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Abstract: The Special Issue (SI) on “Remote Sensing of Water Resources” presents a diverse range of
papers studying remote sensing tools, methods, and models to better monitor water resources which
include inland, coastal, and open ocean waters. The SI is comprised of fifteen articles on widely
ranging research topics related to water bodies. This preface summarizes each article published in
the SI.
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1. Overview and Scope

Water resources remain the most abundant natural resource and the major driving force on our
planet which supports numerous ecosystems, commercial, and cultural services—from maintaining
biodiversity, nutrient cycling, and primary productivity, to recreation, fisheries, ecotourism, transport,
and religious uses. The pressure on water resources has been on the rise and will continue to increase
in the coming years because of increased frequency of drought, urbanization, urban population growth,
deforestation, increased use of fertilizers and pesticides, and spread of invasive species. It is expected
that the quality of surface water both inland and coastal will deteriorate with continued warming due
to global climate change. Rising temperatures along with excessive nutrient, sediment, and pesticide
pollution will exacerbate water quality degradation in many ways including triggering super algal
blooms and ultimately making the water body toxic, hypoxic, and stratified. Therefore, accurate,
inexpensive, and rapid monitoring tools and models using remote sensing are needed for timely
implementation of conservation and restoration measures in problematic areas.

The main goal of this Special Issue on “remote sensing of water resources” was to highlight
some of the remote sensing-driven applied research currently being performed to solve some of
the aforementioned problems in water resources. Manuscripts were invited covering a broad range
of application of remote sensing in monitoring water resources, including model and algorithm
development, analysis of data from new satellite sensors, long-term time series and phenological
analysis of water quality and productivity parameters, and novel concepts for effective water resource
management. The response to the Special Issue call was overwhelming and, at the end of the process,
fifteen papers were incorporated in the issue covering a wide range of interesting topics. The section
below provides a brief overview of each paper published in the Special Issue on “Water Resources”.
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2. Highlights of Research Articles

In their study, Pisano, Bignami, and Santoleri [1] presented a methodology for the detection of
marine oil spills using Moderate-Resolution Imaging Spectroradiometer (MODIS) 250 m near-infrared
band. They specifically selected seven glint contaminated images to calibrate their model and validated
the results on four separate images. They used a ratio of MODIS-retrieved normalized sun glint
radiance and the sun glint radiance from Cox and Monk isotropic sun glint model. Oil spill-affected
MODIS pixels were isolated and mapped because of their anomalous ratio values. Their method could
easily be automated for spill detection using other optical satellite data.

Kamerosky, Cho, and Morris [2] used MEdium Resolution Imaging Spectrometer (MERIS)
based chlorophyll-a algorithms, specifically the normalized difference chlorophyll index (NDCI) and
two-band model, to map the phenology of the 2011 super bloom in Indian River Lagoon (IRL), Florida.
Based on NDCI results they concluded that the 2011 super algal bloom in IRL began between March and
April in the Banana River. Heavy rainfall induced nutrient runoff triggered the bloom which peaked
in October 2011. The bloom collapse also coincided with heavy rainfall and decreased temperature.

Kong et al. [3] developed a semi-analytical model based on quasi analytical algorithm (QAA) to
retrieve suspended sediment concentrations (SSC) for the Gulf of Bohai, China. Model comparisons
revealed a higher accuracy and universality for the developed model. SSC was mapped using Landsat
TM data which revealed the Yellow River to be the main source of sediment in the Gulf of Bohai.

In their study, Yang et al. [4] successfully characterized and mapped a river network from the noisy
image background using their Gaussian-like cross-section and longitudinal continuity. Their proposed
methods were able to accurately classify images to a binary river map using automatically determined
threshold. Their method could be a useful tool to map surface water features, a practical application
for water resources research.

Gebere et al. [5] evaluated the performance of TRMM, PERSIANN, and GSMaP rainfall products
on a daily, monthly, and seasonal basis over eastern highlands of Ethiopia. Comparison of satellite
data with rain gauge data revealed that TRMM 3B42 had better performance over the other sensors.
However, they also concluded that TRMM products cannot be used without modifications, such as
compensating for local orographic effects.

In their study, Bao et al. [6] developed a normalized mutual information (NMI) weighted algorithm
to estimate chlorophyll-a from the Geostationary Ocean Color Imager (GOCI) data based on a similarity
measure/clustering method using in situ normalized spectral data that was also applied to the GOCI
data. The NMI weighted algorithm was shown to have higher accuracy and reduced discontinuous
effect in comparison to non-classification and hard-classification algorithms with the method applicable
to different remote sensing images and chlorophyll-a retrieval algorithms.

Delgado et al. [7] conducted seasonal and inter-annual analysis of chlorophyll-a and inherent
optical properties (IOPs) from MODIS derived ocean color products between 2002 and 2010 for the
inner and mid shelf waters of the Southwestern Buenos Aires Province, Argentina. The inter-annual
and seasonal variability of the ocean color parameters of the regions identified based on the coefficient
of variation and the Census X-11 method revealed remarkable linkage between the climate variability
and the IOPs which could be considered as proxies of the biological and physical parameters of
the region.

In their study, Yao et al. [8] assessed high-resolution monitoring of urban water bodies using an
automated urban water extraction method (UWEM) that combined a new water index and a building
shadow detection method for the ZY-3 multi-spectral imagery. Comparison with the normalized
difference water index (NDWI) indicated significantly better and more stable performance of the
UWEM that generally minimized over- and under-estimation issues when mapping urban surface
water under complex environmental conditions.

Joshi and D’Sa, [9] studied the effects of meteorological and hydrological factors, such as wind
speed, freshwater diversions, and river discharge, on the spatial and seasonal variability of colored
dissolved organic matter (CDOM) in Barataria Bay, LA, USA using field and Landsat-5 TM imagery.
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Landsat-derived CDOM maps using a new empirical band-ratio algorithm generally captured the
major details of CDOM distribution and seasonal influences suggesting the potential use of Landsat
imagery to monitor biogeochemistry in coastal water environments.

In their study, Song et al. [10] describe the use of machine learning methods that should enhance
a decision support system for predicting the distribution of coastal ocean algal blooms based on
remote sensing data (MODIS and MERIS) in Monterey Bay, CA, USA. In addition to chlorophyll-a and
fluorescence line height (FLH), sea surface temperature (SST), cloud cover and diffuse Attenuation
coefficient at 490 nm (Kd(490)) satellite products were also used to increase the bloom event prediction
performance which were validated using in situ field experiment data. Overall, the random forest
model performed better than previous trials based on a support vector machine (SVM) for satellite
data obtained between October 2010 and April 2012 that should aid scientists to formulate strategies
for deploying robots in the coastal ocean for more detailed in situ exploration.

Zheng et al. [11] developed a model using Landsat images to monitor total suspended matter
(TSM) concentration during wet seasons from 1978 to 2013 in Dongting Lake, China. Near Infrared
(NIR) band data and in situ measurements were used to train and test an empirical model through
rigorous calibration and validation analyses. It was found that the water level and precipitation were
the primary factors behind TSM spatio-temporal variation in Dongting Lake during the study period.
Anthropogenic activities, such as sand mining and construction of dams, altered the TSM variation
since 2000.

In the study by Zeng et al. [12], a natural rule based connection (NRBC) method was developed to
automate the extraction of river networks from high resolution Worldview-2 imagery. After creating an
initial water mask through unsupervised classification, their method innovatively uses NRBC approach
to connect a group of potential connected water patches based on width of the gap, consistency of river
direction, consistency of river width, minimum segment length, and consistency of image intensity.
Finally their method generates a refined river centerline map for its potential application in flood
extent mapping, validating hydraulic models, and management of water quality and quantity.

Xue et al. [13] developed a remote sensing approach to estimate phytoplankton vertical profile
classes in a shallow eutrophic lake in China from MODIS Rayleigh-corrected reflectance (Rrc) data.
Their classification and regression tree (CART) approach used combined information from normalized
algal bloom index (NDBI) and local wind speed data in order to retrieve four vertical profile classes:
(1) vertically uniform; (2) Gaussian distribution; (3) exponential distribution; and (4) negative power
function in Lake Chaohu. Results from this research look promising although extensive validation of
this approach is required to prove its transferability to other geographic regions.

Shen et al. [14] presented a fuzzy c-mean (FCM) based clustering method to classify several
optically complex waters in China using in situ remote sensing reflectance (Rrs(λ)) data. Initially the
proposed classification scheme clusters the remote sensing reflectance spectra into four classes and
then it establishes the relationship between Rrs(λ) and bio-optical/environmental parameters in each
class. Finally, for practical application purposes, the authors present a classification tree to classify the
Rrs(λ) data into four water types, i.e.,: (1) highly mixed eutrophic waters with inorganic particulate
matter dominance; (2) colored dissolved organic matter dominated relatively clear waters; (3) inorganic
particulate matter-dominated waters; and (4) cyanobacteria-composed scum. Using simulated data,
they also documented the applicability of this classification tree method on simulated data from seven
sensors including POLarization and Directionality of the Earth's Reflectance (POLDER), Sentinel-2A,
and MERIS.

Joo et al. [15] presented recent decadal trend of primary productivity in the East Sea using monthly
MODIS chlorophyll-a and Kd(490) data. A regional primary productivity model based on the vertically
generalized productivity model (VGPM) was used to estimate the primary productivity. Their study
reported that the average annual primary production in the East Sea was 246.8 gCm´2¨ y´1 from
2003–2012, which is higher than the previously reported values in deep oceans. They also reported that
annual primary production in the East Sea decreased 13% within the study period from 2003 to 2012.
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The decrease in annual primary productivity could be potentially due to shallower mixed layers caused
by increased temperature, or is a part of the Pacific Decadal Oscillation (PDO). Observations from this
study could potentially help towards better fishery management in the East Sea.
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