figure 8b), and Ne-3 (Figure 8d),
the peak values of SIF and GPP in 2012 were significantly lower than those of humid years, taking
2010 as an example. Table 2 shows the statistical results of the decline in the percentage of peak
values for SIF and GPP in 2012 compared to 2010. For all three sites, SIF and GPP were reduced by
at least 20% in July, and by 10 to over 40% in August. A reduction in NPP in 2012 was also found by
Guan et al. [27]. when using GOME-2 SIF to estimate crop yield in the adjacent area, with the decline
considered to be the result of drought. The 2012 drought reached its peak severity in August and
then eased from September onward [45]. A recovery of SIF and GPP in September 2012 can be seen in
Figure 8. However, for the irrigated site, Ne-1 (Figure 8c), we found no significant anomalies in the
pattern of GPP, although there was an obvious reduction of SIF in July and August. The maize grown
at Ne-1 can be regarded as continuous and homogenous [36], but for GOME-2 SIF, the area of a single
pixel (approximately as big as 40 x 40 km) is likely to be contaminated with non-irrigated plants such
as grass or shrubs. Thus, the influence of the 2012 drought was found in the GOME-2 SIF pattern, but
not in the GPP pattern.
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Figure 8. Seasonal patterns of Global Ozone Monitoring Instrument 2 (GOME-2) solar-induced
chlorophyll fluorescence (SIF) and flux estimated gross primary production (GPP). Subfigures (a,b)
show the pattern for all 12 months of the year, while subfigures (c,d) show the pattern for six months
(from May to October), because flux observations start in May and end in October at Ne-1 and Ne-3.

Figure 8 shows that although the pattern of SIF may differ slightly from that of GPP, GOME-2 SIF
remained consistent with the GPP during the growing season for both drought and non-drought years.
Thus, it is reasonable to use GOME-2 SIF to assess the impact of drought on vegetation production.

Table 2. Percentage decline in SIF and GPP in July and August of 2012 compared to 2010.

IF —SIF
The percentage decline (P) of SIF (GPP) was calculated by the formula: P = StFa010 = STFa012

SIF2010
P Decli 201
Site Name ercentage Decline Compared to 2010
SIF (July) GPP (July) SIF (August) ~ GPP (August)
KFS 29 1 5 m
Kon 25 23 16 10

4.3. Monitoring and Assessing the 2012 Drought

Figure 9 shows the SPI-3 values of CDs located in the Great Plains from May to October.
A large-scale meteorological drought started in June, mainly in the southeastern and western areas of
the Great Plains. In July and August, the drought area expanded and was centered in the middle of
the Great Plains. In September, although the SPI-3 of some northern CDs remained low, the drought
in the southern CDs began to diminish. By October, large-scale drought conditions were no longer
experienced over the Great Plains. Figure 9 shows that the drought swept through the Great Plains in
the summer of 2012, starting in June, reaching a peak in July and August, and fading away gradually
from September to October. A more serious drought occurred in CDs at middle and low latitudes, and
both the grassland (western area) and the cropland (eastern area) in the Great Plains received scant
precipitation during the summer (see Figure 1 for land-cover information).
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Figure 9. The lack of precipitation over the Great Plains from May to October in 2012. The lower values
of the three-month standard precipitation index (SPI-3) (deeper red) indicate less precipitation.

Based on the significant response of SIF to drought and the consistency between SIF and GPP, we
employed a simple model using the difference of the SIF in 2012 and the SIF in a historically humid
year (here we used 2010) to monitor the plants’ responses to this drought, and to make an assessment
of the drought-induced reduction of GPP. Figure 10 shows the percentage decline of SIF from May to
October in 2012 compared to 2010. The spatial pattern of Figure 10 is similar to that of Figure 9, in
that the reduction of SIF was concentrated in the months with the poorest precipitation (from June to
September), and the most significant and widespread reduction in SIF occurred in July and August.
According to the results given in Section 4.2 and previous studies that considered the relationship
between GOME-2 SIF and GPP, the greater reduction of SIF compared to the corresponding historical
period was considered to indicate more reduction in the GPP. The production of the Great Plains in
2012 was significantly reduced during the growing season. In May, the reduction occurred mainly
in the south, over a very limited area. However, in June a large-scale reduction occurred over the
whole western area of the Great Plains, whereas production in the east remained at normal levels.
In July and August, a significant reduction occurred in most areas of the Great Plains. The western and
middle areas experienced the most severe reduction, while the reduction was relatively smaller in the
eastern area. From September to October, the large-scale reduction gradually diminished. Most of the
reduction was concentrated in the middle and western areas in June, July, and August. As mentioned
in Section 4.1, plants are most sensitive to water stress in the peak growing season. Thus, the impact of
drought is most significant in this period. Overall, the SIF not only successfully tracked the evolution
of the meteorological drought, but allowed us to assess the drought-induced reduction of GPP as well.
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Figure 10. The reduction of solar-induced chlorophyll fluorescence (SIF) from May to October in 2012.

Figure 11 is a map showing the reduction in the NDVI. From May to June, the spatiotemporal

pattern of the decline in NDVI values was quite similar to that of SIF, indicating that during this
season, the drought-induced reduction of SIF also applied to the NDVI. It has been reported that the
drought-induced reduction of SIF is related to the reduction of APAR (or the fraction of absorbed
photosynthetic active radiation, FAPAR), to which the NDVI is also sensitive. This may explain
the similarity between Figures 10 and 11. However, there are two major distinctions between the
two patterns:

First, Figure 10 is redder than Figure 11, which indicates that SIF declined more significantly during
the drought. The saturation effect of the NDVI has been widely discussed (e.g., [46,47]), while SIF
and APAR are reported to be better indicators for vegetation production [23]. Asner et al. [46].
indicated that an NDVI-driven NPP model failed to capture differences in vegetation production
caused by drought stress at the beginning and end of the dry season because of the NDVI
saturation effect. The results in Figures 10 and 11 suggest that SIF might be more appropriate
than NDVI to precisely indicate the agricultural drought level.

Second, the spatiotemporal reduction map for the NDVI was more similar to SPI-3, especially in
September and October. Ji and Peters [6] found that the most significant correlation between the
NDVI and SPI occurred for the SPI-3, while Figures 3—6 in this study show that SIF was more
sensitive to shorter-term SPIs. It has been demonstrated that the 2012 drought in the Great Plains
eased in September and October. In addition, the recovery of GPP in these two months (Figure 8)
also indicates an easing of the agricultural drought, although this is not obvious in Figure 11.

These two aspects of differences may help illustrate the advantage of SIF over NDVI to indicate

agricultural drought, for its timeliness and directness.
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Figure 11. The reduction of the normalized difference vegetation index (NDVI) from May to October
in 2012.

5. Discussions

5.1. Drought Sensitivity of SIF and Vs

The time-lag between reflectance based vegetation and drought indices and the precipitation
deficit is significant and has been widely discussed. Although the NDWI was previously found to
be more sensitive to drought than the NDVI [13] (a similar conclusion could not be reached in this
study), they both fail to indicate rapid changes in drought stress because they have no direct link
to photosynthetic functioning beyond their sensitivity to changes in canopy structure and pigment
concentration [17]. Alternatively, SIF is directly related to photosynthesis and water stress has been
detected by SIF in both ground (e.g., [48,49]) and aerial studies (e.g., [22,31]). Thus the decline of
photosynthesis due to drought stress is expected to be reflected by satellite-measured SIF.

The significant correlations between SIF and multi-time-scale SPIs (Figures 3-5) indicate that
GOME-2 SIF has good drought sensitivity. Table 3 shows the correlation coefficients between the
NDVI and the multi-time-scale SPIs during the peak growing season. For most cases SIF gave higher
correlations to SPI-1 and SPI-2 than the NDVI. Thus, regarding the result shown in Figure 6, SIF might
be more sensitive to short-term precipitation but less sensitive to long-term precipitation than VIs,
because the photosynthetic activity is mainly affected by the current water stress conditions while
the green biomass or the canopy absorption of the spectrum reflects the growing status, which is
influenced by water conditions all through the growing season. The more significant reduction of SIF
(Figure 10) than NDVI (Figure 11) indicates that SIF is more drought-sensitive because SIF reduction
results from the reduction of both FAPAR and SIFy;e1q [30] whereas the NDVI only reflects the FAPAR
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reduction. In addition, for some CDs (e.g., CDs 1406 & 1409 and CDs 2501 & 2502) during the peak
growing season, the correlation between SIF and the PDSI was more significant than that between
SIF and the SPI-1, indicating that SIF might be more sensitive to the combined stress from both high
temperatures and scant precipitation than it is to water stress alone. This can be explained by the fact
that both precipitation and temperature play critical roles in plant growth and heat-induced drought
can lead to further declines in GPP and yield. The sensitivity of SIF to short-term drought stress
provides an opportunity to employ SIF to monitor drought at an earlier stage. The similarity of the
spatial pattern and temporal variation shown in Figures 9 and 10 also shows that SIF can track the
evolutionary process of drought in a timely manner. Thus, satellite-measured SIF is a promising
remotely-sensed index for drought monitoring that directly indicates drought-induced restrictions
for photosynthesis.

Table 3. Correlation coefficients between SPIs and NDVI during the peak growing season.

Correlation June July August
Coefficients gpr1 gpr.2 SPI.3 SPI-1  SPI-2 SPI-3 SPI-1  SPI-2  SPI-3

1401 & 1404  0.682 0.736 0.928 0.687 0.865 0.862 0.477 0.699 0.807
1406 & 1409  0.690 0.710 0.695 0.805 0.888 0.867 0.450 0.814 0.898
2501 & 2502 0.622 0.724 0.781 0.687 0.659 0.762 0.743 0.744 0.711
3901 & 3905  0.494 0.545 0.552 0.440 0.518 0.636 0.829 0.806 0.811

5.2. Difference of the Spatial Pattern for Meteorological and Agricultural Drought

It is notable that in Figure 10, although serious meteorological drought occurred throughout
the Great Plains (Figure 9), there was less reduction in production in the eastern area than in the
western and middle areas. The eastern area of the Great Plains is widely covered by irrigated crops
and water storage is more abundant [50], and therefore the drought-induced reduction of production
was less extensive. Although Guan et al. [27] reported a drought-induced reduction of crop yield in U.S.
croplands in 2012, agricultural drought mainly occurred in grassland areas of the western Great Plains.
The impact of the drought on the GPP of crops was eased by irrigation and groundwater storage.
This indicates that meteorological drought causes more severe ecological damage in arid areas. Food
security for humans was ensured, but the situation for wildlife was uncertain. The NDVI also has
the potential to indicate agricultural drought, although the reduction of the NDVI in September and
October (Figure 11), which was not found for SIF, might be a false interpretation of drought conditions.
On the one hand, the ability of the NDVI to respond to short-term precipitation is limited, which may
lead to a lag in expressing the recovery of vegetation production. On the other hand, terrestrial plants,
especially at higher altitudes, have reached senescence in September and October. Thus, although the
NDVI declined significantly, the real agricultural drought, which emphasizes a decline in yield or GPP,
may be less serious.

6. Conclusions

Remote sensing vegetation indices and meteorological drought indices have been used to monitor
drought for decades. Solar-induced chlorophyll fluorescence provides an alternative observation of
terrestrial plants from space, and could monitor agricultural drought more quickly and effectively.
In this study, we first examined the response of SIF to drought by analyzing the relationships between
GOME-2 SIF and several drought indices, including one-, two-, and three-month SPIs, and the PDSI.
We found significant positive correlations between GOME-2 SIF and all drought indices, indicating that
SIF responds strongly and quickly to drought. SIF was more sensitive to short-term precipitation and
less sensitive to long-term precipitation than VIs (NDVI and NDWI). We compared the seasonal and
inter-annual patterns of GOME-2 SIF and flux-estimated GPP, and found good consistency between SIF
and GPP in both humid and drought years. The SIF and GPP declined synchronously in drought years
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during the peak growing season. Finally, we used a simple SIF-based model to monitor and assess the
drought in the Great Plains in the summer of 2012. We found that the SIF-based model successfully
tracked the spatial patterns and temporal vibration of SPI-3. We found more severe reduction of plant
production in grassland than in cropland areas. SIF declined more significantly than NDVI during the
peak growing season. Yet for senescence, during which time the reduction of NDVI still went on, the
reduction of SIF was eased.

We examined the response of SIF to drought over long time periods by analyzing GOME-2 SIF
and drought indices, and then used SIF to monitor and assess drought. This work highlighted the
benefits of using space-borne SIF to monitor and assess drought and better understand the relationship
between large-scale drought and its influence on vegetation production. Further research should focus
on the development and validation of a more advanced drought monitoring model, considering both
meteorological and agricultural factors.
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