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Abstract: Species richness generally promotes ecosystem productivity, although the shape of the
relationship varies and remains the subject of debate. One reason for this uncertainty lies in
the multitude of methodological approaches to sampling biodiversity and productivity, some of
which can be subjective. Remote sensing offers new, objective ways of assessing productivity
and biodiversity. In this study, we tested the species richness–productivity relationship using a
common remote sensing index, the Normalized Difference Vegetation Index (NDVI), as a measure of
productivity in experimental prairie grassland plots (Cedar Creek). Our study spanned a growing
season (May to October, 2014) to evaluate dynamic changes in the NDVI–species richness relationship
through time and in relation to environmental variables and phenology. We show that NDVI,
which is strongly associated with vegetation percent cover and biomass, is related to biodiversity
for this prairie site, but it is also strongly influenced by other factors, including canopy growth
stage, short-term water stress and shifting flowering patterns. Remarkably, the NDVI-biodiversity
correlation peaked at mid-season, a period of warm, dry conditions and anthesis, when NDVI reached
a local minimum. These findings confirm a positive, but dynamic, productivity–diversity relationship
and highlight the benefit of optical remote sensing as an objective and non-invasive tool for assessing
diversity–productivity relationships.

Keywords: remote sensing; species richness; productivity; grassland; NDVI

1. Introduction

The species richness–productivity relationship has long been of interest in ecology. Much of
the recent Biodiversity-Ecosystem Function (BEF) research has developed from a series of landmark
experiments at Cedar Creek that consistently demonstrated that biodiversity enhances productivity in
experimental grassland systems [1–3]. Two hypotheses have been proposed to explain the positive
relationship between biodiversity and productivity: (1) selection effects; and (2) complementarity [4,5].
The selection effects hypothesis (also called “selection probability effects”) states that adding species
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increases the probability of having a productive species, especially when creating a community with
high richness within a small size pool of candidate species [6]. The complementarity hypothesis
suggests that the presence of multiple species in a high richness community can increase production
via more efficient resource capture.

In reviews of the BEF literature, a variety of biodiversity–productivity relationships have been
reported [7,8]. Both unimodal and positive relationships are commonly reported between productivity
and richness, and this relationship can be affected by community composition, resource levels
(e.g., fertilizer or irrigation levels) and nature of disturbance [8–10]. In some cases, highly productive
sites are known to be resource rich and species poor. These high productivity and low diversity sites
are typically highly managed via irrigation or fertilizer application [8] and often lead to declines
in the species richness relationships at high productivity. Indeed, variation in the relationship
between biodiversity and ecosystem function is known to depend on resource availability [11] and
environmental drivers, particularly drought stress, has been shown to constrain biomass in prairie
systems [12,13].

One goal of BEF research is to understand the underlying ecological mechanisms behind
the biodiversity–productivity relationship. However, the assessment of the relationship itself and
changes in the relationship through time pose additional challenges. Determining the nature of these
relationships is of increasing importance in natural systems, given that unmanipulated grasslands
show a range of productivity–diversity relationships, depending on site conditions and composition [7].
Prairie productivity is often estimated through biomass harvests that are time-consuming due to the
effort in harvesting, sorting and weighing live vegetation in the sampling region [14–16]. There are also
limits to the number of samples that can be taken in a single season without altering the experiment.
Moreover, the traditional methods of estimating biomass - and their repeatability—can be subjective
due to the dependence on the knowledge and skill of those conducting sampling [15]. This estimation
is further affected by sample size and method [17]. Due to these constraints, only a small area can
typically be harvested to obtain the biomass and richness. As a consequence, it has been difficult to
observe changes in biomass in response to external drivers through time and the seasonal dynamics of
the diversity–productivity relationship.

Remote sensing provides a useful tool to estimate vegetation productivity over large areas and
has been used to estimate prairie production. A large number of studies have led to well-established
methods that estimate the percent cover, biomass, and productivity of grasslands using remote
sensing [14,15,18,19]. These studies have shown that the Normalized Difference Vegetation Index
(NDVI) [20] is highly correlated with green biomass, green leaf area index, and radiation absorption
(APAR) by green canopy material in grasslands [16,19]. Remote sensing also provides an objective
method that can assess productivity rapidly, repeatedly and following consistent methods, without
damaging or altering the target vegetation.

The Cedar Creek Ecosystem Science Reserve (CCESR; Minnesota, USA) has a long, rich history of
biodiversity studies. The ongoing BioDIV experiment has been maintained for more than 20 years to
investigate the effects of species and functional biodiversity on community and ecosystem function,
and has included assessment of productivity, stability and nutrient dynamics [2,21]. Previous studies
at this site have reported a significant, positive relationship between diversity (either species richness
or functional diversity) and biomass (e.g., [2]).

In this study, we revisited the species richness–productivity relationship for these experimental
prairie grassland plots covering a range of biodiversity levels (nominal species richness ranging from 1
to 16 plant species per plot) using NDVI, a common remote sensing metric of ecosystem productivity
and green vegetation biomass. Our study spanned a summer growing season (May to October, 2014),
allowing us to evaluate dynamic changes in the NDVI–species richness relationship through time and
in relation to environmental variables, including temperature, precipitation and soil moisture. We
tested the hypotheses that (1) remote estimates of productivity would be positively associated with
species richness, as reported by previous studies based on traditional field sampling methods [2,3];
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and (2) the relationship would change dynamically throughout the growing season in response to the
progression of plants through shifting phenological stages and according to environmental fluctuations
(e.g., as a consequence of summer drought).

2. Methods

2.1. Field Site and Experimental Design

This study was conducted at the Cedar Creek Ecosystem Science Reserve, Minnesota, US
(45.4086˝ N, 93.2008˝ W). The BioDIV experiment has maintained 168 prairie plots (9 m ˆ 9 m) with
nominal plant species richness ranging from 1 to 16 since 1994 [22]. The species planted in each plot
were originally randomly selected from a pool of 18 species typical of Midwestern prairie, including C3

and C4 grasses, legumes and forbs. Of the original 168 plots, 35 plots with species richness ranging from
1 to 16 were selected for our study. These 35 plots included 11 monoculture plots and six replicates of
every other richness level (2, 4, 8, and 16) but with differing species combinations. Weeding was done
3 to 4 times each year for all the plots to maintain the species richness. A more complete accounting of
the methods and history of the BioDIV experiment can be found in the published literature on this site
(e.g., [1,23]).

2.2. Reflectance Sampling

In the 35 study plots, canopy spectral reflectance was measured every two weeks over most of the
2014 growing season (late May to late August) and once a month during senescence (September to
October) with a hand-held, dual channel spectrometer (Unispec DC, PP Systems, Amesbury, MA, USA)
(Figure 1a). With this instrument, both upwelling radiance and downwelling irradiance were collected
simultaneously, and these measurements were cross-calibrated using a white reference calibration
panel (Spectralon, Labsphere, North Sutton, NH, USA), allowing us to correct for the atmospheric
variation [24]. The detectors measured irradiance and radiance from 350 to 1130 nm with a nominal
bandwidth (band-to-band spacing) of approximately 3 nm, and actual bandwidth (FWHM) of 10 nm.
The upward-looking channel included a fibre optic and a cosine head to record the solar irradiance.
The downward-looking channel included a fibre optic and a field-of-view restrictor that limited the
field of view (FOV) to a nominal value of 20 degrees, although empirical tests indicated the actual FOV
was closer to 15 degrees (not shown). In this application, the spatial resolution on the ground (IFOV)
was approximately 0.5 m2. The reflectance at each wavelength was calculated as:

ρλ “

`

Ltarget,λ{Etarget,λ
˘

´

Lpanel,λ{Epanel,λ

¯ (1)

where Ltarget,λ indicates the radiance measured at each wavelength (λ , in nm) by a downward-pointed
detector sampling the surface (“target”), and Etarget,λ indicates the irradiance measured simultaneously
by an upward-looking detector sampling the downwelling radiation. Lpanel,λ indicates the radiance
measured by a downward-pointed detector sampling the calibration panel, and Epanel,λ indicates
the irradiance measured simultaneously by an upward-pointed detector sampling the downwelling
radiation.

A linear interpolation was applied to the reflectance spectra to obtain reflectance values
at 680 and 800 nm and calculate NDVI:

NDVI “
ρ800 ´ ρ680

ρ800 ` ρ680
(2)

where ρ680 and ρ800 indicate the reflectance at 680 and 800 nm respectively. To determine seasonal
NDVI patterns, 17 reflectance measurements were taken along the northern-most row on each sampling
date (Figure 1a) in each of the 35 plots, providing a consistent subsample of each plot over the growing
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season. To estimate the NDVI values on 1 August (the day that vegetation percent cover was measured)
a linear interpolation was applied to NDVl measurements made on 18 July and 4 August.Remote Sens. 2016, 8, 128 4 of 15 
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once near midsummer peak biomass. For the first method, only the northern-most row of each plot 
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illustrated in Figure 2. 
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Once at peak season (23 July to 3 August), we sampled canopy reflectance of 33 entire plots 
using a tram system [24] (Figure 1b). The tram consisted of a mobile cart on a movable track 
supported by scaffolding (Figure 1b), allowing a systematic measurement of each 1-m2 portion of each 
plot (Figure 2a). This resulted in a total of 81 measurements (9 × 9 m) for each plot with 
approximately 1 m2 spatial resolution, creating a synthetic image (Figure 2b) that provided a full 
sample of each of the 33 plots, comparable to what could be obtained with airborne imaging 
spectrometry. The speed of the tram cart was 0.167 m/s. It took approx. 10 min (including time to 
move the scaffolding) to cover a plot (9 × 9 m). During the (whole-plot) sampling period, data were 
collected from 10 am to 4 pm every day until all 33 plots were completely sampled. We skipped 
midday (12:30 pm to 1 pm) to avoid possible self-shadow effects of the fiber when measuring the 
white reference. While some data reported were collected under clear skies, clouds were 
unavoidable, and their influence on NDVI calculations were largely reduced through the 
cross-calibration procedure described above. A quantum sensor (LI-190SB, LI-COR, Lincoln, NE, 
USA) was used to track the sky condition when running the tram cart. To avoid possible edge 
effects, 49 (7 × 7 m) of the 81 measurements in the center were used to calculate the average 
reflectance of each plot (Figure 2c). NDVI from each reflectance spectrum was calculated using 
Equation (2) and the average NDVI was determined for each plot. 

Figure 1. Sampling spectral reflectance using (a) the handheld method, applied biweekly to obtain
reflectance phenology over the season; and (b) the tram cart on track [24] used to sample entire plots
once near midsummer peak biomass. For the first method, only the northern-most row of each plot was
sampled for reflectance phenology over the growing season. The second method is further illustrated
in Figure 2.

2.3. Whole-Plot Reflectance Sampling

Once at peak season (23 July to 3 August), we sampled canopy reflectance of 33 entire plots using
a tram system [24] (Figure 1b). The tram consisted of a mobile cart on a movable track supported
by scaffolding (Figure 1b), allowing a systematic measurement of each 1-m2 portion of each plot
(Figure 2a). This resulted in a total of 81 measurements (9 ˆ 9 m) for each plot with approximately
1 m2 spatial resolution, creating a synthetic image (Figure 2b) that provided a full sample of each of the
33 plots, comparable to what could be obtained with airborne imaging spectrometry. The speed of the
tram cart was 0.167 m/s. It took approx. 10 min (including time to move the scaffolding) to cover a plot
(9 ˆ 9 m). During the (whole-plot) sampling period, data were collected from 10 am to 4 pm every day
until all 33 plots were completely sampled. We skipped midday (12:30 pm to 1 pm) to avoid possible
self-shadow effects of the fiber when measuring the white reference. While some data reported were
collected under clear skies, clouds were unavoidable, and their influence on NDVI calculations were
largely reduced through the cross-calibration procedure described above. A quantum sensor (LI-190SB,
LI-COR, Lincoln, NE, USA) was used to track the sky condition when running the tram cart. To avoid
possible edge effects, 49 (7 ˆ 7 m) of the 81 measurements in the center were used to calculate the
average reflectance of each plot (Figure 2c). NDVI from each reflectance spectrum was calculated using
Equation (2) and the average NDVI was determined for each plot.

2.4. Biomass and Vegetation Percent Cover

Above-ground living plant biomass of the selected 35 plots was measured on 4 August 2014. Plots
were sampled by clipping, drying and weighing four parallel and evenly spaced 0.1 m ˆ 6 m strips
per plot. The biomass of each strip was sorted to species, but presented here as total plot biomass.
Ground vegetation percent cover measurements were taken on 19 June and 1 August in 2014. Percent
cover was determined by visual inspection within nine 0.5 m ˆ 0.5 m quadrats, placed every meter,
starting 50 cm from the north facing edge of the plot for a total of nine subsamples per plot. Percent
cover was estimated for each individual species as the nearest 10 percent that each species occupied of
the total quadrat area, and then summed. Vegetation coverage did not necessarily sum to 100% if bare
ground was exposed, or if species overlapped. To avoid affecting seasonal NDVI patterns, biomass
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measurements in each plot were sampled in a separate area from the reflectance sampling locations,
both of which were assumed to be representative of the whole plot. For mid-season NDVI assessment
of entire plots, the biomass sampling was conducted a few days after the optical sampling to avoid
affecting the NDVI.Remote Sens. 2016, 8, 128 5 of 15 
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Figure 2. Design of whole-plot reflectance sampling (a) and example of synthetic image (plot 168,
richness = 16) (b); and resulting reflectance spectra (c). Colored lines indicate mean (black), standard
deviation (blue) and min/max (red) reflectance values. Reflectance spectra were used to calculate
NDVI through time for comparison with nominal species richness (1–16).

2.5. Height

We monitored height of focal species at each NDVI census as an independent measure of canopy
growth. We measured the height of three randomly selected individuals of each species present in
each plot unless there were less than three individuals, in which case we measured all individuals.
Individuals were not marked, so different individuals may have been measured at different census
intervals. To calculate average height of vegetation in each plot we used percent cover data collected in
June and August to create an abundance-weighted plot vegetation height. Plot vegetation height was
calculated as the sum of the abundance weighted height of each species in the plot, where abundance
was quantified as percent cover and height was measured in centimeters. For all but Lupinus perennis,
percent cover did not differ between the two percent cover census dates and so we used average cover.
For Lupinus perennis, we used percent cover from June for all census dates in June and July then used
August percent cover data for August, September and October census dates.

2.6. Flowering Phenology

We monitored flowering phenology of all focal species at each NDVI census. We used
USA-NPN protocols for monitoring (www.usanpn.org/natures_notebook). Here we focus on flowering
phenophases due to their potential to influence spectra. Briefly, each species in each plot was scored
for whether they had flowers and whether any flowers were open. For each of these phenophases
we also scored abundance. For flowers, we scored the number of flowers in the following categories:
<3, 3–10, 11–100, >101). For open flowers, we scored the percentage of flowers that were open in the
following categories: Less than 5%; 5%–24%; 25%–49%; 50%–74%; 75%–94%; 95% or more.
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For data analysis, we took the mid-point of each category, except >101 for which we arbitrarily set
as 110. For each species, plot and census we multiplied the number of flowers by the decimal percent
of those flowers that were open to get an abundance-weighted number of open flowers per species.
These were then summed for each plot giving a total number of open flowers per plot.

2.7. Environmental Conditions

Meteorological conditions (temperature, rainfall) and soil moisture were tracked during the
experimental period. Temperature and precipitation records were collected from Cedar Creek weather
station (approximately 0.76 km away from the BioDIV experimental plots), while time domain
reflectometry (TDR) was used to measure soil moisture at four different depths in a subset of 38 BioDIV
experimental plots across all diversity treatment levels. These were not necessarily the same plots
as those used for subsampling NDVI but are a representative subset of the ambient conditions in
the BioDIV experiment and site. We used the moisture sensor (Trime FM, IMKO GmbH, Ettlingen,
Germany), with a 17 cm long probe inserted vertically into the soil inside a 2 m long PVC tube
at 4 depths: 3–20 cm, 20–37 cm, 80–97 cm, and 140–157 cm. The sensor was calibrated at two
endpoints using the same setup with dry and wet glass beads in a large volume (19 L) following
manufacturers instructions.

2.8. Statistical Analysis

Species richness–biomass, species richness–vegetation percent cover and phenology species
richness–NDVI relationships were fitted using linear regression model within R software [25]. A
multiple linear regression model within R software [25] was applied to fit the NDVI with species
richness and vegetation percent cover measurements. We analyzed height data using a two-way
ANOVA with species and census as main effects. We used Tukey’s HSD to test pairwise contrasts.
Phenological data were not normally distributed and transformation did not result in normally
distributed data. We therefore used a non-parametric Kruskall-Wallis test to examine the effect of date
on the total number of open flowers and then used the Steel-Dwass (non-parametric equivalent
to Tukey’s HSD) to test pairwise contrasts. These analyses were conducted in JMP® Pro 11.0
(SAS Institute Inc., Cary, NC, USA, 27513).

3. Results

Consistent with previous studies at this site [2], high species richness plots tended to have
higher biomass and percent cover, but biomass was more strongly related to species richness than
percent cover (Figure 3). Both biomass and vegetation percent cover showed logarithmic relationships
with species richness (Figure 3), similar to previous patterns observed at BioDIV [2]. Although the
mean vegetation percent cover increased with increasing species richness, the variation of percent
cover among low species richness plots was higher than the variation of biomass, with some of the
low richness plots having a very high vegetation percent cover, causing a weak (but significant)
relationship between species richness and cover (Figure 3b). Species composition clearly affected the
species richness—percent cover relationship, as evidenced by the high scatter in percent cover for
the monoculture plots. For example, one monoculture plot (Amorpha canescens, plot 20 in Table S1 in
Supplementary Materials), had the highest vegetation percent cover (95%), but the biomass of this
plot was 200 g/m2, which was only 51.3% of the most productive polyculture, whose richness was 16
(plot 169 in Table S1 in Supplementary Materials). On the other hand, the Liatris aspera monoculture
plot (plot 129 in Table S1 in Supplementary Materials) has a biomass of 159.97 g/m2 (41% of the most
productive polyculture) while the vegetation percent cover of this plot was only 15%.

NDVI showed a linear relationship with biomass (Figure 4a) but a log relationship with vegetation
percent cover (Figure 4b). The NDVI-percent cover relationships had stronger correlations than the
NDVI-species richness relationship on both sampling dates (Table 1), illustrating the strong dependence
of NDVI on canopy structure. Adding species richness as a variable improved the performance of
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the NDVI-percent cover relationships on both sampling dates (Table 1), demonstrating that the
NDVI was affected by species composition in addition to canopy structure. These results suggest
a potentially confounding effect of vegetation structure (e.g., percent cover) on the NDVI-species
richness relationships reported above. NDVI was particularly sensitive to vegetation percent cover in
sparse canopies (below 60% cover) and showed less sensitivity to vegetation percent cover in dense
canopies (above 60% cover) (Figure 4b), as has been shown by the tendency of NDVI to “saturate” with
increasing quantities of vegetation (whether biomass, percent cover or LAI) in previous studies [19].
The NDVI–cover relationship also varied with season, with NDVI values declining between mid-June
and early August (Figure 4b). The NDVI and percent cover values were higher earlier in the growing
season (19 June) than later (1 August) (Figures 3 and 4), when senescence reduced NDVI (Figure 5).
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Figure 4. NDVI versus biomass (a) and vegetation percent cover (b). Biomass was measured on
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Table 1. Dependence of NDVI on species richness and vegetation percent cover. Values shown are
multiple linear regression parameters, including intercept, coefficients for log(species richness) and
log(percent cover), R2 and F values. Regressions have degree of freedom = 32. Significant codes:
NS, 0.05 < p, *, 0.05 < p < 0.01, **, 0.001 < p < 0.01 and ***, p < 0.001. 0619 and 0801 represent the
sampling dates (19 June and 1 August 2014).

Date & Model
Inputs

Regression Parameters

Overall R2 Overall F ValueIntercept log (Species
Richness)

log (Percent
Cover)

0619-Percent cover ´0.21415 ** 0 0.24357 *** 0.8238 *** 154.3 ***
0619-Richness 0.53337 *** 0.10391 *** 0 0.3129 15.03 ***

0619-Both ´0.17454 * 0.03296 * 0.22154 *** 0.8486 *** 89.67 ***
0801-Percent cover ´0.14260 * 0 0.18095 *** 0.7387 *** 93.28 ***

0801-Richness 0.37723 *** 0.09317 *** 0 0.4766 *** 30.05 ***
0801-Both ´0.08934NS 0.04280 ** 0.15750 *** 0.835 *** 80.98 ***
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Reflectance measurements revealed clear NDVI dynamics and subtle changes in the
NDVI–diversity relationship that were affected by trends in weather conditions and flowering over the
growing season (Figure 5). NDVI showed early-season increases in May and June (Figure 5d), a period
of canopy growth and development, as indicated by increases in plant height (Figure 5b). Plants in
16-species plots were significantly taller than those in 8-species plots and both were significantly taller
than 4, 2 and 1 species plots (Tukey’s HSD, p < 0.05). The latter three did not differ from each other
(Tukey’s HSD, p > 0.05).

By August 1, NDVI showed a deep decline accompanied by a coincident decline in surface
soil moisture following a period of high temperatures and lack of precipitation, but then recovered
briefly during a subsequent period of lower temperature and high precipitation in mid to late August
(Figure 5). After this second, smaller August rise, NDVI continued to decline gradually as plants
senesced into the fall.

NDVI also appeared to be affected by flowering, with the mid-season NDVI dip coincident with
the period of anthesis (flower opening) for many of the dominant species (Figure 5c). The total number
of open flowers varied significantly with date (χ2

8 = 65.7, p < 0.001). Pairwise comparisons (Steel-Dwass
method) revealed that there were significantly more flowers at the 6 August 2014 census (close to the
NDVI dip) than five of the eight other census times. All but 29 May, 21 July and 4 September had
significantly lower numbers of flowers.

Over most of the season, NDVI was higher for high-species-richness plots, and the NDVI–species
richness relationship shifted over the growing season (Figure 5d). This difference in NDVI for plots
with different species richness largely disappeared by October, when plants had largely senesced, at a
time of advanced canopy growth (Figure 5b).Remote Sens. 2016, 8, 128 9 of 15 
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Figure 5. Time series of air temperature (maximum temperature of the day), precipitation, soil moisture
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of open flowers per plot (c) and NDVI plotted by species richness (d) over the growing season in 2014.
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The seasonal change in the NDVI–species richness relationship is shown in more detail in Figure 6,
further demonstrating that plots with high richness tended to have a higher mean NDVI and lower
variation in NDVI than plots with low species richness (Figures 6 and 7). The variation of NDVI
among the high richness plots became visibly smaller as the growing season progressed (Figure 6).
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NDVI showed the strongest relationship with species richness at peak season (Figures 6 and 8 and
Table 2). Similarly, whole-plot measurements (Figure 7) based on full-plot sampling (49 measurements)
in the middle of the summer showed a clearer trend than any of the individual monthly measurements
(Figure 6, Table 2) that were based on smaller sample sizes (17 vs. 49 measurements).
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Figure 6. Representative examples of NDVI versus species richness at four time points (plots a–d) in
the 2014 growing season. These figures were derived from plot subsamples (17 measurements along
the north most row of each plot) for 35 plots. Species richness represents the planted number of species
per plot. Each richness treatment had a sample size of 6, except monoculture plots, which had a sample
size of 11. In this figure, box plots were overlaid on actual data points (dots) that represent the average
values for each plot. The regression statistics are provided in Table 1.
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Figure 7. Mid-season whole-plot NDVI versus species richness (collected over several dates spanning
23 July to 3 August 2014). For this figure, 49 (7 m ˆ 7 m) of the 81 measurements in the center of each
plot were used to calculate the average reflectance and NDVI, yielding a more representative sampling
than shown in Figure 6. Species richness represents the planted number of species per plot. Each
richness treatment had a sample size of 6, except monoculture plots, which had a sample size of 9. In
this figure, box plots were overlaid on actual data points (dots) that represent the average values for
each plot. The regression statistics are provided in Table 2.
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Table 2. Species richness–NDVI relationships for various dates in 2014 compared to the whole plot
results obtained at mid-summer (23 July–2 August 2014).

Sampling Regression Equation R2 p Value

23 May y = 0.0132x + 0.2821 0.2587 0.001
8 June y = 0.0211x + 0.4841 0.3312 0.0003

20 June y = 0.0199x + 0.548 0.3137 0.0005
06 July y = 0.0193x + 0.5651 0.3325 0.0003
18 July y = 0.0207x + 0.5022 0.374 9.51 ˆ 10´5

4 August y = 0.0178x + 0.3909 0.4728 5.04 ˆ 10´6

21 August y = 0.0157x + 0.4725 0.3789 0.0001
5 September y = 0.0119x + 0.4957 0.2737 0.001
11 October y = 0.0034x + 0.3854 0.05 0.209

Whole-plot Sampling y = 0.0177x + 0.4114 0.5136 6.07 ˆ 10´7

A more complete summary of the effects of sample date and size on the NDVI-species richness
relationship is provided in Table 2, clearly illustrating that the strongest relationships were obtained
towards mid-summer when plants were fully mature and before the onset of senescence, and that
larger sample sizes based on whole-plot data improved the relationships. The seasonal pattern in the
NDVI-species richness relationship (expressed as R2 values) can be compared to the NDVI time trend,
showing a peak in the correlation during the mid-season dip in NDVI, a time of warm, dry conditions
and peak anthesis (Figures 5 and 8).
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4. Discussion

4.1. Biomass–NDVI Relationship

In this study, the significant relationship between biomass and NDVI (Figure 4) agrees with
previous research, and has been discussed in multiple systems from both theoretical [26] and empirical
approaches [19]. NDVI provides a rapid and non-destructive method of estimating biomass and
percent cover, providing an empirical relationship between spectral information and biomass and
percent cover [27]. Both vegetation percent cover and biomass have been broadly used as surrogates
of vegetation productivity [10], especially in grasslands [28]. Using NDVI, remote sensing can assess
continuous dynamics of biomass productivity over the growing season at a large scale.

The correlation between NDVI and biomass in our study, while significant, was lower than
is often reported [19]. One reason for this scatter is that we did not harvest the biomass from the
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same plot location as NDVI sampling, but assumed that the plots were homogeneous in order to
get continuous phenology NDVI measurements in the whole growing season. The NDVI–biomass
relationship (Figure 4) could have been improved by matching the exact locations of NDVI and biomass
sampling [19] but this would have precluded time-series analysis of NDVI phenology. Variation in
the NDVI–biomass relationship can also be caused by variation in canopy structure, with different
canopy architectures having slightly different NDVI–biomass relationships. Another reason for the
scatter may be that NDVI is more closely related to fPARgreen, a measure of light absorption by green
canopy material and hence potential production [19,29], than biomass per se. Like biomass harvesting,
fPARgreen measurement is also destructive and was not measured in our study (but can be inferred
from NDVI).

4.2. Productivity–Richness Relationship

The productivity-biodiversity relationship is a much-discussed topic in the ecological
literature [2,6–8,30], and undoubtedly is influenced by many factors. Biodiversity can affect the
production of ecosystems due to the complementary roles played by different species [3]. For example,
adding species within a community can enhance the ability of vegetation to capture resources [31].
Similar to what has been previously reported with the biomass-species richness relationships [2],
the NDVI-species richness relationship tended to approach saturation at the high richness end
(8 to 16 species). This may be because when all functional groups are present, the addition of species
with redundant function has little effect on ecosystem properties [9].

Selection effects result from the increased probability of adding a productive species in higher
diversity polycultures and can also contribute to the explanation of high biomass in polycultures.
In the Cedar Creek BioDIV experiment, both selection effects and complementarity of species have
been shown to affect the community productivity [23,32]. Our goal in this study was not to further
analyze the respective contributions of selection and complementarity effects [4], but rather to use
a remotely sensed measure of vegetation to examine the dynamics of the biodiversity–productivity
relationship through time. We note that most of the productive monocultures may have equivalent or
even higher biomass than some of the polycultures (shown as higher NDVI in some of the monoculture
in our study), that species express different growth and phenological stages at any given point in time
(Figure 5), and that the most productive species can change though time within one growing season
(data not shown). Moreover, it is unlikely that a monoculture can be more productive than a diverse
community when considering a long time span [31]. When a long time period (>10 years) is considered,
accumulation of complementarity effects can dominate the productivity–richness relationship and
lead to a more positive relationship [23,32].

At present, remote sensing does not necessarily inform the mechanisms underlying the
biodiversity-productivity relationship. However, the non-destructive nature of remote assessment
assists our understanding of the dynamics of the richness–productivity relationship through time
and in relationship to environmental constraints by permitting repeated landscape-level assessments
beyond the scope of typical field plots. In our study, only a small number of species was considered
at a local scale, but these methods can also be readily applied to larger regions. In a parallel study of
prairie grassland in southern Alberta, Wang et al. [33] found a similar, positive relationship between
productivity and biodiversity over a large landscape using airborne imaging spectrometry coupled
with field sampling. Understanding the mechanisms underlying the richness–productivity relationship,
while beyond the scope of this particular study, can help maintain and conserve biodiversity [10].

4.3. Richness-Percent Cover and Effects

In this study, NDVI was affected by both species richness and vegetation percent cover, and
vegetation percent cover had a stronger effect than species richness (Table 1). The Cedar Creek BioDIV
prairie ecosystem experiment is maintained at nominal species richness via burning and weeding every
year. Fecundity and dispersal feedbacks over time have resulted in patchiness and low percent cover
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of some of the low richness plots [34]. As a result, the low richness plots may have increased exposed
soil and moss-covered patches. This factor, in addition to vegetation composition effects on NDVI,
may have contributed to the reduced NDVI in low richness plots. Further studies could focus on
plots with different species richness but similar vegetation percent cover, or on manipulating different
species composition at same richness level to control for plant density, to better understand how
species richness, cover and composition affect the optical diversity signal separately. The potential to
apply remote sensing to address these questions over larger regions and natural landscapes is high [33]
and critical to understanding these relationships in natural systems, and ultimately to managing
ecosystems for resiliency in the face of rapid global change.

4.4. Seasonal NDVI Variation

Many factors, including changing canopy display, leaf pigmentation, and flowering, can all
influence NDVI. In our study, the drop of NDVI in early August was coincident with the high
temperature and lack of precipitation in late July (Figure 5). In the short term, water stress can affect
NDVI by causing vegetation wilting and leaf rolling. These changes in canopy structure tend to
decrease vegetation visibility and increase soil visibility to the sensor, decreasing NIR reflectance and
increasing visible reflectance, and thus reducing NDVI. This temporary effect of water stress can be
reversed by precipitation, allowing vegetation to recover to some extent, and this helps explain the
early August NDVI dip and subsequent increase (Figure 5). Similarly, the mid-season NDVI drop was
coincident with anthesis, the time of maximum flower opening, which has also been shown to reduce
NDVI depending upon flower color and its influence on the reflectance spectrum [34–36].

4.5. Sample Size

Sample size also affects the NDVI-richness relationship. In our study, the mid-season whole plot
results that had a higher sample size (n = 49) showed a stronger NDVI-richness relationship than any
of the repeated monthly measurements in a similar subset of plots with a smaller sample size (n = 17)
(Figures 6 and 7 Table 2). Most likely, the whole-plot measurements were more representative of the
Cedar Creek BioDIV study than the time-series results that only included a subsample of the full plot
areas. Similarly, previous studies [37] and models [38] showed increasing accuracy with increasing
number of sampling strategies. Considering that remote sensing can readily obtain large regions while
providing a systematic view of the Earth at regular time intervals, it holds the promise of becoming a
feasible, convenient and cost-effective way to conduct biodiversity research [39].

4.6. Seasonality of the NDVI-Species Richness Relationship

Compared to the spatial patterns of biodiversity, less attention has been paid to the seasonal
patterns of biodiversity [40] or the effect of phenology on the ability to assess biodiversity with remote
sensing. In our study, the NDVI-richness relationship was dynamic and the best regression between
NDVI and species richness occurred near peak season, although the exact reasons for this deserve
further study. This dynamic relationship was most likely affected by canopy development, as well
as by prevailing conditions (mid-season warm, dry conditions) and flowering phenology (timing of
anthesis). While both short-term drought and mid-season anthesis clearly reduced NDVI, their effect
on the NDVIbiodiversity patterns was less clear, and could have even enhanced this relationship, as
illustrated by the enhanced NDVI-biodiversity correlations at mid-season (Figures 6–8 Table 2), or at
least not interfered with it. Multi-year data may be helpful to separate the confounding effects of short
term drought and anthesis on NDVI–biodiversity relationship because the seasonal meteorology can
vary year to year. The exact impact of these multiple factors on the timing of the NDVI–biodiversity
relationship, while beyond the scope of this study, might yield additional insights into the mechanisms
driving the productivity–biodiversity relationship.
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5. Conclusions

Remote sensing provides an efficient and inexpensive way to assess biomass and biodiversity. This
study further confirms earlier studies at this site, and illustrates the potential of remote sensing to assess
the diversity–productivity relationship. The Cedar Creek experiments provide a convenient test of this
relationship in a human-maintained prairie ecosystem. Considering the two hypotheses proposed in
the introduction, this study shows that NDVI can be related to species richness, but it is also strongly
affected by other factors, including canopy structure (cover or biomass) and short-term water stress
and shifting flowering patterns that can confound the NDVI-richness relationship. Interestingly, the
strongest NDVI–biodiversity relationship occurred in mid-summer, when NDVI showed a temporary
decline associated with warm, dry conditions and anthesis.

While remote sensing has the potential to be used in biodiversity assessment, it also adds
additional capabilities and complexity by being able to assess this diversity at multiple scales. Further
work should address the optical-biodiversity relationship in more detail, in part by addressing the
scale-dependence. As well, future studies should take advantage of the full spectral power of imaging
spectrometry to evaluate the diversity–productivity relationship for a larger variety of ecosystems.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/2/128, Table S1:
Species richness and composition of each plot used in this study. The species abbreviations and identities are
summarized in Table S2. Table S2: Species abbreviations and identities in Table S1.
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