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Abstract: Semi-natural grasslands with grazing management are characterized by high fine-scale
species richness and have a high conservation value. The fact that fine-scale surveys of grassland
plant communities are time-consuming may limit the spatial extent of ground-based diversity surveys.
Remote sensing tools have the potential to support field-based sampling and, if remote sensing data
are able to identify grassland sites that are likely to support relatively higher or lower levels of
species diversity, then field sampling efforts could be directed towards sites that are of potential
conservation interest. In the present study, we examined whether aerial hyperspectral (414–2501 nm)
remote sensing can be used to predict fine-scale plant species diversity (characterized as species
richness and Simpson’s diversity) in dry grazed grasslands. Vascular plant species were recorded
within 104 (4 m ˆ 4 m) plots on the island of Öland (Sweden) and each plot was characterized by a
245-waveband hyperspectral data set. We used two different modeling approaches to evaluate the
ability of the airborne spectral measurements to predict within-plot species diversity: (1) a spectral
response approach, based on reflectance information from (i) all wavebands, and (ii) a subset of
wavebands, analyzed with a partial least squares regression model, and (2) a spectral heterogeneity
approach, based on the mean distance to the spectral centroid in an ordinary least squares regression
model. Species diversity was successfully predicted by the spectral response approach (with an
error of ca. 20%) but not by the spectral heterogeneity approach. When using the spectral response
approach, iterative selection of important wavebands for the prediction of the diversity measures
simplified the model but did not improve its predictive quality (prediction error). Wavebands
sensitive to plant pigment content (400–700 nm) and to vegetation structural properties, such as
above-ground biomass (700–1300 nm), were identified as being the most important predictors of
plant species diversity. We conclude that hyperspectral remote sensing technology is able to identify
fine-scale variation in grassland diversity and has a potential use as a tool in surveys of grassland
plant diversity.

Keywords: arable-to-grassland succession; northern Europe; species richness; inverse Simpson’s
diversity index; HySpex spectrometer; partial least squares regression

1. Introduction

The threats to biodiversity from habitat loss, fragmentation and climate change continue to
escalate [1], and the mapping of habitats and the investigation of the processes that determine
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local patterns of biodiversity have become increasingly important tasks [2]. Extensively managed,
semi-natural grasslands are among the most diverse ecosystems in Europe, and both agricultural
intensification and the abandonment of grazing management have led to a decrease in the plant species
diversity in grassland habitats (cf. [1]). The conservation and monitoring of grazed semi-natural
grasslands has become a high priority within the European Union [3] and target areas for habitat
conservation need to be identified and prioritized in order to maintain and enhance biodiversity [4].
In the future, the conservation of species diversity in modern agricultural landscapes will require the
development of techniques for monitoring and predicting patterns of grassland species diversity: the
need for tools that are applicable at detailed spatial scales and over large areas has been identified as a
central problem [5].

While a range of edaphic, topographic, historical and stochastic processes may act as drivers of
species diversity within grazed semi-natural grasslands (e.g., [6,7]), many studies show that local plant
species richness is influenced by present-day variation in grazing intensity [8] and by the historical
continuity of grazing management (e.g., [9]). The activity of grazing animals influences the availability
of essential resources, such as light and soil nutrients (the resource availability hypothesis) [10]. The
activity of grazers may also lead to a greater spatial heterogeneity of resources, as a result of trampling
or patchy removal of above-ground biomass (the spatial heterogeneity hypothesis) [10]. Heterogeneous
habitats are expected to contain a greater diversity of potential niches for species rather than habitats
with more homogeneous conditions [11], and environmental heterogeneity has been shown to promote
fine-scale species diversity in grassland communities (e.g., [3,6]). Plant species richness (SR) is regarded
as an important ecosystem characteristic [2] and may also provide an indication of ecosystem health
and resilience [12]. Whereas data on the numbers of species (SR) recorded within a particular sample
or habitat are important in conservation planning, diversity indices that account for both the number
of species present and the abundance of each species (e.g., the inverse Simpson’s diversity index,
iSDI) are often preferred in ecological studies because it is assumed that the most dominant species
are likely to contribute most to processes within local communities [13]. Species diversity indices,
such as SR and iSDI, are usually estimated on the basis of standardized field sampling or ground
surveys, and the fact that detailed field inventories are time-consuming may limit the spatial extent
of diversity surveys. Remote sensing techniques have the potential to play a valuable supporting
role in the mapping of plant species diversity, and in the identification of habitat patches that may
be of conservation interest [14] if, for example, spectral data correlate with species diversity or with
vegetation properties that are associated with species diversity (cf. [15]).

Nagendra [16] identified three categories of methods for the assessment of species diversity
using remotely sensed data: (1) mapping individual organisms or communities; (2) mapping habitat
characteristics that are expected to be associated with species diversity; and (3) modeling-based
methods by which species diversity is predicted from the direct relationship between spectral data
and field-based measures of species diversity. Modeling-based approaches have been shown to be
successful in the prediction of fine-scale plant species diversity using remote sensing data acquired with
the help of hyperspectral sensors (sensors that collect data in many narrow and contiguous spectral
bands) within a range of different grassland habitats and geographic regions [17–19]. The direct
relationship between hyperspectral data and species diversity has also been examined using measures
of the spatial variation of remotely sensed data (hereafter referred to as spectral heterogeneity).
The spectral heterogeneity is expected to be associated with the environmental heterogeneity (the
spectral variation hypothesis (SVH); [20]), and can, thus, be used as a proxy for species diversity
(cf. [21]). Hyperspectral data have also been used, in combination with topographic data, for predicting
plant distributions in French and Swiss alpine grasslands [22]. To our knowledge, no studies have
modeled the direct relationship between hyperspectral data and plant species diversity in northern
European grasslands.

In the present study, we explore the ability of hyperspectral remote sensing technology to
characterize fine-scale plant species diversity in dry, grazed grassland habitats in an agricultural
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landscape on the Baltic island of Öland (Sweden). We compare the performance of two modeling-based
approaches to the prediction of species diversity in 4 m ˆ 4 m plots, using data from airborne HySpex
hyperspectral imagers (415–2345 nm). We ask the following questions: can hyperspectral data be used
to predict the SR and iSDI in dry grazed grasslands via the direct relationship between reflectance
data and field-based measures of plant species diversity using (1) an analysis of reflectance, based
on information from (i) all wavebands; and (ii) a subset of wavebands, analyzed with a partial least
squares regression model (hereafter referred to as the spectral response approach); and (2) an analysis
of spectral heterogeneity, based on the mean distance to the spectral centroid in an ordinary least
squares regression model (hereafter referred to as the spectral heterogeneity approach)? We also
investigate whether the possible relationship between hyperspectral data and species diversity is
influenced by environmental conditions (grazing continuity, nutrient and moisture status, field-layer
height, and soil- and litter-cover fractions).

2. Materials and Methods

2.1. Study Area and Site Selection

The study area is located in the southeast of Sweden on the Baltic island of Öland (Figure 1a;
centered on 56˝4014911N, 16˝3315811E) and covers approximately 22.5 km2. The bedrock consists mainly
of Ordovician limestone, and the area is characterized by a generally flat topography (cf. [9]). The
climate on the island is maritime (mean annual temperature: 7 ˝C, mean annual precipitation: 468 mm)
(cf. [9]). The present-day landscape consists of a mosaic of arable fields, deciduous forest, villages
and grazed grasslands; the majority of the grasslands are grazed by cattle at varying intensities.
The grassland sites in the landscape represent different stages of succession—ranging from young
grasslands on recently abandoned arable fields to grassland sites with a history of grazing of more
than 280 years.
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Figure 1. (a) The location of the study area on the Baltic Island of Öland, Sweden; (b) the distribution
of grassland sites included in the present study (n = 52); (c) an example of the distribution of field plots
within some of the grassland sites.

A total of 299 grassland sites were identified within the study area, with the help of the most recent
(2005) land-use map (B.C. Schmid, unpublished data) and field visits. An overlay analysis of land-use
maps from different time periods was used to assign each of the grassland sites into one of three age
classes within the arable-to-grassland succession (young grasslands: 5–14 years, intermediate-aged



Remote Sens. 2016, 8, 133 4 of 19

grasslands: 15–49 years, and old grasslands: ě50 years of grazing management). The overlay analysis
was based on land-use maps from 2005 (B.C. Schmid, unpublished data), 1994, 1959 and 1730 (cf. [9]).
The land-use map from 2005 was developed from a digital color infrared aerial orthophoto (0.5 m pixel
size) geometrically corrected with the help of a digital terrain model. The land-use maps from 1994 to
1959 were developed from aerial photos (1994: color infrared, 1959: black and white) at the scale of
1: 30,000. The land-use map from 1730 was based on a set of large-scale (1: 4000), high-quality survey
maps from the early 18th century (cf. [9]).

Within each of the 299 sites, we randomly positioned two coordinate points in open (i.e., not
covered by shrubs or trees) grassland vegetation with the constraints that they had to be at least 25 m
apart, at least 13.5 m from the site boundary (to minimize edge effects in the vegetation), and at least
13.5 m from shrubs or trees that were higher than 50 cm (to minimize shading effects in the vegetation).
A total of 239 out of the 299 grassland sites could accommodate these constraints. A hand-held
differential global positioning system (GPS) receiver (Topcon GRS-1 GNSS, equipped with a PG-A1
external antenna; Topcon Corporation, Japan) was used to log the ground coordinates of the points.

Sixty sites (20 young, 20 intermediate, and 20 old) were randomly selected from the 239 sites.
Within these 60 sites, a bioassay approach (cf. [23]) based on indicator species, such as Sesleria caerulea
and Molinia caerulea, was used to identify sites with “dry” grassland vegetation, and to exclude moist
grassland vegetation. A total of 52 sites (17 young, 18 intermediate, and 17 old) out of the 60 sites were
characterized as dry grassland vegetation; these sites were used for the field-based vegetation and
remote sensing sampling (Figure 1b).

2.2. Field Sampling

2.2.1. Vascular Plant Species Richness and Diversity

The fieldwork was carried out between 15 May and 15 July 2011. A 4 m ˆ 4 m plot (divided into
a grid of 16 sub-plots, each 1 m ˆ 1 m), was centered over each of the two coordinate points, within
each of the 52 chosen sites (Figure 1c). The presence of all non-woody vascular plants was recorded
within each 1 m ˆ 1 m sub-plot. The within-plot species diversity was characterized: (a) in terms of
species richness (SR), calculated as the total number of vascular plant species present in a 4 m ˆ 4 m
plot and (b) in terms of the inverse Simpson diversity index (iSDI)

iSDI “ 1{
S

ÿ

i“1

p2
i (1)

where S is the number of species in the plot and pi is the proportion of the ith species in a plot [24].
The inverse Simpson diversity index assigns a lower weight to rare species, thus emphasizing the
most abundant species in the vegetation canopy [25]. Because the inverse Simpson diversity index
characterizes the dominance structure of plant communities (which, in its turn, contributes to the
spectral signal of vegetation canopies), it may be particularly informative in remote sensing studies [17].
From a statistical point of view, the number of species within a specific area represents discontinuous
data, and thus has a Poisson or negative-binomial distribution. Because the partial least squares
regression (PLSR) and ordinary least squares regression (OLSR) analyses used in the present study
(Section 2.4) assume a normal distribution, we ln-transformed the SR values before analysis, so that
the ln(SR) data approximate to a normal distribution. Ln(SR) and iSDI were calculated using the vegan
package [26] in the R programming environment [27].

2.2.2. Environmental Variables

Each of the 4 m ˆ 4 m plots was assigned values for the following environmental variables:
grazing continuity, nutrient and moisture status, field-layer height, and soil- and litter-cover fractions
(Table A1). Soil nutrient and moisture status were assessed indirectly, with the help of Ellenberg
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indicator values for nutrient (Ellenberg N) and moisture (Ellenberg M) availability [28]. For each of the
sampled plant species, values for Ellenberg N and M were extracted from the JUICE database [29].
A community-weighted mean value (CWM) [30] was calculated for N and M within each plot:

CWM pxq “
ÿ

i

pi ˆ xi (2)

where pi is the relative frequency of the ith species and xi is the Ellenberg indicator value of the ith
species. The CWM for Ellenberg N (Ellenberg mN) and Ellenberg M (Ellenberg mM) were calculated
using the FD package [31] in the R programming environment [27]. Field-layer height (cm) was
estimated as the mean vegetation height at 100 points in the 1 m ˆ 1 m sub-plot in the south-west
corner of each 4 m ˆ 4 m plot. Mean percentage covers of soil and litter fractions, respectively, for
each of the 4 m ˆ 4 m plots were based on the cover values (visually estimated by experienced field
ecologists) within each of the 16 1 m ˆ 1 m sub-plots.

2.3. Remote Sensing Data

2.3.1. Spectral Data Collection

Hyperspectral data were acquired by the company Terratec AS, Lysaker, at around solar noon on
9 July 2011. Two airborne HySpex hyperspectral imagers (Norsk Elektro Optikk, Lörenskog, Norway),
VNIR-1600 and SWIR-320m-e, were used in the push broom scanning mode (Table A2). The flight
altitude was approximately 1500 m and the weather conditions were cloud-free. A total of 25 flight
lines (conducted either from north to south or from south to north, to minimize illumination effects)
were recorded.

2.3.2. Preparation of Spectral Data

Wavebands between 962–985 nm, 1322–1496 nm, 1803–2050 nm, and 2351–2501 nm were deleted
from the hyperspectral data set because of strong atmospheric interference or detector overlap, leaving
245 wavebands that were used for further analysis. ATCOR-4 software [32], which is based on the
radiative transfer model MODTRAN 5 [33], was used for atmospheric and topographic corrections
of the hyperspectral data. The atmospheric correction was carried out using the settings for rugged
terrain, the desert aerosol model, a water vapor column of 1.0 g¨m´2, visibility of 28.4 km, and an
ozone concentration of 330 Dopson units. The radiance was converted into reflectance using the
Fontenla-2011 solar irradiance spectrum [34]. The images were orthorectified with an accuracy of
approximately 0.3 m, by the data providers, using the PARGE software [35]. To match the spatial
resolution of the two HySpex sensors, the spectral data originating from the VNIR-1600 spectrometer
were resampled to a spatial resolution of 1 m, using a triangulated nearest neighborhood method, and
a spectral resolution of 6 nm, using locally weighted scatterplot smoothing (LOESS) interpolation [36].
High frequency noise in the spectral data was reduced by using a cubic Savitzky–Golay filter [37] with
a kernel size of 21 nm. The resampling was done using the signal [38] and raster packages [39] and the
filtering was done using hyperSpec package [40] in the R statistical environment [27].

2.3.3. Calculating Mean Spectral Reflectance and Spectral Heterogeneity

Vector polygons of the grassland sites were overlaid onto the hyperspectral imagery, and each
individual 4 m ˆ 4 m field plot was located on the HySpex image using the GPS coordinates taken
during the field work. Although we used a GPS receiver with a high accuracy, GPS errors may exist. To
account for possible positional uncertainties, a pixel window of 8 ˆ 8 pixels (8 m ˆ 8 m) was centered
on each of the 4 m ˆ 4 m field plots and the reflectance of each pixel (n = 64) within each pixel window
from the 245 individual wavebands was extracted.

Prior to the spectral response analyses, the reflectance was log10(1/Rλ) transformed (where
Rλ is the reflectance at each waveband). The mean transformed reflectance of each pixel window
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was obtained by calculating the mean spectral value of the pixels (n = 64) for each of the 245
individual HySpex wavebands. Log10(1/Rλ) transformed reflectance shows a near-linear relationship
with the concentration of absorbing land surface components [41], and may provide important
information on the environmental and ecological processes underlying any potential associations
between hyperspectral data and plant species diversity [42].

Several different methods have been used to compute spectral heterogeneity in remotely
sensed data. For example, Viedma [43] used methods based on spectral texture data, while
Heumann [44] applied an approach using measures of statistical dispersion to represent spectral
diversity. Warren [45] compared two categories of spectral heterogeneity metrics—one category
calculated with the help of principle component analysis (PCA) and one category developed from
semivariogram descriptors—and found that both types of metrics performed equally well as predictors
of species diversity. Oldeland [17] and Rocchini [46] also used spectral heterogeneity calculated with
the help of PCA to model species diversity. Following Oldeland [17] and Rocchini [46], we applied
a PCA-based approach to calculate spectral heterogeneity. The PCA was conducted on the spectral
data set (n = 245) within each pixel window consisting of 64 pixels, using untransformed reflectance
data. The spectral heterogeneity was calculated as the mean of the Euclidean distances between
each of the 64 pixels and the centroid of the pixel-cloud within the PCA space using the first five
principal components, which summarized at least 97% of the total spectral variation. We predicted that
increasing within-plot environmental heterogeneity should be accompanied by an increasing mean
distance to the spectral centroid (see [17,46]).

2.4. Data Analysis

The 104 plots were divided into a calibration subset and a validation subset by randomly assigning
the two plots from each of the 52 grassland sites to one or other of the two subsets (Figure 1c). Two
plots (one each from the calibration and validation subset) that had an unusually low reflectance in
the spectral range 900–1300 nm were excluded from further analyses. The exclusion of the two plots
resulted in a total of 102 plots (51 plots in each subset) used for the data analysis (Figure 2).

Figure 2. Schematic overview of the workflow used in the present study.
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The Pearson correlation between the species diversity indices (ln(SR) and iSDI) and the mean
spectral reflectance of each pixel window for individual wavebands were analyzed for all plots (n = 102).
In the spectral response approach, the relationships between hyperspectral data and field-observed
ln(SR) and iSDI were investigated for the plots in the calibration subset, using “leave-one-out”
cross-validated PLSR of (i) the full set of 245 (Model 1) and (ii) a subset (Model 2) of HySpex wavebands
(Figure 2). Earlier studies showed that the exclusion of wavebands that provide little information
related to the response variable improves the PLSR-based prediction of vegetation variables [47].
We used iterative variable deletion to identify the wavebands used in Model 2 (i.e., the bands
most important for prediction of species diversity). Marten’s uncertainty test [48] and the variable
importance in projection (VIP) values [49] were calculated for each waveband to identify the least
important wavebands (variables) within each iterative step. Variables that were non-significant and had
a VIP value lower than 0.8 were deleted before recalibrating the model. This procedure was repeated
until none of the remaining variables could be deleted. The relationships between hyperspectral
data and field-observed species diversity were also examined using spectral heterogeneity and OLSR
analysis (Model 3) (Figure 2). The validation subset was used to evaluate the regression models of the
calibration subset.

2.4.1. Partial Least Squares Regression Analysis (PLSR)—Models 1 and 2 (Spectral
Response Approach)

A PLSR analysis [49] between each of the two diversity indices (dependent variables) and the
average spectral reflectances (explanatory variables) was carried out. PLSR is a method of multivariate
analysis that is suitable for the analysis of data sets that include a larger number of (highly correlated)
explanatory variables than samples [50]—which is often the case in remote sensing–based species
diversity studies. Several studies have shown that the PLSR method outperforms other methods
(e.g., OLSR) when analyzing highly co-linear hyperspectral remote sensing data sets [51]. The PLSR
algorithm attempts to find latent variables (LVs) that summarize the variation in the explanatory
matrix and, at the same time, maximize the covariance with the dependent variable (see [52]).

The optimal number of LVs needs to be identified in order to avoid model over-fitting in PLSR
analyses, but there is, at present, no consensus about the best method to use [53]. The number of LVs is
usually determined by a cross-validation procedure, which is used to find the lowest cross-validated
root mean square error (RMSECV) of the PLSR model. It has been shown that the use of the global
minimum of the RMSECV can lead to erroneous and over-fitted prediction models [53]. To avoid
over-fitting, the first local minimum of the RMSECV is usually used [54]. However, this approach may
lead to model under-fitting, if the minimum error results in a negative coefficient of determination for
the cross-validated predicted dependent variables (R2

CV). Negative values of R2
CV indicate that the

model residuals exceed those obtained from the mean observation as predictors. We used the number
of LVs which resulted in the first local minimum absolute RMSECV (aRMSECV) and a positive R2

CV

value. To allow comparison between Models 1 and 2, we normalized the aRMSECV (nRMSECV, %)
values by the range of the field-observed values for ln(SR) and iSDI of the calibration subset.

The PLSR was run in two ways: (i) using all wavebands from the full reflectance spectrum (n = 245;
Model 1); and (ii) using the subset of spectral wavebands that were most important for the prediction
of species diversity (Model 2). Cross-validation was carried out using “leave-one-out” cross-validation,
with each plot being excluded in turn, and the calibration model based on the remaining plots used
to predict the excluded plot. Both the models (Model 1 and Model 2) for each of the two species
diversity indices were validated with the plots from the independent validation subset. The root mean
square error of the predicted values (absolute value: aRMSEP) and the squared correlation coefficient
(R2

P) between the field-observed and predicted ln(SR) and iSDI for the validation subset were used
to evaluate the predictive qualities of the models. The aRMSEP was normalized (nRMSEP, %) by the
range of the field-observed ln(SR) and iSDI values of the validation subset. A good validation result is
characterized by low values for both aRMSEP and nRMSEP and high values for R2

P, indicating that the
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hyperspectral data have a good ability to predict the species diversity indices. To assess the robustness
of the predictive performance of the calibrated PLSR models, the validation subset was bootstrapped
1000 times (with replacement), building 1000 “new” validation subsets. The calibration model was
applied to each of the 1000 validation subsets and the nRMSEP (%) and R2

P between the field-observed
and predicted ln(SR) and iSDI were calculated for each validation subset. Mean nRMSEP (%) and R2

P

values, and 95% confidence levels were then calculated for the 1000 validation subsets.

2.4.2. Residual Analysis of Models 1 and 2 (Spectral Response Approach)

The residuals of Models 1 and 2 were separately correlated with the environmental variables
Ellenberg mN and mM, field-layer height, bare ground and litter-cover fractions (Table A1), to examine
whether the relationships between hyperspectral data and species diversity was influenced by the
environmental variables characterizing the plots. The significance of the correlations was tested using
a two-sided Student’s t-test. Because multiple tests may result in an increased risk of Type I error,
the significance values of the correlations were assessed after Bonferroni correction. To investigate
whether the relationships between hyperspectral data and species diversity were influenced by the
age-class of plots (young grasslands: 5–14 years, intermediate-aged grasslands: 15–49 years, and old
grasslands with ě50 years of grazing continuity), we examined if there were significant differences
between the residuals associated with each of the three grassland age-classes. Because the residuals
were not normally distributed we used the Kruskal-Wallis test [55]. All analyses were conducted in
the R statistical environment [27], using the pls package [54].

2.4.3. Ordinary Least Squares Regression Analysis (OLSR) and Reduced Major Axis
Regression—Model 3 (Spectral Heterogeneity Approach)

Previous studies successfully applied OLSR to examine the relationship between spectral
heterogeneity and plant species diversity [17]. In the present study, separate OLSR analyses of
the relationships between each of the species diversity indices (dependent variables) and the spectral
heterogeneity (explanatory variable) were carried out on the calibration subset (Model 3) (Figure 2).
Model 3 was tested on the validation subset using a reduced major axis (RMA) regression. Curran [56]
showed that RMA is an appropriate method for the remote sensing–based prediction of grassland
variables, in cases where there is no available information on measurement error. The nRMSEP and
R2

P were used to evaluate the performance of the validation.

3. Results

The summary statistics for the dependent variables for the plots within each grassland age-class
(young, intermediate-aged, and old grasslands) are presented in in Table A3. The Pearson’s correlation
coefficients between the ln(SR) and the iSDI were significant for both the calibration (r = 0.98, p < 0.001)
and validation subsets (r = 0.97, p < 0.001). There were significant negative correlations (p < 0.05)
between the reflectance associated with wavebands in the near-infrared (758–1316 nm) (NIR) part
of the electromagnetic spectrum and the ln(SR) (Figure 3). There were positive but non-significant
correlations between the reflectance at wavebands in the blue (415–499 nm) and red (602–752 nm) parts
of the spectrum and the dependent variables, and (non-significant) negative correlations between the
reflectance at wavebands in the green (505–595 nm) and SWIR (1502–2345 nm) parts of the spectrum
and the dependent variables (Figure 3).
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Figure 3. Pearson’s correlation coefficients (r) between single wavebands and the species richness
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3.1. Spectral Reflectance—Models 1 and 2 (Spectral Response Approach)

3.1.1. PLSR Using the Full Set of 245 HySpex Wavebands—Model 1

The inclusion of seven LVs gave the first local minimum absolute aRMSECV in the PLSR model
developed from the calibration subset (Model 1; Figure 2), for both the ln(SR) (aRMSECV = 0.34) and
the iSDI (aRMSECV = 8.87) (Table 1).

Table 1. Summary of the ability of PLSR models, based on spectral reflectance using the full set of
wavebands (Model 1) or a subset of wavebands (Model 2), to predict the species richness (ln(SR)) and
the inverse Simpson’s diversity index (iSDI). The cross-validated error of the calibration models (n = 51)
is indicated by the absolute (aRMSECV) and normalized RMSECV (nRMSECV, %). LV indicates the
number of latent variables used in the PLSR models. The absolute and normalized prediction errors
(aRMSEP, nRMSEP (%)) indicate the ability of the model to predict the observed species diversity
measure. The squared correlation (R2

P) indicates the fit between the predicted and observed diversity
values from the validation subset (n = 51).

aRMSECV nRMSECV LV aRMSEP nRMSEP R2
P

No. of
Wavebands

ln(SR)
Model 1 0.34 21% 7 0.29 19% 0.43 245
Model 2 0.37 23% 5 0.34 22% 0.19 25

iSDI
Model 1 8.87 23% 7 6.77 20% 0.45 245
Model 2 9.29 25% 4 7.07 21% 0.40 35

The correlations between the field-observed and predicted measures of species diversity were
significant for both the ln(SR) (R2

P = 0.43, p < 0.001) and the iSDI (R2
P = 0.45, p < 0.001) (Table 1,

Figure 4a,b). The nRMSEP values were approximately 20% for both the ln(SR) (nRMSEP = 19%)
and the iSDI (nRMSEP = 20%) (Table 1, Figure 4a,b). Out of the 245 wavebands used in Model 1,
25 bands were most important for the prediction of the ln(SR) (Figure 5a, Table A4), while 35 bands
were most important for the prediction of the iSDI (Figure 5b, Table A4). The relationships between
the residuals associated with the prediction of both dependent variables (using Model 1) and the
values for individual environmental variables (Ellenberg mN and mM, field-layer height, and soil-
and litter-cover fractions) were non-significant (Figure 6a,b). There were significant (p < 0.05), positive
associations between the residuals (in the prediction of both the ln(SR) and the iSDI) and the grassland
age: the shorter the grazing continuity of the grassland, the more the values for ln(SR) and iSDI were
overestimated (negative residuals) (Figure 6c,d).
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Figure 4. Correlations between field-observed and predicted (left column) species richness (ln(SR))
and (right column) inverse Simpson’s diversity (iSDI) for the validation subset (n = 51). (a,b) show the
field-observed versus the predicted correlations for the PLSR model based on the full set of wavebands
(Model 1) (n = 245); (c,d) show the field-observed versus the predicted correlations for the model based
on a subset of wavebands (Model 2) (n = 25 (for ln(SR)) or 35 (for iSDI)). The normalized prediction error
(nRMSEP, %) indicates the quality of the model in predicting the observed species diversity measure,
and the squared correlation (R2

P) indicates the fit between the predicted and observed diversity value.
The age-class of the grassland plots is also displayed (key: # young, ∆ intermediate, and + old). Black
lines indicate the relationship between the predicted and the measured values.
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(iSDI) in grassland plots using the calibration subset (n = 51). The black line represents the mean
spectral reflectance curve for grassland plots in the whole data set (n = 102).
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and Model 2 (light). 
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21%) (Table 1, Figure 4c,d). In the Model 2 approach, there were significant negative correlations (p < 
0.05) between the residuals (associated with the prediction of ln(SR) and iSDI) and the Ellenberg mN: 
the higher the Ellenberg mN, the more the values for ln(SR) and iSDI were overestimated (negative 
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Figure 6. (a,b) Pearson’s correlation coefficients of the residuals of the PLSR models’ (Model 1 = dark;
Model 2 = light) predictions of (a) the species richness (ln(SR)) and (b) the inverse Simpson’s diversity
index (iSDI) with different environmental variables (moisture availability, Ellenberg mM; nutrient
availability, Ellenberg mN; field-layer height, FLH; cover of bare ground, Bare ground; and cover of
litter, Litter); (c,d) Distribution of the residuals of (c) the species richness (ln(SR)) and (d) the inverse
Simpson’s diversity index (iSDI), within the three grassland age-classes, predicted by Model 1 (dark)
and Model 2 (light).

3.1.2. PLSR Using the Subset of HySpex Wavebands—Model 2

Using the subsets of HySpex wavebands (Model 2; Figure 2), the inclusion of five LVs gave the
first local minimum aRMSECV in the PLSR model for ln(SR) (aRMSECV = 0.37) (Table 1). For the
prediction of iSDI, the inclusion of four LVs gave the first minimum aRMSECV (aRMSECV = 9.29)
(Table 1). The correlations between the field-observed and predicted measures of plant diversity
for the validation subset were significant for ln(SR) (R2

P = 0.19, p < 0.001) and iSDI (R2
P = 0.40,

p < 0.001) (Table 1, Figure 4c,d). The nRMSEP values were above 20% for ln(SR) (nRMSEP = 22%)
and iSDI (nRMSEP = 21%) (Table 1, Figure 4c,d). In the Model 2 approach, there were significant
negative correlations (p < 0.05) between the residuals (associated with the prediction of ln(SR) and
iSDI) and the Ellenberg mN: the higher the Ellenberg mN, the more the values for ln(SR) and iSDI were
overestimated (negative residuals) (Figure 6a,b). There were also significant (p < 0.05) associations
between the residuals (in the prediction of ln(SR) and iSDI) and the grassland age: the shorter the
grazing continuity of the grassland, the more the values for ln(SR) and iSDI were overestimated
(negative residuals) (Figure 6c,d).

3.1.3. The Robustness of the Prediction Models (Models 1 and 2)

The bootstrapping procedure revealed that the mean R2
P were higher and the mean nRMSEP

were lower when using the PLSR-based models developed from the full set of bands (Model 1) than
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when using the models developed from the subset of bands (Model 2) to predict both the dependent
variables (Table 2).

Table 2. Bootstrap results showing the ability of the PLSR models based on the spectral reflectance
in the full set of wavebands (Model 1) and the subset of wavebands (Model 2) to predict the species
richness (ln(SR)) and the inverse Simpson’s diversity index (iSDI). Mean R2

P and mean nRMSEP (%)
are the average squared correlation coefficients and normalized prediction errors for the validation
subset, based on 1000 bootstraps. The 95% confidence limit indicates the upper and lower confidence
intervals of the mean values.

Mean R2
P 95% Confidence Limit Mean nRMSEP 95% Confidence Limit

ln(SR)
Model 1 0.39 ˘0.010 20% ˘0.1%
Model 2 0.17 ˘0.009 23% ˘0.1%

iSDI
Model 1 0.43 ˘0.008 21% ˘0.1%
Model 2 0.38 ˘0.007 22% ˘0.1%

3.2. Linear Regression Based on Spectral Heterogeneity—Model 3 (Spectral Heterogeneity Approach)

When the regression models (Model 3; Figure 2) developed from the calibration subset using
the spectral heterogeneity approach were applied to the validation subsets, the results showed
non-significant relationships between both the field-observed and predicted SR (R2 = 0.06, p > 0.05)
and the field-observed and predicted iSDI (R2 = 0.04, p > 0.05). The nRMSEP values were above 30%
for both ln(SR) (nRMSEP = 31%) and iSDI (nRMSEP = 35%).

4. Discussion

4.1. The Relationship between Hyperspectral Reflectance Measurements and Plant Species Diversity (Spectral
Response Approach—Models 1 and 2)

The spectral response approach, using both Model 1 and Model 2, resulted in good predictions,
with a relative error (nRMSEP) of approximately 20% of both ln(SR) and iSDI (Figure 4, Tables 1 and 2).
PLSR-based approaches have been used in the past to predict plant species diversity in grassland
ecosystems with the help of hyperspectral remote sensing [18,19]. The study by Fava [18] used
ground-based hyperspectral measurements and PLSR to assess plant species diversity (species richness
and Shannon diversity) in alpine meadow systems and showed a somewhat lower average error (<15%)
for the plant diversity estimates than was found in the present study. The relatively higher error values
in the present study may reflect the fact that airborne spectrometric measurements are affected by
noise caused by, for example, effects of atmospheric scattering. Carter [19] used airborne spectrometric
measurements (400–2500 nm) to estimate species richness in mesic grasslands, and revealed somewhat
weaker relationships between the spectral data and species diversity than those in the present study.
The analyses in Carter [19] were based on simple linear regression using individual wavebands and
band ratios, whereas our analyses used a PLSR-based approach involving multiple bands. The use of a
limited number of wavebands may result in poorer relationships between remote sensing data and
vegetation parameters compared with the use of many spectral bands. Although much information in
a hyperspectral data set may be redundant, important spectral information may nevertheless be lost
when only a small number of wavebands are used to predict vegetation variables [57].

4.2. The Most Important Hyperspectral Wavebands for Predicting Plant Species Diversity Using the Spectral
Response Approach (Models 1 and 2)

Previous studies revealed that the soils of young grasslands with a short history of grazing
management often contain high levels of nitrogen and phosphorus as a result of their recent use as
fertilized arable fields [58]. Over time, the continuous removal of above-ground biomass by grazing
animals leads to a progressive decrease in soil nutrient levels [58]. Nutrient-poor conditions promote
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the maintenance and establishment of plant species with a low competitive ability. Grasslands with a
long grazing continuity, such as the old grasslands in our study (Table A3), are often associated with
a lower above-ground biomass and a higher plant species diversity than young grasslands [59,60].
An increase in the amount of above-ground biomass is often accompanied by an increase in the
reflectance in the NIR region of the spectrum because of increased multiple scattering within the
canopy (e.g., [61]). Relationships between species richness and above-ground biomass have been
extensively studied (e.g., [12]) and have increasingly been used to interpret the relationship between
reflectance and species diversity measures in grasslands (e.g., [18,62]. For example, [18] explained the
relationship between reflectance in the NIR wavebands and species richness in terms of a negative
relationship between biomass and plant diversity. In the present study, the identification of key
wavebands for predicting species diversity in the PLSR models 1 and 2 showed that several NIR
wavebands were important for the assessment of species diversity (Figure 5). Significant negative
correlations between reflectance and diversity in the NIR spectral region (Figure 3) indicate that the
species diversity increased as the above-ground biomass decreased. Other studies have shown that
the visible wavebands may also contain important information for the assessment of plant species
richness (e.g., [18]). The relationships we identified between wavebands in the visible and SWIR
parts of the spectrum and the species diversity are in line with those findings (Figure 5). The positive
associations that we observed between reflectance and diversity in the chlorophyll absorption regions
of the spectrum (blue and red) and the negative associations with the green and the water absorption
parts (SWIR bands) of the spectrum (Figure 3) suggest that the species-poor plots were characterized
by higher levels of plant chlorophyll content and vegetation water content than the species-rich plots.

4.3. Residual Analysis of Models 1 and 2 (Spectral Response Approach)

The lack of significant relationships between the residuals of Model 1 and the environmental
variables indicates that none of these variables had an effect on the species diversity that was not
predicted by the full set of hyperspectral wavebands (Figure 6a,b). In contrast, the significant
relationships between the residuals for Model 2 and nutrient status suggest that the unexplained
variance in the models based on a subset of wavebands may be related to within-plot soil nutrient
availability (Figure 6a,b). In the present study, the use of a subset of wavebands (Model 2) may have
resulted in the loss of spectral information on the variation in nutrient status, which may, at least partly,
explain the poorer prediction of species diversity in Model 2 compared with that for Model 1 (Figure 4,
Tables 1 and 2).

For both Model 1 and Model 2, the residuals differed significantly between the age-classes,
indicating that the unexplained variance was related to the grazing continuity within the plots
(Figure 6c,d). Thus, in Model 1 and Model 2, the grazing continuity had effects on the species diversity
that were not predicted from the spectral data. Although young grasslands are often associated with
higher amounts of above-ground biomass and lower species diversity than old grasslands [60], the
current grazing intensity is expected to influence the amount of biomass within the grasslands. Some of
the young grassland sites may be subject to relatively high grazing intensity, and thus be characterized
by a relatively low amount of above-ground biomass, which may explain the overestimation of the
predicted species diversity in some of those plots (Figure 4). The overestimation of ln(SR) in low ln(SR)
plots tended to be more accentuated in the Model 2 approach than in the Model 1 approach (Figure 4a,c).
The full set of wavebands may include individual bands that were important for the prediction of
particular (heavily grazed) low ln(SR) plots—and these bands were excluded in the backward deletion
procedure which may explain the poorer R2 value in Model 2 than in Model 1. A higher number of
wavebands were retained in Model 2 for the iSDI response variable than for the ln(SR) variable, and
there was little difference between the Model 1 and Model 2 results for iSDI (Figure 4b,d). Although
the number of LVs may not always be a good measure of model complexity [63], the lower number of
LVs in the Model 2 analyses (Table 1) indicate that the Model 2 analyses were more parsimonious than
the Model 1 analyses.
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4.4. The Relationship between Spectral Heterogeneity and Plant Species Diversity (Spectral Heterogeneity
Approach—Model 3)

Relationships between spectral heterogeneity and measures of species diversity have been
investigated in recent studies [17,46]. However, these studies were carried out at relatively coarse
spatial scales (sampling areas ě100 m2) [17,46]. Large sampling areas may be characterized by a
greater variability in the environmental conditions than smaller areas (cf. [64]), and the strength
of the relationship between spectral heterogeneity and plant species diversity has been shown to
increase with the size of the spectral and vegetation sampling areas [43]. In the present study, spectral
heterogeneity failed to predict species diversity within our comparatively small (4 mˆ 4 m) vegetation
plots. Whereas our study was based on a pixel size of 1 m, previous studies of patterns of plant species
co-existence within the same study area revealed heterogeneity in the plant community composition
at a scale of decimeters rather than meters [65]. The failure to detect a significant relationship between
spectral variability and species diversity in our study is, therefore, likely to reflect the fact that the
scale (dictated by the pixel size) at which we worked was too large to detect ecologically relevant
heterogeneity in the grassland community composition.

4.5. Limitations

One possible explanation for the discrepancy between the field-observed and predicted species
diversity, in both the spectral response approach and the spectral heterogeneity approach, may be
the mismatch between the size of the pixel windows (8 m ˆ 8 m) and the size of the vegetation plots
(4 m ˆ 4 m). Although the paired spectral and vegetation plots belong to the same grassland age
categories, and there is no variation in grazing intensity between the spectral plot and its corresponding
vegetation plot, we cannot exclude the possibility that the relationship may have been influenced
by environmental conditions in the 2 m zone surrounding the vegetation plots. However, species
diversity levels at different spatial scales often show a positive relationship within semi-natural
grasslands (e.g., [66,67]). For example, within Swedish semi-natural grassland the species diversity at
the 1 dm ˆ 1 dm scale was explained by the size of the species pool at the 2 m ˆ 2 m scale [66].

5. Conclusions

The monitoring of biodiversity is regarded as a central task for nature conservation, and
hyperspectral remote sensing has recently been identified as a method that has the potential to make a
substantial contribution to the mapping of habitat and species diversity at local to regional scales [68].
The present study presents a novel methodology for the assessment of fine-scale (4 m ˆ 4 m) vascular
plant species diversity in dry grasslands based on hyperspectral data obtained with the help of airborne
spectrometers covering 414 to 2501 nm. We used two different approaches to evaluate the ability
of hyperspectral measurements to predict fine-scale grassland species diversity (characterized with
the help of the species richness (SR) and the inverse Simpson’s diversity index (iSDI)). The spectral
response approach included information on reflectance based on (i) all wavebands (Model 1), and (ii) a
subset of wavebands (Model 2), input into a partial least squares regression (PLSR) model. The spectral
heterogeneity approach was based on the spectral variation hypothesis, and included an analysis of
spectral variation, based on the mean distance to the spectral centroid, in an ordinary least squares
regression model (Model 3).

Our study demonstrates that a spectral response approach using airborne hyperspectral data
can be used to predict fine-scale species diversity in dry grasslands. The relationships between the
field-observed and predicted measures of plant species diversity were significant for both the SR and
the iSDI with a normalized root mean square error of approximately 20% for the predicted values
of both the diversity indices. The PLSR-based approach allows a large number of hyperspectral
wavebands to be compressed into a few latent variables (LVs) while decreasing the risk of model
overfitting. Although the average prediction quality for both SR and iSDI was poorer for the Model 2
procedure than for the Model 1 procedure, the lower number of LVs in the Model 2 analyses indicated
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that the Model 2 analyses were more parsimonious. The prediction quality of the PLSR algorithm
is dependent on the optimal selection of LVs used in the final prediction model. Although there are
different ways of selecting LVs, there has been no systematic comparison of the performance of the
different approaches. We suggest, therefore, that alternatives to the first-local-minimum rule—such
as the total minimum cross-validated error or an overall F-test of the loss function [53]—should
be evaluated further in future studies. There was a negative correlation between the reflectance in
the NIR spectral region and species diversity, indicating that the species diversity increased as the
above-ground biomass decreased. Although the prediction errors of the two PLSR models derived
from the spectral response approach are low for both the species diversity indices, a certain amount of
variation within the predicted diversity indices remained unexplained in our study. We suggest that the
unexplained variance in the predicted species diversity may, at least in part, result from between-site
variation in grazing intensity (particularly in the younger grasslands on recently abandoned arable
fields) that results in between-site differences in the amount of biomass.

The spectral heterogeneity approach, using spectral variability as a proxy for habitat heterogeneity,
was unable to predict species diversity. Our results, together with results from earlier ecological
studies [65], suggest that the relevant scale for the investigation of the relationships between
environmental heterogeneity and fine-scale grassland species diversity in our study system may
be smaller than the 1 m ˆ 1 m pixels used in the study. We suggest that future studies should
examine a wide range of pixel sizes to identify the scale, or scales, at which a relationship between
environmental heterogeneity and species diversity can be identified.

In the present study, we used remotely sensed data acquired at a single time-point in July.
If leaf senescence in response to summer drought is associated with lowered levels of spectral variation
within and between the grassland plots, then a multi-temporal approach might improve the ability to
predict grassland species diversity with the help of remotely sensed data. The use of unmanned aerial
vehicles (UAVs), which can provide high levels of both spatial and temporal resolution, is attracting
increasing attention within the field of fine-scale remote sensing (e.g., [44,68]). Future studies should
examine the potential use of UAVs to deliver improved spectral data that can be used in the assessment
of grassland species diversity.
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Appendix A

Table A1. Mean values and standard deviations (stdev) for the environmental variables, measured in
4 m ˆ 4 m plots belonging to the validation subset (n = 52).

Environmental Variables Mean Stdev

Ellenberg M 3.55 0.53
Ellenberg N 3.57 0.84

Field-layer height (cm) 3.56 4.00
Soil-cover (%) 6.13 8.18

Litter-cover (%) 7.29 17.01
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Table A2. Technical characteristics of spectral sensors used in the study.

VNIR Sensor SWIR Sensor

Sensor name VNIR-1600 SWIR-320m-e
Spectral coverage (nm) 415–992 967–2501

Spectral sampling interval (nm) 3.7 6.0
Spectral bands 160 256

Field of view (FOV) 17 13.5
Ground sampling distance (m) 0.5 1.0

Radiometric resolution (bit) 12 14

Table A3. Summary statistics for the ln-transformed species richness ln(SR) and the inverse Simpson’s
diversity index (iSDI) values within the calibration and validation subsets for the 4 m ˆ 4 m plots
within each of the three grassland age-classes (young, intermediate-aged and old grasslands). The five
most abundant species recorded within each grassland age-class are also presented.

ln(SR) iSDI Five Most Abundant Species

Mean Stdev Min Max Mean Stdev Min Max

Young Calibration
(n = 16) 3.28 0.41 2.64 4.23 19.41 9.66 10.10 47.97 Taraxacum agg., Dactylis

glomerata, Poa pratensis, Lolium
perenne, Convolvulus arvensisValidation

(n = 17) 3.34 0.40 2.56 3.91 20.00 7.13 9.68 38.60

Intermediate Calibration
(n = 18) 3.59 0.33 2.89 4.17 25.70 7.73 13.49 44.14 Poa pratensis, Dactylis glomerata,

Taraxacum agg., Festuca rubra,
Ranunculus bulbosusValidation

(n = 17) 3.51 0.35 2.83 4.01 24.03 8.44 12.42 39.95

Old Calibration
(n = 17) 3.87 0.18 3.47 4.11 34.49 6.05 20.63 43.21 Plantago lanceolata, Galium

verum, Achillea millefolium,
Ranunculus bulbosus, Poa

pratensis
Validation

(n = 17) 3.89 0.12 3.69 4.09 34.38 5.24 24.62 43.97

Table A4. Number of important wavebands selected with the help of an iterative variable deletion
procedure, for predicting the ln-transformed species richness ln(SR) and the inverse Simpson’s diversity
index (iSDI) in grassland plots using the calibration subset (n = 51).

ln(SR) iSDI

Number of
Wavebands

Part of the
Electromagnetic Spectrum Number of Wavebands Part of the

Electromagnetic Spectrum

6 Green (529–559 nm) 7 Blue (439–475 nm)
3 Red (680–692 nm) 9 Green (517–565 nm)
14 NIR (818–1316 nm) 7 Red (650–686 nm)
2 SWIR (1791, 1797 nm) 8 NIR (1274–1316 nm)

4 SWIR (1779–1797 nm)
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