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Abstract: There is an increasing need to consistently combine observations from different sensors
to monitor the state of the land surface. In order to achieve this, robust methods based on the
inversion of radiative transfer (RT) models can be used to interpret the satellite observations. This
typically results in an inverse problem, but a major drawback of these methods is the computational
complexity. We introduce the concept of Gaussian Process (GP) emulators: surrogate functions that
accurately approximate RT models using a small set of input (e.g., leaf area index, leaf chlorophyll,
etc.) and output (e.g., top-of-canopy reflectances or at sensor radiances) pairs. The emulators
quantify the uncertainty of their approximation, and provide a fast and easy route to estimating
the Jacobian of the original model, enabling the use of e.g., efficient gradient descent methods.
We demonstrate the emulation of widely used RT models (PROSAIL and SEMIDISCRETE) and
the coupling of vegetation and atmospheric (6S) RT models targetting particular sensor bands.
A comparison with the full original model outputs shows that the emulators are a viable option to
replace the original model, with negligible bias and discrepancies which are much smaller than the
typical uncertainty in the observations. We also extend the theory of GP to cope with models with
multivariate outputs (e.g., over the full solar reflective domain), and apply this to the emulation
of PROSAIL, coupled 6S and PROSAIL and to the emulation of individual spectral components
of 6S. In all cases, emulators successfully predict the full model output as well as accurately
predict the gradient of the model calculated by finite differences, and produce speed ups between
10,000 and 50,000 times that of the original model. Finally, we use emulators to invert leaf area
index (LAI), leaf chlorophyll content (Cab) and equivalent leaf water thickness (Cw) from a time
series of observations from Sentinel-2/MSI, Sentinel-3/SLSTR and Proba-V observations. We use
sophisticated Hamiltonian Markov Chain Monte Carlo (MCMC) methods that exploit the speed
of the emulators as well as the gradient estimation, a variational data assimilation (DA) method
that extends the problem with temporal regularisation, and a particle filter using a regularisation
model. The variational and particle filter approach appear more successful (meaning parameters
closer to the truth, and smaller uncertainties) than the MCMC approach as a result of using the
temporal regularisation mode. These work therefore suggests that GP emulators are a practical way
to implement sophisticated parameter retrieval schemes in an era of increasing data volumes.
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1. Introduction

As more spaceborne Earth Observation EOsensors start capturing data over the land surface,
there is an increased need to develop methods to optimally combine these observations, making
an optimal use of data from as many sensors as possible, a concept sometimes termed “virtual
constellation“ [1]. This requires the use of physical models that describe both the imaged scene as
well as the acquisition parameters (bandpass characteristics, view/illumination configuration, etc.).
In the solar reflective domain, these models mainly describe scattering and absorption of radiation
by the atmosphere, vegetation canopies and soils, effectively providing a mapping from parameters
that describe the state of soil, leaf, canopy and atmosphere to the reflectance or radiance that would
be observed by a sensor. In practice, we are more often concerned about the so-called “inverse
problem”, where the model is used to map from the observations of reflectance or radiance, back
to the land surface parameters of interest [2,3]. Due to the complex non-linear nature of the models
and the presence of uncertainties in the data gathering processes, the solution to this problem is
often non unique, and the problem is said to be “ill posed” [4]. Methods based on minimising the
misfit between model and observations (e.g., least squares) can thus appear to be noisy and unstable,
a situation that is usually dealt with using post-inversion filtering (e.g., [5]. Recasting the problem in a
Bayesian framework opens the possibility of adding extra constraints in the form of a priori parameter
distributions, as well as producing probability density functions (pdfs) of the parameters, which are
effectively a statement of the uncertainty on the retrieved parameters [6,7]. The use of non-linear
radiative transfer models in conjunction with Bayesian methods is however computationally very
expensive, requiring either Monte Carlo based approaches, or iterative cost function minimisations if
some assumptions allow a variational approach. In some cases, the Jacobian of the physical models is
required to use quasi-Newton methods. Obtaining the Jacobian is far from trivial, requiring the use
of automatic differentiation (AD) techniques [8], or its computationally costly numerical evaluation
using finite differences (e.g., [9]). This situations is complicated further by the complexity of the
physical models.

Over time, a number of different approaches have appeared to deal with the limitations outlined
above. Perhaps one of the earliest has been look-up tables (LUTs), where the model to invert is run
over parameter space, producing a dense sampling of this space, and both input parameters and
outputs are stored. Observations are then compared with the results of the forward model, and the
solution that is (in some sense, like least squares) closer is chosen. These methods are practical, and
have had a wide use (for example, the widely used MODIS LAI/fAPAR product [10] is produced
with a LUT approach), but have problems in adequately diagnosing uncertainty, are inflexible in
their application to combinations of sensors, and it is hard to define the denseness of parameter
space sampling. Additionally, it is quite hard to add a priori knowledge to this formulation. Other
efforts have focused on using regression and “learning” approaches, such as the use of artificial
neural networks (ANNs) [11,12] or other regression approaches (see e.g., [13]). These approaches
have in common the aim of producing a mapping from observations to parameter space. The
mapping is said to be “learned” from known pairings of parameters and forward model runs (or
sometimes, ground measurements). This methods can be made to work well, but their generalisation
to any kind of inverse problem is complicated, if not impossible, as a general solution would
require training/learning against all possible observational configurations. Additionally, adding
prior constraints and merging different datasets is also problematic, since training typically results
in a mapping from observations from a sensor with particular characteristics to a set of biophysical
parameters, so extending these methods to other sensors requires extra training, and effectively,
solving a new problem. Since the physical RT models encompass a number of strong physical
constraints (energy conservation, reciprocity, . . . ), it begs the question of whether we should be
“learning” these concepts, or enforcing them directly in the inverse problem, in a similar way with
some a priori information. This is hard to do with practical machine learning algorithms, as the
priors are typically on the distribution of the state parameters, effectively the output of the mapping,
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and only limited prior information can be added through the training phase. Finally, a number of
methods make direct use of the physical models directly within a fully Bayesian scenario [6,7], with a
robust estimation of uncertainties and a flexible mechanism for exploiting prior information. A more
complete recent survey of other methods for biophysical parameter retrieval is given in [14], but
in general there is a clear trade-off between flexibility and robustness in the inversion (such as the
ability to easily include data from different sensors, extra a priori constraints, realistic evaluation of
uncertainties, generalisation of the approach to different regions) and the ability to apply the different
algorithms in practice. The most flexible approaches require a statement of the problem where the
physical model is explicitly required, and are thus limited in their application to large datasets by
the need to repeatedly evaluate a complex physical model. This is particularly the case for data
assimilation (DA) schemes, where the Bayesian paradigm is extended to estimate not just parameters
directly exposed by the RT model, but also unobservable parameters coupled to the observations by
a set of mechanistic models, the mechanistic model providing in this case an expectation of the land
surface parameters [15–17].

In this contribution, after having identified that one of the main bottlenecks in using advanced
DA techniques with EO data is the computational cost of the RT models, we introduce the concept
of emulators to the inverse RT problem. An emulator is a surrogate function that given an input
parameter vector, produces an approximation to what a full RT model would produce, and this
approximation is qualified by an uncertainty in the emulation. A critical property of the emulator
is that its execution is much faster than running the full model, and for this reason they have been
widely used in statistics [18–21]. We focus our attention in Gaussian process (GP) emulators, which
have been widely used in a number of fields (e.g., the climate and vegetation modelling communities
have used emulators for some time [22–25]). In Earth Observation, GPs have been used as fast
surrogates to computationally expensive models in [26] for sensitivity analysis. However, most of the
recent use (e.g., [13,27,28]) has used the GP as a traditional regression method, where for example, the
emulator is trained to provide a mapping between a set of input bands and an output parameter such
as LAI or fractional cover. More recently, the case of using machine learning techniques as emulators
has also started to be explored [14,29].

In an early work, O’Hagan [18] introduced the concept of emulators as a form of inference
over functions, and used to demonstrate analysis of the “emulated” functions. This concept is
also introduced by [19], and from there, exploited in a large number of scenarios (e.g., [20,21]).
Although most of these references refer to Gaussian Processes, other kinds of functions, from simple
polynomials to other more complex regression methods can be used. A good pair of review papers
in the practical use of emulation for engineering problems are given in [30,31].

2. Gaussian Process Emulator

f (x) is a function that maps from a set of input parameters (here combined in a vector x) to an
output scalar t. We can picture emulation as an inference problem: an emulator is a prediction of
the value of f (x), when only a limited set of N input vectors {x}N , and the corresponding function
realisations (or outputs) {t}N are available. The goal here is to infer the underlying function from this
reduced training set. In order to do this, it is useful to propose a Bayesian model, where the likelihood
is assumed to be Gaussian with variance σ2

n (in other words, the mismatch between the emulator and
the true model is Gaussian, or ti = f (xi) +N (0, σ2

n)), and a prior probability distribution function
(pdf). A general prior over a space of functions should encompass our understanding of the nature of
the function, but in general, we expect the function to be smooth and continuous, so that a useful prior
to use is the GP, a generalisation of the concept of a multivariate Gaussian distribution to functions.
A GP states that the value of a function at some location x can be modelled using a mean function and
a covariance function. Assuming that the mean function is 0 (this is a bias term that can be readily
added if needed), we are left with choosing a covariance function to fully determine the GP prior. The
posterior of this combination of GP prior and Gaussian likelihood results in a GP posterior, effectively
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predicting a mean and variance of the output of the original as a function of the input vector. The
process only requires the selection of a covariance function, which has the role of estimating the
smoothness of the emulated function, and fitting its hyperparameters to the training data. In this
work, we will focus on one of the simplest covariance functions available, the squared exponential,
which encodes a prior belief of a stationary covariance structure:

k(x, x′) = ν2 exp
[
−1

2
(
x− x′

)
W
(
x− x′

)>] (1)

In Equation (1), ν2 describes the variance, whereas the elements of the diagonal matrix W encode
the so-called roughness along each direction in input parameter space, where roughness refers to the
level of smoothness of the function. Once the likelihood and prior have been selected, the inference
reduces to inferring values for the hyperparameters (ν, W and σn) with a training set of input/output
pairs. While methods based on sampling can be used to infer the hyperparameters (e.g., [21]), simple
expressions for the Maximum Likelihood Estimate for these parameters are readily available, based
on minimising a log-likelihood function using gradient descent (see, for example [32] for details).
Once this step is carried out, the emulator is ready to be used. The expressions for the posterior mean
and variance due to an input x∗ can be calculated as [20,21,32,33]

µ∗ = k>∗ (K + ν2I)−1tN (2)

σ2
∗ = k∗∗ − k>∗ (K + ν2I)−1k∗ (3)

Here, k∗ denotes the covariance between the training samples set {x}N and the sample x∗, whose
prediction we are interested in. K is the covariance between the pairs of training samples, and k∗∗
is given by k(x∗, x∗). Equation (2) shows that the predictive mean is just a linear combination of
the model outputs used for training, weighted by their distance to x∗, which is controlled by the
choice of covariance function. This is identical to kriging in geostatistics, and we can indeed picture
the emulation process as one of interpolation of the function output given some observations and an
indication of how the function output varies with input parameters through the covariance function.
The predictive variance is independent of the training set tN , and only given by the covariance
function, and the distance of the test vector x∗ from the training input set. We can see that as the
distance grows between x∗ and the samples in {x}N , the uncertainty will also grow, assuming a
squared exponential covariance function as in Equation (1). From the point of view of computational
effort, once the hyperparameters that control the covariance function have been defined (and maybe
stored for later retrieval), predictions only require the calculation of a few Euclidean distances and
some vector-matrix products. Provided the training set is small, these are fast operations (but note
that if the N is very large, the Euclidean distance calculation required for estimating k∗ will dominate
evaluating Equations (2) and (3)). The simplicity encoded in Equations (2) and (3) is what makes
emulation fast: if the size of the training set is small (less than e.g., 500 samples), then the emulator
will be very fast. The fact that we are inferring an approximate function of the computationally
complex model that is e.g., smooth and continuous allows for this approach to accommodate complex
non-linear models, as we shall demonstrate. A further important point is to note that once we
have predicted the mean value of the function and its variance, it is simple to calculate the partial
derivatives from the definition in Equation (2):

∂µ∗
∂x∗

=

[
∂k∗
∂x∗

]>
·
(

K + ν2I
)−1

tN (4)

In Equation (4) we have a remarkable result: a generic way to calculate the partial derivatives of
an arbitrary function given only a set of paired input/output model runs [20], a result that removes
the need of using automatic differentiation tools to calculate gradients. In addition to being simple,
note also by comparison to Equation (2) that evaluating the partial derivatives using Equation (4)
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will also be very fast. In contrast, automatic differentiation adjoint evaluation computational costs
are of the same order of the original model (e.g., [7,8]). Having access to a good approximation to the
gradient of an arbitrary function is a also major step in using GPs in many DA algorithms, where these
are used for cost function minimisation, but also to produce linear approximations to non-linear
models. Note that higher order derivatives are calculated directly from the repeated application of
Equation (4), and allow the evaluation of e.g., Hessian matrices.

Given the reliance of the emulator in the training set, it is important to consider how to choose
the input parameters to run the original model and subsequently collect the outputs. A common
assumption is that the input parameters are uniformly distributed between a lower and upper
boundary, so that a simple way to maximise the sampling of the resulting multidimensional space
is to use a Latin hypercube sampling (LHS) scheme [19]. If the sensitivity of the model is expected to
be higher in some regions, the LHS can be rephrased to use a different probability density function
(pdf) than the uniform one introduced here to account for denser sampling in regions of very high
sensitivity. This is a straightforward modification of the standard LHS algorithm.

Extension to Full Spectrum Emulation

So far, we have only considered the mapping of an input vector x to a single scalar output.
However, in many applications, the emulation of a vector output, such as a reflectance spectrum in the
solar reflective domain is required. We demonstrate a way of doing this for functions that (typically,
but not only) return a smooth output. The approach can be simply described as a decomposition of the
model outputs produced during the GP training into a number of basis functions using e.g., principal
component analysis (PCA). The spectral model outputs ({ti} can then be written as a sum of weighted
basis functions, {w(j)}, with weights given by σ(j). Typically, only a few NT basis functions are
required to explain a vast percentage of the variation. A model output spectra ti can thus be written.

ti =
NT

∑
j=1

σ
(j)
i ·w

(j) (5)

The basis functions (at lest in the space spanned by the training set) are orthogonal, suggesting
that one could train a set of NT GP emulators to the weights in Equation (5), thus providing a set
of mappings between the input vector to the model, xi and the weights σ(j)i. The reconstruction of
the output spectrum is simply done by the linear expansion shown in Equation (5), which makes it
straightforward to extend this formalism to calculate spectral gradients, uncertainty in the prediction,
etc. We note that in the models that we have used below, the values of NT oscillate between
10 and 20. A larger number of basis functions will probably be needed for very detailed high spectral
resolution models, and although this requires evaluating potentially many GPs, resulting in a slower
emulator, in comparison with the original model, the run time of these emulators will still be orders
of magnitude less than that of the original model. Note that in these cases, if looking for particular
spectral features (e.g., absorption lines), it is important to ensure that the chosen subset of basis
functions actually encode that very localised effect, which might require deploying a hierarchical
structure of emulators, with a generic spectral emulator being used as a background emulator for
particular regions where very accurate evaluation of the model is required. This is a topic that we
will not cover in this paper.

In the following Section, we demonstrate the use of GP emulators to the emulation of state of the
art vegetation canopy RT models, combinations of atmospheric and canopy RT models. We also show
how parts of a model can be emulated, thus allowing the direct coupling of models using emulators.

3. GP Emulation Examples

The aim of this Section is to demonstrate the effectiveness of emulators in approximating
common RT models used in remote sensing applications. In particular, we show emulators that
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emulators can be used as a “drop-in” replacement for common leaf and canopy RT models. We
also show the use of the emulator approach in an atmospheric RT model across the solar reflective
spectrum. By showing that it is entirely feasible to replace both leaf/canopy and atmospheric RT
schemes with GP emulators, we highlight the possibilities for parameter retrieval in each case, which
will be demonstrated in Section 4.

3.1. Emulating Soil-Leaf-Canopy RT Models

In this Section, we show the effectiveness of using emulators to emulate two typical canopy
RT models: SAIL [34] and SEMIDISCRETE [35]. In both cases, leaf optical properties are provided
by the PROSPECT model [36,37]. For these examples, we assume further that a particular
viewing/illumination geometry is used, and we will emulate the directional surface reflectance in the
seven MODIS bands located in the visible near- and shortwave-infrared, assuming a flat bandpass
function for each band. The emulators are “trained” by running the original model combination
with a set of input parameters given by a Latin hypercube sampling scheme between the minimum
and maximum parameter boundaries (see Table 1). Both for PROSAIL and SEMIDISCRETE,
we have used 300 samples for the training. The emulators will be trained by maximising the
log-likelihood as indicated in [32] using a gradient descent algorithm, and assuming the covariance
function introduced in Equation (1). To avoid local minima in the minimisation stage, we start
the minimisation from five different random positions in hyperparameter space (we found that
for these examples, five different realisations are often enough, but for other examples with
poorer conditioning, more “restarts” might be needed). Once the hyperparameters have been thus
elucidated, the emulators are ready to use.

Table 1. Parameters for PROSAIL and SEMIDISCRETE, their symbols, units, quasi-linearising
transformations and boundaries (both in real and in transformed space). (∗ Only PROSAIL,
† Only Semidiscrete.)

Parameter Symbol Units Minimum Maximum Transformation
Transformed

Min
Transformed

Max

Leaf layers xleafn – 0.8 2.5 – – –

Leaf chlorophyll
concentration Cab µ g·cm−2 0.2 77 exp(−Cab/100) 0.46 1

Leaf carotenoid
concentration Car µ g·cm−2 0 15 exp(−Ccar/100) 0.95 1

Senescent fraction Csen – 0 1 – – –

Equivalent water
thickness Cw cm 0.0043 0.0753 exp(−50 · Cw) 0.028 0.81

Leaf dry matter Cm g·cm−2 0.0017 0.0331 exp(−100 · Cm) 0.037 0.84

Leaf area index LAI m2·m−2 0 8 exp(−LAI/2) 0.05 1

Average Leaf Angle ALA ◦ 0 90 ALA/90 0.44 0.56

Soil brightness scalar ∗ Bs – 0 2 – – –

Soil moisture endmember ∗ Ps – 0 1 – – –

Weight of the

first Price function † P1 – −0.5 1 – – –

Weight of the

second Price function † P2 – −0.5 1 – – –

An independent set of 1000 parameters drawn from a uniform distribution extending to the
minimum and maximum boundaries of each parameter will be used to assess the quality of the
emulation. To this end, a number of different metrics will be reported, such as root mean squared
error (RMSE) as well as simple linear correlation. A good emulator is one that is faithful to the
original model, exhibiting a strong linear correlation coefficient (e.g., upwards of 0.9), a small RMSE
error. In addition to this, the slope and intercept of the linear model between emulator and simulator
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should be close to one and 0, respectively. Finally, the maximum absolute error (MAE) should be of
the same order as the RMSE. A small RMSE value is defined in relation to the typical observational
error in surface reflectance (around 0.01 in units of reflectance, or around 10%–15% of the value of
reflectance [38] (note that due to the likely correlation induced by the atmospheric correction retrieval,
this value is probably optimistic). The rationale behind this is based on the fact that if the error in the
emulation is assumed to be independent of the observational error, and much smaller, then it can
be neglected.

The first example shows the results of emulating the SAIL and SEMIDISCRETE canopy models,
with leaf transmittance and reflectance provided by the PROSPECT model. The models were run
to estimate surface directional reflectance at a particular acquisition geometry, for the MODIS bands
(assuming a flat bandpass function over each band), as these bands are representative of a large
number of sensors. In both cases, the input training sets was of 300 samples. The results in Figure 1
(summarised in Table 2) show that the emulation performance is excellent: the correlation coefficient
is in excess of 0.99 for all bands, and the RMSE is two orders of magnitude less than the typical
observational error in surface reflectance. Additionally, the emulators provide an approximation to
the Jacobian and Hessian of the RT model. Although in Figure 1 we only show the results for a
single geometry, very similar results (i.e., RMSE errors of the same order, and correlation coefficients
in excess of 0.99) are obtained using other geometries.

Table 2. Results of the validation for the SEMIDISCRETE emulator using an independent set of
1000 model realisations over the MODIS bands. The emulator was created by using 300 forward
simulator model runs, selected with a Latin hypercube sampling design between the boundaries
indicated in Table 1.

MODIS Band Slope Intercept R RMSE MAE

1 1.002 1.222e-05 0.9995 9.774e-04 5.175e-03
2 0.999 1.562e-04 0.9998 5.602e-04 1.063e-02
3 1.004 −3.362e-05 0.9996 9.181e-04 2.371e-03
4 1.000 2.784e-05 0.9999 5.255e-04 2.048e-03
5 0.993 1.591e-03 0.9990 1.437e-03 3.588e-02
6 0.998 4.182e-04 0.9995 9.490e-04 1.587e-02
7 1.000 1.183e-04 0.9997 8.194e-04 1.135e-02
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Figure 1. Emulation performance for SEMIDISCRETE over the seven MODIS bands. The emulator
was trained with 300 forward model runs, and validated with an independently produced set of
1000 parameters. Acquisition geometry was set to nadir illumination and 30◦ viewing zenith.
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Figure 2 shows the same results for the PROSAIL leaf and canopy model (results are summarised
in Table 3). For the tested scenarios, emulation results in a near perfect reconstruction of the original
model, with just some small but still acceptable error for larger reflectances in the blue and green
bands for MODIS due to poorly sampled parameter space. This demonstrates the suitability of the
emulators for this task. In terms of timing on a standard Intel Core5 quadcore CPU, running at
2.2 GHz, a spectral run of PROSAIL took 10 s, whereas the spectral SEMIDISCRETE run took around
40 s. The emulator for each band takes of around 1 ms, so the speed-up in the emulation between
10,000 and 40,000 times the original model (note that this figures are only indicative). The speed of
the emulator is only a factor of the size of training sample, so faster emulators can be obtained with
fewer training samples, paying a price in terms of emulation accuracy. We have found that for these
models, using between 200 and 300 samples to train the emulator is often enough, but this will be
application dependent.
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Figure 2. Emulation performance for PROSAIL over the seven MODIS bands. The emulator
was trained with 300 forward model runs, and validated with an independently produced set of
1000 parameters. Acquisition geometry was set to nadir illumination and 30◦ viewing zenith.

Table 3. Results of the validation for the PROSAIL emulator using an independent set of 1000 model
realisations over the MODIS bands. The emulator was created by using 300 forward simulator model
runs, selected with a Latin hypercube sampling design between the boundaries indicated in Table 1.

MODIS Band Slope Intercept R RMSE MAE

1 0.984 0.000 0.999 1.669e-03 3.679e-02
2 1.000 −0.000 1.000 2.681e-04 1.307e-02
3 0.947 0.001 0.990 4.349e-03 4.678e-02
4 0.977 0.001 0.998 1.987e-03 5.585e-02
5 1.001 −0.000 1.000 3.523e-04 1.722e-02
6 1.000 0.000 1.000 3.210e-04 7.791e-03
7 1.000 0.000 1.000 2.416e-04 2.392e-03

3.2. Emulation of a Coupled Soil-Leaf-Canopy-Atmosphere RT Model Combination: PROSAIL and 6S

A further important example is the emulation of top-of-atmosphere (TOA) reflectance as a
function of the surface state, but also of atmospheric composition. This is done by coupling the
PROSPECT and SAIL models with the 6S atmospheric RT model of [39]. We assume a Lambertian
surface for the surface-atmosphere coupling, flat bandpass function for each band, and a constant
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illumination/acquisition geometry (in this case, the solar zenith angle was set to 0◦ and the view
zenith angle was set to 30◦. The relative azimuth angle was also set to 0◦). The Lambertian
assumption results in the following expression for TOA reflectance [39–41]:

ρTOA =
EµsTg

π

[
ρpath + T↓(θs)T↑(θv)

ρ

1− ρS

]
(6)

where ρpath is the intrinsic reflectance of the atmosphere, Tg is the gaseous transmittance, T↓(θs) and
T↑(θv) are respectively the downward and upward transmission factors, S is the spherical albedo
of the atmosphere and ρ is the surface reflectance. E is the extraterrestrial radiation and µs is the
cosine of the solar zenith angle. Assuming a continental aerosol distribution, the atmospheric effect
is governed by three parameters: (i) the aerosol optical thickness at 550 nm (AOT); (ii) the total water
vapour content (WVC); and (iii) the ozone O3 concentration. Therefore, we extend the state vector
to include these three terms (in addition to the leaf and canopy parameters), and as before, train an
emulator per MODIS band mapping from canopy and atmospheric parameters to TOA reflectance,
using 400 samples chosen using a Latin hypercube sampling design.

The results from validation using an independent 1000 samples (drawn using the same
procedure as for the previous Section) set are shown in Figure 3 and summarised in Table 4, showing
again the excellent predictive ability of the emulators (e.g., slope of the validation regression close
to unity, correlation in excess of 0.99 and RMSE small compared with typical TOA reflectance
uncertainty). The emulation error, results in this case in a signal to noise ratio (SNR) of around 40 dB.
In terms of SNR, the emulation error is larger than the noted observation uncertainty for MODIS
(with a design goal for the MODIS sensor of SNR better than 70 dB [42]. Remember that as well
as emulating the original model, the emulators are also providing an approximation to the Jacobian
of the model. The latter has been compared with numerical estimates obtained by finite differences
using the full model, and found to be accurate: correlation is in excess of 0.99 and bias is better than
0.01 (results not shown).
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Figure 3. Validation result of the single band coupled PROSAIL and 6S models of top-of-atmosphere
reflectance over the MODIS bands. The coupling is done under the assumption that the land surface
is Lambertian, and using a continental aerosol model. The emulator uses the PROSAIL parameters
as inputs, extended by aerosol optical thickness (AOT), atmospheric water vapour content (WVC)
and ozone concentration (O3). The validation has been carried out on a set of 1000 parameter values
drawn from uniform independent distribution over the parameter ranges.



Remote Sens. 2016, 8, 119 10 of 32

Table 4. Results of the validation for the coupled PROSAIL + 6S emulator using an independent
set of 1000 model realisations over the MODIS bands. The emulators were trained running the
PROSAIL + 6S model combination 400 times over a sampling pattern determined by Latin hypercube
design. The coupling between the surface and atmosphere is assumed Lambertian.

MODIS Band Slope Intercept R RMSE MAE

1 0.985 0.000 0.998 2.087e-03 3.889e-02
2 1.001 −0.000 1.000 1.888e-04 5.694e-03
3 1.061 −0.001 0.989 4.996e-03 2.635e-02
4 0.981 0.001 0.998 1.730e-03 5.136e-02
5 0.999 0.000 1.000 2.282e-04 5.256e-03
6 1.000 0.000 1.000 2.342e-04 4.954e-03
7 0.999 0.000 1.000 2.885e-04 1.857e-03

The emulation of the reflectance and its partial derivatives is done in a small fraction of the time it
would take to run the coupled model. In the previous three examples, the run time of the emulation is
the same: each emulation (and gradient estimation) takes around 1.5 ms in a contemporary computer,
and the cost scales with number of training sample (in the previous example, we have used 400 for
all the three experiments). Running the coupled atmospheric and canopy model takes on the same
computer around 45 s per model, which results in a speed-up factor of 30,000. It is important to
remark that this is done using a simple approach that only requires a few linear algebra operations,
and where the biggest cost is the training of the emulators (typically, this takes less than a minute per
band), a one-off cost as the hyperparameters and training set can be stored for re-use. Also, generating
the training set is a task that is trivial to parallelise in a computer cluster, even if the model cost is more
expensive than the ones envisaged here. Note that if the gradient estimation was required, each full
model run would require 15 model runs to calculate the finite differences, effectively making the
equivalent simulator take more than 11 min, whereas the cost of the emulation already includes the
estimation of the gradient.

These results indicate that even a naive approach to emulation is able to replicate fairly
sophisticated RT models of vegetation over individual bands. Moreover, the fact that a coupled
surface-atmosphere system works opens the door to direct parameter retrievals that include
atmospheric composition parameters, with the desirable property that the effect of the uncertainty
that results from the atmospheric RT model in the surface parameters is directly accounted for.
If surface reflectance is used, full uncertainty on the surface reflectance data is required. This is usually
not reported with products, and assumptions of band independence and constant uncertainties are
typically assumed [15,43].

3.3. Spectral Emulation of a Coupled Soil-Leaf-Canopy RT Model Combination

The previous examples show the feasibility of emulating complex models over relatively narrow
spectral bands. While these cases are important in practice, it is sometimes desirable to emulate
over the entire optical reflective region of the spectrum, e.g., from 400 to 2500 nm. This might be
because hyperspectral data might be available, or because different bandpass functions need to be
simulated. In some cases, bands that are very close to each other might exhibit strong correlations
that might in some cases not be resolved by the individual band emulators described above.
To demonstrate the multivariate output of the emulators, we demonstrate the same soil-leaf-canopy
setup presented above, focussing on the PROSPECT+PROSAIL combination. The method has already
been introduced in Section 2, and as said there, relies on the ability to apply a principal component
transformation to the spectral data, and emulating a subset of the loadings. For this experiment, we
have taken 250 spectra, the result of running the PROSAIL model with 250 input vectors determined
by Latin hypercube sampling over the ranges in Table 1. We have chosen to keep the first 11 principal
components, which in this case resulted in 99% of the total variance retained, and fitted emulators to
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each of the loadings. As above, we have produced a random set of 1000 input vectors (again chosen
within the boundaries in Table 1) as an independent validation.

In the top panel of Figure 4 we show the results of the validation. We can see that the mean
emulation error is very close to zero, as well as being spectrally flat. The spread over the validation set
is very small, with maximum deviations of around±0.005 in units of reflectance, and it appears larger
around the visible-red edge region. Note that the emulation error is about one order of magnitude less
than the observational error in typical instruments (as earlier, assuming an observational uncertainty
variance of around 0.1 in units of reflectance as per [38] although these figures are given for
atmospherically corrected multispectral sensors). This good performance is shown in the bottom
panel of Figure 4, where some of the validation spectra and their emulations are plotted together,
in many cases being hard to differentiate from each other. Although the results shown here are
for a particular angular configuration, similar results (with residuals not larger than 0.006 in units
of reflectance) have been obtained for other geometries. Additionally, we show a validation of the
emulated gradient against an estimate of the model gradient using finite differences in Figure 5. We
show the case of the gradient of PROSAIL with respect to leaf chlorophyll concentration at 650 nm and
with respect to LAI at 850 nm. The emulated gradient is very close to the finite differences estimate,
with the emulator showing a small discrepancy for lower gradient values of LAI at 850 nm, which
could well be an issue with the finite differences estimate, itself an approximation to the gradient.
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Figure 4. (Top panel) A set of ten simulated PROSAIL spectra (full lines) and their emulated spectra
using 250 forward model runs as a training set (dashed lines). The topmost emulated spectrum has a
grey area around it showing the ±σ emulation error. (Bottom panel) Distribution of the residuals (full
model minus emulator) of the 1000 model realisations validation dataset. We show the mean (orange
line), median (green line), and the 5%–95% (light grey) and 25%–75% (dark grey) percentile ranges.
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Figure 5. The emulated gradient of the PROSAIL RT model (estimated using a finite difference
approximation with a step size of which was set to 10−5 of the transformed parameter range). We
show the gradient with respect to leaf chlorophyll concentration at 650 nm (orange triangles) and with
respect to LAI at 850 nm (green triangles). The gradient is calculated around the 1000 independent
samples used to validate the model in Figure 4.

3.4. Spectral Emulation of Atmospheric Effects

The examples introduced in the previous Section demonstrate the ability of emulators to
accurately model single waveband, single acquisition scenarios. Using the approach introduced in
Section 2, we can demonstrate the emulation of full spectra. A particularly useful application is
the emulation of the different components of Equation (6): rather than emulate the coupled model,
it might instead be desirable to emulate the atmospheric effects over the solar reflective spectrum.
This opens the possibility of using other surface reflectance models (e.g., linear kernel models [44]),
and applying the approach to generic sensors, not only to a particular sensor as in the previous
examples where we only considered an idealised instrument with “MODIS-like” spectral properties.
To demonstrate this approach, we rewrite Equation (6) as

ρTOA = xb +
1
xa

ρ

1− ρ · xc
(7)

where we have written the top-of-atmosphere reflectance, ρTOA as a function of the path radiance
(scattered incoming radiation inside the atmosphere), xb, a (bi-directional) transmittance term, 1/xa,
the spherical albedo of the atmosphere, and the top-of-canopy reflectance, ρ. xa, xb and xc can be
calculated with e.g., 6S, and are functions of gas concentrations, aerosol species and abundance,
illumination/acquisition geometry, incoming solar radiation and the amount of atmosphere the
incoming radiation has to cross. In Figure 6 we show two examples of 1/xa, xb and xc between
400 and 2500 nm. In order to test the emulation of the 6S model, we run the complete model for
200 sets of parameters, for a particular acquisition geometry. The parameters were specified using a
Latin hypercube sampling scheme. Secondly, a set of 500 forward model runs where also run, but in
this case, the input parameters were chosen using a uniform random scheme. The outputs of these
700 model runs were spectra of 1/xa, xb and xc. The first batch of 200 simulations was used for
training, whereas the second batch of 500 was used for validation. Additionally, strong absorption
regions (1100–1140 nm, 1325–1475 and 1800–2000 nm)were removed from the spectra. For the first
batch (the training set), the three output spectra of 1/xa, xb and xc were decomposed using PCA.
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For 1/xa, we chose the first four principal components (which account for more than 97% of the
variance). For xb and xc, we chose two and one principal components, which respectively accounted
for more than 99% of the variance. This is unsurprising, given the relatively simple shapes of of xb
and xc in comparison with 1/xa, which suggest that only one or two basis functions will be required.
The emulators were then used to predict the validation dataset. Three individual examples of the
validation set are shown in Figure 7, with the full statistics of the spectral mismatch of the emulation
versus the true model shown in Figure 8, where we see that the results of the emulation are excellent,
with the mismatch between full and emulated model output being mostly flat and very close to zero
over the entire spectral range for the three output parameters, and showing very small deviations
from the zero line. Note that the vertical scales in Figures 6 and 8 are different). Although these
experimental results are shown here only for a single acquisition/illumination geometry and time of
the year, the results are similar for other geometric configurations and other periods. Given the small
emulation error, it would appear that emulating the different atmospheric components is a feasible
way to derive powerful methods for atmospheric correction which are still based on the physics
embedded in the original atmospheric RT model.
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Figure 6. Sample spectra for 1/xa, xb and xc simulated with 6S, assuming “Continental” aerosol type,
nadir looking illumination geometry and view zenith of 30◦. The simulation was done for day of year
138 (mid-may), and shows two spectra for two different atmospheric compositions, having different
water vapour, ozone and aerosol optical depths.

3.5. Full BRDF Coupling of a Soil-Leaf-Canopy Model and Atmospheric Spectral RT Model

In the previous sections, we have seen how to spectrally emulate vegetation RT models and
atmospheric models. In this section, we demonstrate the emulation of the coupled vegetation and
atmospheric models, providing a mapping from both atmospheric and vegetation parameters to
TOA reflectance. In this case, we will relax the Lambertian assumption introduced in Equation (7)
and will instead implement a full BRDF coupling of the land surface and atmosphere. The set of
input parameters for this experiment now comprises the aerosol optical thickness (AOT), atmospheric
water vapour content, leaf chlorophyll concentration, leaf brown matter pigment fraction, leaf dry
matter, canopy LAI, and soil brightness parameter. We additionally set the illumination/acquisition
to a solar zenith angle of 30◦, a view zenith angle of 0◦ and a relative azimuth angle of 0◦. The
spectral resolution was set to 5 nm over the 400–2500 nm range. A set of 200 parameters was used to
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train the emulators (as above, chosen using a Latin hypercube sampling design), and an independent
set of 1000 parameters, with their elements uniformly distributed were used for validation. In this
case, the water absorption bands were taken into account for the emulation training (as opposed to
the previous section, where they were masked out). This resulted in the PCA requiring a total of
59 principal components to capture 99% of the variance (although this number drops significantly if
the strong absorption bands are removed). An example of typical spectra and their emulation pairs
is shown in Figure 9, where it is clear that the emulator is able to reproduce the general trend of the
full model simulation, as well as being able to reproduce the small scale features. The validation
results with the 1000 independent parameter set are shown in Figure 10. It is immediately clear that
the mean difference between emulator and full model is very close to zero over the entire spectrum.
The RMSE distribution has is bounded to ±0.008 for 5%–95% quantile range, although a few outliers
remain. Most of the disagreement occurs in a few distinct spectral bands, and a slight decrease in
this disagreement can be seen moving from lower to higher wavelengths. Overall, the emulation
is extremely successful at replicating the full model, and although 59 basis functions were required,
the emulator prediction time is negligible in comparison to the coupled model run time (which on a
contemporary Intel Corei5 2.2 GHz CPU took 12 min versus 0.3 s that the emulator takes).
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Figure 7. Three examples of emulation of the 6S RT model. The three columns show three different
input parameter sets (indicated at the top). The set-up was for day 138 (mid-may), with nadir
illumination geometry and view zenith or 30◦, aerosol properties are selected as “Continental”, and
we show the output spectra from the model and the emulation (note that these particular model
configurations were not part of the data used to train the emulators).
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Figure 8. Validation of the 6S spectral emulation. The black line shows the mean difference over the
500 sample validation set, whereas the grey areas show the RMSE.
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Figure 9. Three examples of emulation of the coupled PROSAIL and 6S RT models. The three traces
show the full model (full line) for a particular set of input parameters, and the emulator prediction
for the same input parameters (dashed lines). The set-up was for day 138 (mid-may), with nadir
illumination geometry and view zenith or 30◦, aerosol properties are selected as “Continental”.
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Figure 10. Validation of the coupled PROSAIL+6S spectral emulation. The mean RMSE (blue line)
shows the mean RMSE, whereas the grey shaded areas show different quantiles (95, 90 and 50%).

4. Examples of the Use of GPs in Inverse Problems in Remote Sensing

The previous section has demonstrated the feasibility of emulating complex RT models and
model combinations, both on a “per band” and spectral basis. We turn now to the practical use of
these emulators in a number of inverse problems in remote sensing. To do this, we will demonstrate
the retrieval of land surface parameters from a set of realistic synthetic observations modelling
different sensors acquiring data over the same site over the course of a year. The simulated site will
have temporal dynamics of LAI, leaf chlorophyll (Cab) and leaf equivalent water (Cw), and we will
use the PROSAIL model to both simulate the observations and to retrieve the parameters. The latter
will be demonstrated using PROSAIL through suitable emulators. The aim of these experiments is
to show different approaches to the task of retrieving LAI, chlorophyll and leaf water from possible
satellite observation configurations, and to demonstrate that emulators play an important role in
making these methods applicable to practical problems.

4.1. The Synthetic “Satellite” Observations

We will simulate acquisitions for a site at a latitude of 42◦ N. The dynamics of LAI, leaf
chlorophyll concentration and leaf equivalent water are governed by a double logistic function. This
form was chosen because it has been widely used in other studies (e.g., [45,46]), as it shows distinct
high/low periods which can have different transition dynamics. The form of the logistic function is
given as

f (t) = p0 + p1 ·
[

1
1 + exp [p2 · (365t− p3)]

+
1

1 + exp [p4 · (365t− p5)]
− 1
]

(8)

(see Table 5 for the different parameters used in Equation (8)).
We will simulate observations from the upcoming Sentinel2/MSI [47], Sentinel3/SLSTR [48] and

Proba-V [49] sensors. Table 6 shows the different properties of the sensors. These include the revisit
period in days, the percentage of observations that are cloud free, the average correlation length
of the cloudiness field, the overpass time, as well as the sensor uncertainty that scales the generic
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uncertainty (where the standard deviation for a particular band is calculated as σρ, λi = mλi + c ). We
ignore any correlations between noise in the different bands, although there will likely be induced
by the atmospheric correction. Also note that we assume cloudiness to be independent of the sensor,
although it is likely that cloudiness will be strongly correlated for the sensors, given their overpass
times. Note that these decisions are approximate, and differ from the actual characteristics of the
three sensors. In Figure 11, the temporal trajectories of reflectance for the different sensors are shown.

Table 5. Default parameters and temporal parameter trajectories for the synthetic experiments.

Parameter Value p0 p1 p2 p3 p4 p5

N 2.1 – – – – – –
Cab 60 5 55 -0.3 122 0.1 240
Ccar 7 – – – – – –
Csen 0.5 – – – – – –
Cw 0.0176 0.004 0.043 −0.31 121 0.07 235
Cm 0.002 – – – – – –
LAI 2 0.1 5 −0.29 120 0.1 240
ALA 70 – – – – – –

Bs 1.0 – – – – – –
Ps 0.3 – – – – – –
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Figure 11. Temporal evolution of the forward modelled reflectances for the three sensors considered
in this work over a year.
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Table 6. Description of the different parameters used for simulating the different sensors in the
synthetic experiments. Noise model parameters are in units of reflectance.

Parameter Sentinel2/MSI Sentinel3/SLSTR Proba-V

Number of bands 12 5 4
Revisit frequency 5 days 2 days 2 days

Overpass time 10:30 AM 10:00 AM 11:00 AM
Variation in viewing zenith angle (VZA) 7◦ 0◦ 50◦

Percentage valid observations 30% 30% 30%
Average temporal window 12 days 10 days 11 days

Noise model slope m 0.0042 0.0075 0.108
Noise model intercept c 0.0028 0.005 0.007

4.2. Generic Strategy for the Inverse Problem

The observations presented above need to be “inverted” against an RT model or observation
operator in order to obtain land surface parameters. We will now develop a generic strategy to
obtain the posterior distribution, which we shall solve using different sets of computational tools
that will add extra constraints on the inversion. The first part of this is the specification of the
likelihood function. Under the assumptions that the model error is negligible (a given in this
case that the same model is used for creating the observations and inverting them), and that the
observational uncertainty is additive Gaussian with a zero mean and a covariance structure Cobs,
then the log-likelihood is given by

Jobs(x) = − log [p(x|R)] ∝
1
2
[H(x, Ω)− R]> C−1

obs [H(xΩ)− R] (9)

where H(x, Ω) is the RT model (PROSAIL) for a particular state x and acquisition geometry Ω.
In the examples below, rather than use H(x, Ω) directly, we shall use an emulator of the RT
model. Moreover, the actual acquisition geometry will be slightly different, as the library of single
geometry emulators we are using only sample discrete illumination/acquisition geometries. These
two decisions would induce some model error, that would be added to the inevitable emulation error
(this term is estimated directly using Equation (3)). However, we shall assume for simplicity that these
two are negligible: we have seen that the emulator uncertainty using a similar emulator to the ones
used in this problem (see Figure 4) is very small compared to the observational uncertainty. Angular
sampling is also fine enough to minimise the introduction of large errors. In case of considering them,
and assuming their are independent of the observational uncertainty, we would just have to change
Cobs in Equation (9) to

[
C−1

obs + C−1
emu

]
. The log-likelihood is thus the term that relates the state to the

observations. In our set-up we have assumed that the observational uncertainty is independent for
each band and sensor, implying that Cobs is diagonal. The value of x that minimises Equation (9) is the
maximum likelihood estimate of the state, or the best fit of the model parameters to the observations,
modulated by the uncertainty.

It is interesting to visualise a simplified version of Equation (9) and try to understand the
inversion task from it. Assume that other surface parameters except LAI are known, and we select
three different periods to plot Jobs(x as a function of LAI. This is shown in Figure 12, where both
the cost function and its derivative are plotted. The plots show the effect of replacing the full RT
model with its emulators. It is clear that the differences are very small, both in the value of the cost
function and its gradient (the comparison here is between the gradient of the full model calculated
by finite differences and that estimated using the emulator). We see that the minimum of the full
model and emulated cost function occur in the same region, and coincide with the derivative being
zero. Note that the minimum does not necessarily correspond with the true LAI value, particularly
for the examples where LAI > 2. The strong asymmetry of the cost function indicates that we
do not have a linear problem (which would be given by a quadratic shape), and shows the effect



Remote Sens. 2016, 8, 119 19 of 32

of saturation of the signal with high LAI. The large flat area around the minimum for the high
LAI cases is also suggestive of a large uncertainty in the estimate, a demonstration of the ill-posed
nature of the problem, and suggests that any method just based on the observations without any
additional constraints will struggle to retrieve a useful value of the land surface state. Additionally,
the shape of the cost function implies that information on the uncertainty is critical to fully understand
the problem.
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Figure 12. (Top) Shows the difference between the cost function for three different acquisition periods
using the Sentinel3/SLSTR synthetic data. The full lines show the cost function value as a function
of LAI using the full PROSAIL model, whereas the dashed lines show the value of the cost function
using the emulators (and using the emulator with acquisition geometry closest to the observations).
The circle represents the minimum of the cost function, and the grey call out is the mean value of LAI
for each period. (Bottom) The difference between the gradient of the cost function calculated with the
full PROSAIL model (approximated by finite differences, full line), and the gradient approximated by
using the emulators (dashed line) for the same cost functions shown in the top panel.

A way to improve on the limited information content provided by the observations is to add
more constraints in the form of prior information. A first step is to provide a prior distribution for
the parameters to be inverted. We will assume a fairly uninformative prior distribution, with the
parameter values being independent, and distributed as a Gaussian with a particular mean value
of 0.41, 0.78 and 0.37 (respectively, in transformed units using the transformations in Table 3, which
correspond to real parameter values of 1.8, 25 and 0.02, roughly the average value of LAI, Cab and Cw

over the simulated time series), and a standard deviation or 3 (in transformed units),

Jprior(x) = − log(p(x)) = 1/2
[
x− xµ

]> C−1
prior

[
x− xµ

]
(10)

Solving for the Posterior

Most methods will explore J(x) = Jprior(x) + Jobs(x), with a different set of assumptions that can
be made of shape of J(x). The limited information content that is encoded in the observations, as
well as little additional information available in the prior we have decided to use will in all likelihood
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result in large uncertainties in our estimation of the state. Advanced DA methods allow us to cleanly
incorporate more information into the inference problem, extending the form of Jprior(x) with, for
example, dynamic models of the temporal evolution of parts of the state vector. While these methods
tend to be computationally costly (typically requiring many evaluations of J(x), and of H(X) in
particular), they also provide not just an estimate of the state but also the associated uncertainty. We
believe this is a crucial part of the inversion problem. We will showcase three different methods of
inversion. The problems which we will solve are slightly different, deploying different assumptions
on the shape of the posterior distribution, and different prior assumptions. Each method uses the
same observations and likelihood, but the amount (and nature) of the prior information are different.

The first method (Section 4.3) follows quite directly from typical LAI inversion schemes, such
as the MODIS LAI algorithm [10], where all observations within a temporal window are inverted
together, with the assumption that the state is constant within the inversion period. Typically,
look-up table (LUT) methods have been applied to this problem. However, in the multisensor case,
these methods become more complex, due to the need to accommodate the different uncertainties
and acquisition times in consistent fashion. We choose to use a classical approach in Bayesian
statistics, Markov Chain Monte Carlo (MCMC). MCMC exploit the fact that samples from the
posterior distribution can be produced by drawing samples from a Markov chain with an appropriate
stationary (or equilibrium) distribution. Typical methods such as the Metropolis-Hastings approach
are computationally very expensive, typically requiring tens or hundreds of thousands of evaluations
of the posterior to reach convergence. Provided convergence is reached, the samples will be drawn
from the posterior pdf, so MCMC is a very general method. In this work, we use recent advances
in MCMC that exploit the gradient of J(x) to reach convergence faster (i.e., requiring far fewer
iterations). A common strategy in MCMC problems is to start sampling from close the maximum
a posteriori (MAP). We do this by starting the MCMC inversion from the point indicated by the
minimum of J(x) obtained by using a gradient descent method. This last method can also serve
as a benchmark of typical cost-function minimisation approaches.

The MCMC inversion approach, while being in many ways close to the state of the art shows
some limitations. The first one is that where no observations are available, the land surface estimation
system results in gaps or a fairly uninformative prior distribution. A second problem is the large
uncertainty in the estimates. Finally, although MCMC methods that employ gradient information
are more efficient than traditional MCMC approaches, the use of such methods is impractical, even
with very fast emulators. In [7], the idea of variational DA system in a scenario similar to the one
we have here was proposed. In that paper, the authors used the SEMIDISCRETE model, and used
AD tools to calculate its adjoint and thus have access to the gradient. Another innovation shown in
that paper is the use of regularisation, essentially a model of parameter evolution that is enforced as
a “weak constraint” [7,50,51]; in other words, this simple model is assumed to have an error. The
dynamic model states that state of the land surface does not change between two consecutive time
steps. This extra information results in a transfer of information in time that exploits the temporal
correlation in the land surface, resulting in an important reduction of uncertainty in the estimates of
model parameters, as well as an ability to optimally interpolate over regions where no observations
are available. We implement this method in Section 4.4. Note that a number of assumptions are made
on the shape of the posterior using this method. These include the requirement of the statistics to be
Gaussian, and an assumption that the models are linear.

The third example is the particle filter (PF) (Section 4.5). In some applications, we require near
real time monitoring capabilities. This means that only data up to a particular time t is available,
in contrast to the variational system in Section 4.4, where the entire time series is available, and we
wish to infer the state at times 1 . . . t. We will still want to use models as a weak constraint (such
as before) to better condition the inference, but clearly the quality of the results should be inferior,
as the estimate of the state will only be constrained by past observations and not future ones. The
tools to perform this kind of analysis are called “filters“, perhaps the best well known filter is the
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Kalman filter, a simple method but constrained by a number of strong assumptions (linearity of the
observation operator that translates the state to observation space, linearity of the dynamic model,
and Gaussian statistics). Extensions to the original Kalman filter [52], such as the Ensemble Kalman
filter (EnKF) [53], Extended Kalman filter (EKF, [54]) try to circumvent these limitations. Another
family of filters are particle filters (PFs) [55], which work on the assumption that a finite set of particles
can be seen as samples from the state. In a PF, a set of particles (vectors describing a realisation
of the state) are propagated with a dynamic model, with an additional uncertainty inflation due to
the model error, which is conceptually the same as the weak constraint in the variational scheme
presented in Section 4.4. When an observation is present, it is assimilated, meaning that the particles
are updated to reflect the information content of the assimilated data. A number of different PF
schemes have been devised [17,56,57], but we will focus on the sequential Monte Carlo particle filter
introduced by [58,59]. In this filter, a set of particles are propagated individually by the model and its
uncertainty. When an observation is assimilated, a particle is chosen randomly and the value of the
posterior for the state represented by the particle is evaluated. Next, another particle is chosen and
the value of the posterior is evaluated. This new state is accepted or rejected using a Metropolis test
with respect to the first particle, and the process is repeated for all other particles in the ensemble,
resulting in the new set of particles sampling the state conditioned on the observations up to the
current time step. We will apply this filter to obtain daily estimates of LAI, Cab and Cw from the set
of observations introduced in Section 4.1.

4.3. Inversion Using Markov Chain Monte Carlo (MCMC)

In this section, we will gather all the available observations in an eight day period, broadly the
temporal reporting period for the MODIS (Collection 5) or CYCLOPES LAI products, see [12,60],
and infer LAI, Cab and Cw, conditioning the problem with some uninformative prior distributions.
If no observations are available in a particular period, no inference will be made (in these cases,
the system would just return the prior distribution). The observations will give rise to the negative
log-likelihood function, −Jobs(x), which will be added to the prior distribution −Jprior(x to obtain
the log posterior. To sample the posterior distribution, we will use the NUTS (No U-Turn Sampler)
MCMC sampler introduced by [61]. The novelty of this sampler is that rather than sample from the
posterior using a random walk behaviour like the traditional Metropolis-Hastings sampler, it uses
information on the gradient of the posterior to optimise the exploration of the posterior parameter
space. The benefit of a more efficient exploration of posterior parameter space has the added burden
of the need to calculate the gradient of the posterior, a task that in our case, is easily done with the
emulators. We will run the NUTS sampler with 500 iterations per observation period, and will run
ten independent chains to check for convergence.

We will use the MAP value as the starting point for the MCMC chains, to ensure faster
convergence. The MAP approach is an interesting comparison, as it is a very fast method with the
emulators, although the lack of meaningful prior information will probably make the effort unreliable
due to the existence of local minima, or as seen in Figure 12, due to the very broad shape of Jobs(x).

The results are shown in Figure 13. For LAI, and if LAI < 3, retrievals are accurate, with a
small uncertainty. As LAI increases, the uncertainty grows notably, and we note how the medians on
the posterior distribution, as well as the shape of the distribution itself show notable changes from
one 8-day period to the next. In some cases, the MCMC sampler is able to correct the initial starting
MAP point, but the general trend is one of underestimation of LAI, probably a consequence of the
saturation of reflectance with LAI. For Cab, in the low LAI period, the MAP starting points show
either very high or very low values. This is consistent with the lack of influence of leaf pigments
when LAI is very low. We note how the distributions are very broad throughout the entire inversion
period, and in some cases, the NUTS sampler brings the result closer to the synthetic truth. The period
between DoYs 100 and 150 is poorly predicted. This is a consequence of the paucity of observations
(see Figure 11) (this effect is also noticeable for LAI, although not as marked). Cw shows a pattern of
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high uncertainty in the starting period, but the result is often closer to the true value than is the case
for Cab. The Cw plateau is often underestimated, but with significant uncertainties (around 0.02 for the
5%–95% posterior interval). For the three parameters, inference of the state is much more robust on
the trailing edge than on the leading edge of the plateau, an effect of the lack of Sentinel-2 observations
throughout the period between DoYs 110–220. The limited SLSTR and ProbaV observations have
higher noise contributions, and are not as informative (in particular for Cab, where the red edge bands
in Sentinel-2 prove decisive). This results in an uncertain estimate of LAI, Cab and Cw during the
plateau period. This situation can be fairly typical, and shows the limitations of data availability.

4.4. Variational DA Solution: EO-LDAS Framework

In this section, we will use a new version of the same code library introduced in [7] (available
online [62]) to solve the problem introduced in Section 4.2. We will extend the cost function that was
being explored in Section 4.3 with a new term with the dynamic model constraint, resulting in the
following cost function to minimise with a gradient descent method:

J(x) = 1
2 [R−H(x, Ω)]> C−1

obs [R−H(x, Ω)]

+ 1
2
[
x− xp

]> C−1
prior

[
x− xp

]
+ 1

2 [x−Mx]> C−1
model [x−Mx]

(11)

In Equation (11), the main assumption is that the three terms are differences of the state vector
(or transformations of the state vector) and other constraints: the first one is the mismatch of the
state (transformed into reflectance using the RT model) with the observations (modulated by their
uncertainty, given by Cobs), the second is the mismatch of the state from the prior distribution (given
by the mean vector xp and covariance matrix Cprior), and the final term is the mismatch of the state
from what the dynamic model M predicts (modulated by the uncertainty in the dynamic model,
Cmodel (in this case, Cmodel = Γ · I. For the model, we shall use a first order difference model, applied to
each parameter individually (see [7] for more details). The regularisation parameter Γ in this example
has been chosen for LAI, Cab and Cw by inspection of the results, but in a practical setting, this would
need to be done by using some form of crossvalidation.

The cost function in Equation (11) is simply minimised using a gradient descent algorithm.
Uncertainty is calculated by evaluating the Hessian at the MAP point, and inverting it to obtain
the posterior covariance matrix (note that this approach is only strictly true if the model is linear).
The results are shown in Figure 14, and show a marked improvement with respect to those shown
in Figure 13. We can see how the regularisation has resulted in a complete time series with no gaps,
reporting the value of the three inferred parameters for each day in the year. LAI and Cab retrieval
fairly good, with LAI in the plateau being slightly underestimated. Cw has more problems, showing
a poor performance in the earlier “green up” edge, but in a pattern similar to that shown for Cw

in Figure 13. Using the selected regularisation results in very smooth time series, but also reduces
the uncertainty considerably, resulting in the undesired effect of the predictions and the uncertainty
bounds not covering a substantial period of the e.g., high LAI period.
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Figure 13. Results of inferred posterior parameter distributions for the inversion with simple gradient
descent algorithm and NUTS MCMC sampler, in both cases using GP emulators in lieu of the full RT
model. The observations of every eight day period have been inverted assuming that the parameters
are constant within the inversion window. A Gaussian uninformative prior is used to constrain the
observations. The dashed line shows the ground truth, the dots show the value of the minimisation,
and the grey areas represent the posterior parameter distribution. The dash indicates the median of
the posterior parameter distribution.
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Figure 14. Results of inferred posterior parameter distributions using the eoldas_ng package,
supplementing the fit to the observations by a prior distribution and a first order regularisation model.
The orange line shows the value of the maximum a posteriori (MAP) estimate, with the grey area
representing the 5%–95% posterior interval. The green dashed line shows the truth.

4.5. Simple Particle Filter

In the PF example, we shall be using as the regularisation model introduced in Section 4.4, so that
xt+1 = xt +N (0, Q), where Q is a diagonal matrix with entries encoding a model error (standard
deviation) of 0.025, 0.032 and 0.032 for LAI, Cab and Cw, respectively. As before, note that this
uncertainty refers to transformed units (Table 3). We have used 1000 particles for this experiment,
although the results were very similar (in terms of posterior parameter distributions) using only
500 particles. The results are shown in Figure 15. Tracking of LAI is good, with the true value being
inside the 25%–75% percentile range most of the time, except towards DoY 250, where the modest
number of observations results in the model taking precedence over the data, and thus delaying the
decay of LAI. We also note the large asymmetry of the uncertainty in the plateau period, a symptom
of the LAI saturation effect. Estimation of Cab is poorer than LAI. As before, the period without
Sentinel-2 data around DoY 125 results in the model taking precedence and Cab not tracking the
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ground truth. Similar explanations explain the funnel shape of the uncertainty envelope around DoY
50 and after DoY 310. The evolution of Cw is similar to that shown in the Figures 13 and 14. We can
see how the uncertainty is larger in the PF example, due to the filter only using information up to the
current time step.
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Figure 15. Evolution of the land surface parameters (from top to bottom: leaf chlorophyll
concentration, leaf equivalent water thickness and leaf area index) derived from the synthetic
observations introduced in Section 4.1. The parameters were inferred using a particle filter. The
dynamic model used is a first order regularisation model, and we have used 10,000 particles. The plots
show the mean particle, the 5%–95% and 25%–75 % posterior intervals, as well as the ground truth.

5. Discussion and Outlook

In this paper, we have demonstrated the use of Gaussian Processes as emulators for
computationally demanding radiative transfer codes typically used in land vegetation and
atmospheric remote sensing. The emulators work well as fast surrogates of the models tested here,
providing not only an accurate prediction of the model output, qualified by a predictive uncertainty,
but also an approximation to the partial derivatives of the emulated model. The standard GP fitting
method has been extended to deal with multivariate output (e.g., spectra) in Section 2, which is
attained simply by a principal component transformation of the spectra, and then using univariate
emulators on the principal component weights. The univariate emulators (Sections 3.1 and 3.2),
where the emulator produces a mapping between input land surface parameters and the reflectance
or radiance over a particular band. The results of these experiments show that it is possible to
produce extremely accurate predictions (in the sense that the residual of the emulated model with
respect to the full model is always much smaller than the typical observational error) of the RT
models that we have used here, which are typical of a typical complexity. The spectral emulators



Remote Sens. 2016, 8, 119 26 of 32

have also been successfully demonstrated for a vegetation RT model (Section 3.3, and for a coupled
vegetation and atmospheric RT model (Section 3.5). In either of these two examples, the results of
the emulation were excellent (i.e., over an independent validation dataset, the difference between
emulator and model is very small compared with typical observational uncertainties) and as the
complexity of the emulated model increases (e.g., in terms of processes modelled), so does the relative
speed up of the emulation. The previous examples show a fairly inflexible approach to emulation:
a model (or a set of models) are emulated together. In some cases, more flexibility is required, and
in Section 3.4 we have demonstrated how this can be achieved by emulating individual parts of the
model with the 6S atmospheric RT model. The emulators are able to replicate the spectral functions
from atmospheric path length, two-way transmittance and spherical albedo with a very small error in
terms of reflectance. If this ability can be generalised to other models or parts of models, we envisage
the development of models made up of generic coupling terms that link different emulators, linking
for example different vegetation layers, the atmosphere, ..., and realising a very versatile RT model in
which individual parts can be exchanged by just using a different emulator.

A particular problem with approximating any function from a few samples is how to ascertain
that the approximation is robust when predicting new outputs. We have used a limited validation
set in this work, assuming that the statistics resulting from a comparison of the emulator output with
this validation dataset are sufficient to use the emulators reliably, an approach not dissimilar to that
in [63]. However, work on more formal methods to validate the emulators, including the predictive
uncertainty, are clearly required.

The results shown in this paper have been achieved with perhaps the simplest covariance
function available, the “squared exponential” introduced in Equation (1). A limiting problem that
has hitherto been ignored in this work is the emulation of angular effects, as for all the models we
have used, we have assumed a fixed illumination/acquisition geometry. In practice, we have got over
this limitation by creating a library of emulators sampling over a range of illumination/acquisition
values. However, emulation of the entire BRDF is of importance, as one can then use emulators to
calculate the angular integrals that result in e.g., albedo, paving the way for a consistent treatment
of biophysical parameters, as recently shown by [64]. The main difficulty in emulating full BRDF
is due to the output space being non-stationary, due to sharp localised angular effects such as the
hotspot effect. These could potentially be dealt with using a different covariance function that deals
with non-stationarity as shown in e.g., [65,66]. Another approach could be to detrend the data using
a simpler model, so that the resulting residual meets the stationarity condition better. We have not
yet investigated these avenues, and they remain an important area to explore in the future.

The results shown in Section 4 are indicative of what is possible when fast RT models (and
their gradients) are available through emulation. In the illustrative experiments introduced in the
previous section, we demonstrate novel biophysical parameter inversion approaches using data
assimilation techniques that were up to now impractical. These include using advanced MCMC
techniques that rely on the use of the gradient of the log posterior to sample parameter space more
efficiently (although just having faster RT models would be an enormous advance for the use of
MCMC techniques). The importance of this approach is that it allows one to test the assumptions
embedded in retrieval algorithms. For example, in [7] the posterior covariance matrix is calculated
as the inverse of the Hessian, something that will only hold if the uncertainties are Gaussian and the
model is linear (to some extent, the use of linearising transformations partly resolves this problem),
but this assumption can be tested now by using MCMC methods, which directly provide samples of
the true posterior distribution of parameters.

A number of authors use gradient descent methods to minimise a cost function within a retrieval
scheme [7,9,67–69]. In some cases, approximations to the RT model gradient are produced using
automatic differentiation tools, whereas in other cases, a numerical approximation to the gradient
using finite differences is used. Both methods are in practice limited by the size of the state space,
which requires many evaluations of the cost function and its gradient. Finite differences can also
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in some cases result in unstable results. These problems are circumvented by the use of emulators,
providing a very fast alternative way to evaluate the RT model and its gradient (as well as higher
order terms, such as the Hessian). Efficiency is also important in these methods, as in order to avoid
local minima, a large number of starting points are typically used in the optimisation procedure. If the
optimisation is lengthy, the number of starts might result in many optimizations not moving from the
local minimum.

Finally, we have also shown the use advance DA concepts in the inversion. While DA methods
allow a direct way to incorporate prior knowledge, including from complex dynamic models of
the land surface, their implementation is typically complex, requiring either access to gradients
(variational methods, Section 4.4) or to Monte Carlo approaches (Section 4.5). In either case,
the exploration of the problem is time consuming, requiring many iterations in a cost function
optimisation, or requiring many evaluations of the model to create e.g., an ensemble of particles.
These are all situations where emulators shine, as they greatly reduce the computational cost
associated with running a potentially costly observation operator. In the examples we have shown,
it is clear that the use of more sophisticated inversion approaches results in better estimates of land
surface parameters. While we have not done so in this work, the inclusion of parameter trajectories
predicted by dynamic vegetation models [15] or crop models [70] might also be of interest. Given the
complexity of these models, particular care should be paid to their emulation [71,72]. Complexities of
dynamic models arise from the fact that the output is an update of the input (e.g., in a vegetation or
crop model, the LAI at one time step is used as an input to the model, and is modified internally to
provide an update on the value of LAI for the next time step). A simpler way forward might also be
to use the same RT models in the retrieval schemes as within vegetation models, as this would ensure
consistency of the vegetation model and observational parameters [73].

The spectral decomposition method introduced in Section 2 appears to be robust in the kind
of problems that we are considering, but the PCA decomposition might blur particular narrowband
features. To this end, a multiscale approach, where a first emulator over the entire range is provided,
with narrowband detailed emulators are used to add detail in the regions of interest [74].

In general, emulators provide a generic way to incorporate different models in inversion
schemes. This facilitates the inclusion of different physical models, as all that is needed to incorporate
a new model is the relevant definition of the emulator (e.g., the training input/output pairs and the
hyperparameters). The gain in speed also suggests that a generic function like a GP might be a better
target for optimisation and the use of massive parallel architectures: rather than adapt the physical RT
model to meet the requirements of the parallel architecture (as done in e.g., [75]), it is easier to provide
a parallel implementation of the emulator code, that is then generic for many models. It should also
be noted that emulators allow model developers to be more ambitious with the numerical complexity
of their models: it is possible to start considering more realistic or accurate models, as provided a fast
emulator is available, running the original model will not result in a processing bottleneck.

While in this work we have developed and tested emulators for some widely used RT models, we
have not tested the limits of emulation. For example, some RT models might have e.g., more detailed
descriptions of the canopy, and thus require a larger set of input parameters. The sensitivity of these
input parameters might result in non stationary outputs, something with which the current version
of the emulators struggle. In some cases, training sets might require to provide a more targetted
approach than the current Latin hypercube sampling design. In some cases, initial coarse emulators
might be used to infer local sensitivity indices, and these used to inform the Latin hypercube design
(by using an underlying pdf that is more informative than a uniform distribution between two
values).

The increasing range of higher spatial and temporal resolution observations available from
current and planned EO missions presents a challenge in turning these observations into
uncertainty-quantified estimates of the state of the land surface. Robust and consistent methods
that are able to use data from all sensors are computationally costly, and require the use of RT
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models, which render approaches based on sophisticated DA concepts impractical. Emulation using
Gaussian Processes, as demonstrated in this contribution, should be considered as a way to continue
exploring the use of DA concepts in parameter retrieval, and in blending models of the land surface
with observations.

6. Conclusions

In this paper, we have introduced the concept of emulation to radiative transfer (RT) models
using Gaussian processes (GPs). An emulator is an approximation of a complex function, and thus
acts as a very fast drop-in replacement for the original RT code in e.g., a biophysical parameter
retrieval scheme. An important additional benefit oemulators is that they provide a very good and
fast approximation to the full model output, as well as providing an estimate of the uncertainty of
this approximation and very fast access to an approximation of the gradient of the original RT model.
We have shown that emulators can be produced for typical RT codes that are widely used by the land
surface and atmospheric remote sensing community, both targeting particular spectral bands, or used
over the solar reflective domain (wavelenghts between 400 and 2500 nm). Typical speed ups were in
the range of 10,000 to 50,000 times, with very modest emulator training requirements. Python code
for the emulators introduced in this work is available from the authors [76].

We have used emulators of the PROSAIL RT model in novel parameter retrieval approaches,
including Markov Chain Monte Carlo methods that exploit the gradient information, variational DA
methods and a sophisticated particle filter. These experiments were run with a synthetic multi-sensor
data acquisition scheme. In all three cases, emulators were shown to be suitable for parameter
retrieval purposes. The experiments highlighted how emulators can be used with sophisticated
inversion methods practical, and also how these sophisticated methods (in particular, the addition
of simple models of the temporal evolution of the land surface parameters) lead to complete and
gap-filled time series of the parameters, as well as a better estimation of the parameters with
reduced uncertainties.

Emulators provide a pragmatic approach to speed up complex RT codes, opening the door to
more computationally ambitious retrieval schemes. The rapid access to model gradients also opens
the door to more efficient and sophisticated approaches parameter inversion methods. Additionally,
emulators might be used to bypass individual processes within a larger model. An example of this
would be the nesting of a complex canopy radiative transfer (RT) model in a dynamic vegetation
model. The canopy RT model could be emulated for numerical efficiency. The concept can be taken
further towards nesting models within models, in a similar fashion to what is shown in Section 3.4.

The rich data acquisition environment that is envisaged for the Sentinel era requires a
combination of sound physical RT models and inference schemes to optimally combine all available
observations to produce our best estimate of the state of the land surface, fully qualified by a credible
uncertainty estimate. We have shown that emulators can play a critical role in advancing biophysical
parameter schemes.
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