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Abstract: Magnetite is a type of iron ore and a valuable commodity that occurs naturally in black
sand beaches in the Philippines. However, black sand mining often takes place illegally and increases
the likelihood and magnitude of geohazards, such as land subsidence, which augments the exposure
of local communities to sea level rise and to typhoon-related threats. Detection of black sand mining
activities traditionally relies on word of mouth, while measurement of their environmental effects
requires on-the-ground geological surveys, which are precise, but costly and limited in scope. Here
we show that systematic analysis of remote sensing data provides an objective, reliable, safe, and
cost-effective way to monitor black sand mining activities and their impacts. First, we show that
optical satellite data can be used to identify legal and illegal mining sites and characterize the direct
effect of mining on the landscape. Second, we demonstrate that Interferometric Synthetic Aperture
Radar (InSAR) can be used to evaluate the environmental impacts of black sand mining despite the
small spatial extent of the activities. We detected a total of twenty black sand mining sites on Luzon
Island and InNSAR ALOS data reveal that out of the thirteen sites with coherence, nine experienced
land subsidence at rates ranging from 1.5 to 5.7 cm/year during 2007-2011. The mean ground velocity
map also highlights that the spatial extent of the subsiding areas is 10 to 100 times larger than the
mining sites, likely associated with groundwater use or sediment redistribution. As a result of this
subsidence, several coastal areas will be lowered to sea level elevation in a few decades and exposed
to permanent flooding. This work demonstrates that remote sensing data are critical in monitoring
the development of such activities and their environmental and societal impacts.
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1. Introduction

There are two types of iron ore most commonly used in the production of steel worldwide:
hematite (Fe;O3, 69.9% Fe) and magnetite (Fe3O4, 72.4% Fe). Hematite deposits have been easily
accessible and largely exploited until the last decade. Depletion of these deposits led to an increased
demand for magnetite as the need for high-quality iron products continues [1,2]. In the Philippines,
magnetite occurs naturally in black sand, which results from the weathering and erosion of
metamorphic and igneous rocks. Black sand accumulates in streams and drainage systems and
is carried and deposited onto beaches. As a result, much of the Philippine coast is composed of black
sand beaches. In response to the demand for magnetite, black sand mining and processing activities
have significantly increased in recent years and the extracted magnetite is largely exported to China’s
steel mills [2,3].
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Black sand mining occurs both legally and illegally but monitoring presents significant technical
challenges and social costs. Reports from local civil service organizations [4] and the recent indictment
of a provincial governor on charges of graft over black sand mining [5] suggest these operations persist
due to corruption. Thus, ground monitoring of illegal activities is not only hard to apply at large scales
but also dangerous for the involved individuals. Here we test whether remote sensing data can be
used to identify and measure the scope of mining activities in the Philippines.

Black sand mining disturbs marine and coastal ecosystems and increases erosion and associated
geohazards. Coastal black sand dunes serve as habitat for small animals and plants whose loss implies
a threat to their predators. These dunes are also natural barriers to salt water, without them the sea
often floods inland at high tides. The mining activities increase coastal erosion not only by directly
removing sand but also by disrupting the sediment budget, often depriving areas in the down-current
direction of their sand input. As a result, coastal erosion often continues to affect the areas even
decades after cessation of the mining activities. This removal of material and associated erosion also
likely results in land subsidence, which makes local communities particularly vulnerable to floods,
damage from seasonal typhoons, and sea level rise. Additionally, black sand operations are often
associated with groundwater extraction, which results in lowering of the water levels and increases
the land subsidence. Subsidence is expected to continue after cessation of the water extraction due to
residual compaction [6]. Groundwater is used for processing (to wash sand, suppress dust, transport
sand as a slurry, etc.) and for dewatering purposes for black sand to be extracted below the water table
surface and for removing the water adhering to the sand grains [7].

We will use Interferometric Synthetic Aperture Radar (InNSAR) to evaluate the vulnerability of
local communities and the environment to black sand mining. InNSAR has been used to successfully
detect ground deformation associated with a number of geohazards, from earthquakes, to volcanic
eruptions and land subsidence due to groundwater extraction [8-15]. Here, we test whether the mining
activities result in any detectable ground deformation despite their small spatial extent and evaluate for
the first time the environmental effects of black sand mining with a high spatial resolution. To protect
coastal ecosystems and communities, black sand mining is illegal in the Philippines within 200 meters
of the shore [16] but the oversight of mining activities is poor. Using the high spatial resolution of the
InSAR data we will evaluate the spatial impact of the mining activities. We will also characterize the
magnitude of the associated subsidence, which will enable estimation of the time until the affected
coastal areas are lowered to sea level elevation and exposed to flooding.

In this paper we aim to (1) demonstrate the value of remote sensing for monitoring of black sand
mining activities and their environmental impact; (2) contribute a dataset of known and suspected
mining areas in the Philippines; and (3) identify the areas of particular environmental and social
concern subjected to increased hazards.

2. Methods

2.1. Identification of Mining Sites

The study of illegal activities presents a unique challenge since the behavior is intended to
remain hidden. We use a multi-pronged approach to identify occurrences of black sand mining in the
Philippines. First, we collected a list of known mining sites from various sources, including contacts on
the ground, online news articles reporting either illegal mining activity or community protests related
to illegal mining, and reports issued by the Philippine Mines and Geosciences Bureau (MGB) listing
mining permits. Permits do not guarantee mining activity, but increase the likelihood by granting
formal permissions to mining companies to work in the area. We also included potential sites based
on iron ore or magnetite deposits reported in the United States Geological Survey (USGS) Mineral
Resource Data System.

We then use optical satellite imagery to confirm the occurrence and precise locations of the
mining sites, to characterize landscape changes over time, and to quantify the spatial extent of the
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mining activities. We rely on DigitalGlobe images provided by Google Earth and its historical imagery
archive. These optical satellite data complement on-the-ground data by offering an objective form of
measurement and enhanced spatial coverage of legal and illegal activities alike.

2.2. Evaluation of Environmental Effects

To identify the environmental impacts of black sand mining activities we rely on Interferometric
Synthetic Aperture Radar (InSAR). InNSAR allows us to characterize the extent and amplitude of land
subsidence in areas with mining occurrence by enabling measurement of ground displacement in the
radar line-of-sight (LOS) direction of a SAR satellite between different passes of the satellite over the
same area [8]. The Advanced Land Observing Satellite-1 (ALOS) of the Japanese Space Exploration
Agency (JAXA) acquired SAR data with global coverage between late 2006 and mid 2011 on a 46-day
repeat orbit, imaging most of the world’s continents up to 25 times [17]. We use ALOS data made
available by the Alaska Satellite Facility (ASF) and process 14 ALOS frames on six tracks (Figure 1).
Six SAR acquisitions are available on tracks 446, 447, and 448; nine acquisitions on track 449; and
twenty-one acquisitions on tracks 445 and 450.

®. San Fernando

® Manila

Figure 1. Northern island of the Philippines (Luzon Island) with the identified sites of interest (Table 1)
marked by white diamonds, and the location of the ALOS PALSAR data marked by the grey squares.
The track numbers are specified below the respective tracks. Larges cities are indicated for reference
with white circles.
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Table 1. Compilation of the sites of interest and their information. The first column shows the site identification, the second column its longitude and latitude, the
third column whether the mining activities are legal (y) or illegal (n) or other type of activities, and the fourth column shows the source of information. The fifth
column shows whether the INSAR mean velocity map has coherence in the area and the sixth column shows the detected LOS subsidence rates in cm/year. The last
two columns show the name of the municipality with its population and the name of the province, respectively. The rows in grey correspond to sites out of the InNSAR
survey area or not associated with black sand mining activities.

Site Lat/Long Legal (y/n) Source of Info. Coher-Ence (y/n) LOS Subs. cm/year Municipality (Population)
1 17°32/37''"N 120°21/25"'E n Ground contacts n Caoayan (18,551)

2 16° 2/10"'N 120°13'50"'E n News articles y 438 Lingayen (98,740)

3 18°56'53/N 121°55'12"'E n News articles n n/a

4 14°58/54''N 120°16'50"'E n News articles y 13 San Marcelino (31,879)
5 18°16/27"'N 121°40/30"'E n News articles n Camalaniugan (23,404)
6 18°17/35'"N 122° 0/53"'E n News articles n Gonzaga (36,303)

7 18°17'27'"N 121°49'46E n News + contacts n Buguey (28,455)

8 15°37/24'"N 119°54'50"'E n News articles y 1.6 Candelaria (25,020)

9 9°31'51""/N 123° 9’18"'E n News articles Out of scope Tanjay City (79,098)

10 17°12/22/"N 120°24’56"'E y MGB permit y 3.0 Candon Clty (57,884)
11 16°56'27''N 120°26'8''E y MGB permit y 0 Tagudin (38,122)

12 18° 3/39"/N 120°29'0"'E y MGB permit n Paoay (23,956)

13 17° 6/46"'N 120°26/8"'E y MGB permit y 43 Santa Lucia (24,981)
14 17° 14"/N 120°27'3"E y MGB permit y 0 Santa Cruz (37,911)

15 16° 3'7'"N 120°19'57"'E y MGB permit y 43 Dagupan (163,676)

16 16°15'49'"N 120°23/38''E y MGB permit y 0 Santo Tomas (35,999)
17 16°31'6"/N 120°18'46"'E y MGB permit y 0 Bauang (70,735)

18 18°33/57''N 121°14'51"'E y MGB permit n Sanchez Mira (23,257)
Laoag 18°13’59//N 120°30'57"'E no mining USGS rec. 10304314 y 0 Laoag City (104,904)
Vigan 17°35’59"/N 120°22'57"'E no mining USGS rec. 10134140 n Vigan City (49,747)
Aringay  16°22/59"/N 120°20'57"'E no mining fields USGS rec. 10183093 y 3.9 Aringay (44,949)
InSAR 1 17°21741""N 120°27'23""E n y 2.5 Santa Maria (28,597)
InNSAR2  16°27'10""N 120°34/33"E other mining y 4.5 La Trinidad (107,188)
InSAR3  15°34/17"/N 120° 5'37"'E n y 1.8 Masinloc (44,342)
InSAR4  15° 7/56'’"N 120°20’8"'E volcanic deposits y 1.2 Botolan (54,434)
InSAR 5 14°54/15"/N 120°34'48"'E fields y 3.5 Lubao (150,843)
InNSAR6  14°41/36"N 120°33/37"'E n y 2.6 Balanga (87,920)
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First, ground displacement in the radar LOS direction is obtained from the phase difference of two
SAR images acquired over the same area at different times (interferogram) [8]. We use the ROI_PAC
software [18] to produce 40 to 250 interferograms on each track. We remove topographic contributions
using the Shuttle Radar Topography Mission (SRTM) 1-arc second digital elevation model [19]. We
co-register the interferograms of each frame to a master image, use the statistical-cost network-flow
algorithm for phase unwrapping (SNAPHU; [20]), and reference all interferograms to the same pixel.
We subtract a ramp from each interferogram to remove any long wavelength signal (larger than 10 km,
associated with orbital errors and interseismic deformation due to the subduction zone) so the obtained
velocity maps highlight only localized deformation.

To precisely track ground deformation between the first and the last SAR acquisition we use
the SBAS time series technique [21]. The interferograms produced on each track are inverted to
retrieve surface displacement through time relative to the first acquisition. We use only interferograms
with small spatial and temporal baselines (i.e. position of the satellite close in space perpendicularly
to the LOS at the different times (<1.6 km), and data acquired less than a year apart) to maintain
high coherence (Figure 2). Since the PALSAR sensor onboard ALOS was L-band (wavelength of
23.6 cm), coherence is typically maintained longer than for X- and C-band sensors. Thus, we also
add interferograms that span more than a year and cover the same season. The phase due to the
digital elevation model (DEM) errors in SBAS time series is proportional to the perpendicular baseline
history and, thus, it must be accounted for and corrected (Figure 2, right). We correct DEM errors
in the in the time-domain following the method of Fattahi and Amelung, [22]. Lastly, we perform the
final pixel selection based on a temporal coherence threshold of 0.7 to eliminate pixels affected by
phase-unwrapping errors [23-25].
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Figure 2. Example for Track 445 of a perpendicular baselines-temporal baselines plot of a triangulated
network of interferometric pairs. The dots show the SAR acquisitions dates. The left plot shows the
interferograms produced on this track (black lines) after applying the baseline thresholds. The right
plot shows the perpendicular baseline history of the set of SAR acquisitions, which is proportional to
the DEM errors.

The remaining signal contains noise contributions from atmospheric delay due to variation in
water vapor content at different acquisition times. To evaluate the amplitude of the noise we follow the
method of Chaussard et al. [12] and produce time series for pixels in non-deforming areas (metamorphic
rocks). These time series provide a constraint on the amplitude of the atmospheric contamination at
each epoch. Atmospheric noise can be as large as several centimeters in a single interferogram but is
highly variable temporally and spatially, which implies that in non-deforming areas the trend through
the time series has approximately a null slope. Thus, atmospheric noise corresponds to deviation
from a longer trend, which represents deformation. Accordingly, we derive our estimates of ground
subsidence using linear regressions through the time series, which are less affected by the atmospheric
noise than single interferograms.

Chaussard et al. [13] showed that land subsidence due to groundwater pumping in Indonesia
will result in flooding of urban areas within a few decades, this process being orders of magnitude
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larger than the rates of sea level rise. Here we calculate the approximate time for the mining sites
areas associated with land subsidence to be at sea level elevation and, thus, permanently flooded and
present this “time until flooding” so decision-makers can gain a sense of the time scales involved.
This is the last step of our method, which is summarized in a flow chart in Figure 3. We evaluate
the elevation based on the ASTER GDEM V2 Digital Elevation Model (DEM) and on the Global
Multi-Resolution Topography (GMRT) [26]. These 30 m DEMs lead to uncertainties of ~2 m on the
relative elevation estimates for the mining sites. The time until flooding is equal to E/(S+R) with E the
current ground elevation in cm, S the rate of subsidence in cm/year, and R is rate of sea level rise in
cm/year. The two closest cities of Luzon Island that have current tide gauges monitoring (Legaspi
and Davao) by the National Oceanic and Atmospheric Administration [27] show a mean sea level
rise trend of 5.38 mm/year and 5.32 mm/year, respectively. These tide gauges are south of the region
studied and can be affected by local subsidence e.g., [28]. Thus, we verify that these sea level rise rates
are in agreement with spatial altimetry data and non-Boussinesq models. Moon and Song [29] showed
that between 1993-2010 Luzon Island was affected by a sea level rise of ~5 mm/year in agreement
with the tide gauges data. Worldwide maps of sea level change based on satellite altimetry [30] show
even faster sea level rise rates in the western Pacific at up to 10 mm/year east of Luzon island due to
La Nifia conditions (enhanced trade winds and cooling in the eastern tropical Pacific, corresponding
to the absence of prolonged El Nifio events in 1997-1998 and 2011). We, thus, consider that the tide
gauge data are a good representation of the regional sea level rise for long time periods and use an
average linear sea level rise of 5.35 mm/year in the Philippines.

METHOD

Mining sites identification:
Contacts, news articles, MGB
USGS magnetite deposits maps

+

Verification of mining sites with optical
satellite images

v

Environmental impact identification:
-Optical images (land use changes)
-INSAR SBAS-survey (subsidence)

{

Evaluation of potentially missed mining
sites from INSAR subsidence map

v

RESULT

reports, 20 sites within scope

17 confirmed mining sites

6 InSAR sites

Verification that subsiding sites are
associated with mining (Landsat images)

¥

Characterization of subsidence rate and

3 InSAR sites associated
with black sand mining

Subsidence rates of

extent from the INSAR analysis 1.5t0 5.7 cmlyr

+

Evaluation of elevation at subsiding mining
sites (ASTER and GMRT DEM)

¥

Calculation of time until flooding from
elevation, subsidence + sea level rise rate

Mining sites at 2-4 m
above current sea level

Worse case scenario time
until flooding:
30to 70 yrs

Figure 3. Flow chart summarizing the methods used and results obtained in our survey to characterize
black sand mining activities and their environmental impacts in the Philippines. Optical images and
InSAR time series data are combined and show that remote sensing data provides an objective, reliable,
safe, and cost-effective way to monitor black sand mining activities. Optical satellite data lead to
identification of legal and illegal mining sites and InSAR allows us to evaluate the environmental
impacts of black sand mining in terms of land subsidence. The INSAR time series method is described
in detail in the method section.
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We consider that the land subsidence rates observed are linear in time and persist even after the
mining activities are over. This approximation is in part justified by the fact that coastal erosion often
continues to affect the areas even decades after cessation of the activities due to sediment redistribution
and by the fact that the land subsidence due to mining-related groundwater extraction is expected
to continue due to residual compaction even after cessation of pumping [6]. However, the linear
extrapolation for time scales of half a century to a century may not be entirely appropriate as the
mining sites are small and the aquifers involved are likely shallow and may consolidate leading to the
subsidence to slow and stop. Thus, using the linear approximation may overestimate of the subsidence
for long time scales and lead to lower end members of the values of time until flooding. We choose to
give these lowest time values rounded to one standard deviation and present them as a “worst-case
scenario” estimates representing what will happen if conditions are maintained as they are currently
for decades. The development of new mining sites would result in new subsidence areas and could
contribute in making these “worst-case scenario” estimates closer to being “average estimates” as
sediment redistribution and aquifer compaction could become more wide-spread.

3. Results

3.1. Identification of Mining Sites

We identified a total of twenty potential mining sites along the northern and northwestern coast
of Luzon Island (Table 1). Precise coordinates for two mining sites were obtained from geo-tagged
photos provided by contacts on the ground. Coordinates for six mining locations were identified from
news articles referring to illegal black sand mining. Nine potential locations were identified from
mining permits granted by the Mining and Geosciences Bureau in 2007, which were confirmed as
mining sites with optical imagery. Locations of three coastal magnetite deposits were obtained from
the USGS Mineral Resources Data System. However, for these magnetite deposits, the historical optical
images did not reveal any clear mining activities for the 2003-2015 time span covered by the data
available via Google Earth. Thus, out of the twenty potential sites, seventeen were confirmed as black
sand mining sites with optical images (black labels in Table 1).

We use optical imagery to evaluate the amplitude of changes in landscape before and after mining
is developed (Figure 4). We confirm that mining sites are very localized with perimeters on the order
of a few hundreds of meters. Most of the sites are located on the coast, within the black sand dunes on
the inland side of the beach (Figure 4). We also often notice the presence of water ponds nearby the
extraction sites (Figure 4), which confirms the intensive use of water in the extraction process and the
likely pumping of groundwater.

E120.3555 E120.359

Figure 4. Example of optical images illustrating the coastal landscape before (left) and after (right) the
development of black sand mining activities (site 1). The mining activities are located within the black
sand dunes, on the inland side of the beach. The white arrow highlights a water pond developed near
the mining site.
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The main limiting factor for characterizing the development of new mining sites is the low
temporal sampling of the optical images available through Google Earth. Nevertheless, our results
show that optical imagery is useful for characterizing legal and illegal mining activities, their scope,
and their extent. With the increasing accessibility of high-resolution satellite data, monitoring of black
sand mining activities from optical images could become a routine practice. In this study, we relied on
manual evaluation of changes via visual inspection of optical images, and limited our study to cases
with precise coordinates from our list of potential sites. In the future, the development of automatic
classification using tools available through the Google Earth Engine could lead to automated and
systematic evaluation of mining sites as soon as the optical imagery becomes available.

3.2. Evaluation of Environmental Effects

The mean InSAR velocity map produced (Figure 5) shows the speed at which the ground is
moving with a high spatial resolution and for the entire coastal area of the Luzon Island. We produce
a Google Earth product with the velocity maps to illustrate the ground deformation associated with
black sand mining activities (Supplementary Material), which enables browsing of the large spatial
area covered and easy sharing of our results with partners on the ground.

b
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Figure 5. InNSAR mean LOS ground velocity map. The background colors show the speed at which
the ground is moving. Vertical motion corresponds to 1.2 times the LOS velocity. Blue colors show
motion away from the satellite (subsidence) and red colors motion towards the satellite (uplift). White
diamonds show the identified mining sites and red diamonds the subsiding sites detected in the
velocity map but not originally identified (labeled InSAR sites). The insets show examples of subsiding
areas (blue colors). White labels show sites with no coherence in the INSAR mean velocity map, cyan
labels are sites with coherence but no detected subsidence, orange labels show subsiding mining sites
with the subsidence rates in cm/year, and gray labels are areas with subsidence but not associated with
black sand mining.
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Decorrelation is the largest limitation of using InSAR for detection of subsidence associated with
mining activities (Figure 5). Since the PALSAR sensor onboard ALOS was L-band (wavelength of
23.6 cm), it enables measurements through vegetation [12,15], but interferometry remains limited by
temporal decorrelation of the radar signal; that is, changes in the characteristics of the ground between
each satellite acquisition. When the ground characteristics change too much between satellites passes
deformation cannot be evaluated. We found that seven out of the seventeen black sand mining sites
surveyed with InNSAR do not have sufficient coherence (Table 1, and Figure 5 sites marked as “no
coherence”). The majority of the mining sites are located in compressible alluviums, which outline
most of Luzon Island and in coastal areas or near river beds with relatively flat topography and similar
types of vegetation. Thus, differences in geology and terrain are unlikely to be the main contribution
to the observation of decorrelation at some mining sites but not others. Additionally, some inland
sites located in mountainous areas preserve correlation (e.g., site 4 and InSAR site 3) while coastal
sites to the north lose correlation. The number of SAR acquisitions available likely influences the
coherence, as the more frequent the acquisitions are, the more likely ground characteristics are to
be maintained between each satellite pass. The ALOS satellite was acquiring on a 46-day orbit but
acquisitions were not systematically collected worldwide. As a result, the number of acquisitions per
track varies. The two tracks with the most SAR acquisitions are the tracks 445 and 450 (twenty-one
dates) and track 449 (nine dates). Three tracks have a lower amount of SAR acquisitions: track 446, 447,
and 448 (six dates). We notice that these three tracks with the lowest amount of SAR dates have a high
number of sites suffering from decorrelation (three on track 448, one on track 447, and two on track
446) while tracks with higher numbers of SAR acquisitions (449 and 450) have no sites suffering from
decorrelation. This suggests that with more frequent SAR acquisitions (with for example the 14-day
repeat of the L-band ALOS-2 satellite, and the planned 12-day repeat of the NiSAR mission) more
sites would have coherence and could be monitored for subsidence. The exception being track 445,
which has a large amount of SAR acquisitions but where two mining sites suffer from decorrelation.
It is worth noting that the overall correlation for track 445 is more than for tracks 446, 447, and 448,
the majority of the area being correlated. The decorrelation at site 3 (small island north of Luzon) can
be explained by the significant topography and vegetation, which differentiate it from most of the
other coastal sites. One explanation for the occurrence of decorrelation in areas with large amount of
SAR acquisitions (such as site 6 on track 445) would be either very large deformation or recent mining
development but, unfortunately, we do not have access to detailed mining data on the timing of the
activities and their amplitude to investigate which parameters control the loss of coherence.

For each site with coherence we calculate a mean subsidence rate, which corresponds to the slope
of the best-fitting linear regression through the time series to limit the effect of atmospheric noise
(Figure 6). The time series correspond to averages over the pixels experiencing subsidence. Out of
the ten mining sites with coherence, four show no clear sign of deformation (from north to south sites
14, 11, 17, and 16) (Figures 5 and 6 first and second rows). Six out of the ten sites with coherence
show subsidence at rates ranging from 1.3 cm/year to up to 4.6 cm/year in the Radar LOS (Table 1,
Figures 5 and 6). Since InSAR is more sensitive to vertical than horizontal movements we convert LOS
(dLOS) into vertical displacement (dv) for every time series using the average ALOS incidence angle
(60 =34.3°): dv = dLOS/cosf. Vertical ground displacement is 21% more than LOS displacement, i.e.,
1 cm of LOS displacement corresponds to 1.2 cm of vertical displacement. The vertical subsidence
associated with mining thus reaches up to 5.7 cm/year.

The InSAR velocity map also reveals subsidence in six additional sites (red diamonds on Figure 5)
not originally identified. Out of these six sites, four were confirmed as mining sites with optical images
(sites InNSAR-1, 2, 3, and 5), but one was associated with mining activities other than black sand (gold
extraction, site INSAR-2, located east of site 17) (Figure 5, Table 1). Subsidence in the radar LOS at the
gold mining site reaches up to 4.5 cm/year (Figure 6; 5.4 cm/year vertically) and at the three additional
black sand mining sites up to 2.6 cm/year (3.1 cm/year vertically) (Figure 6). These results show that
InSAR is a good complement to other methods for identifying mining sites, but the distinction between
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black sand mining and other processes cannot be made based solely on the INSAR data (Figure 3).
For example, based on optical images we confirmed that subsidence was also detected on volcanic
deposits (INSAR site 4) and associated with agricultural activities (InSAR site 5 and Aringay).
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Figure 6. Ground displacement (in cm) as a function of time for the sites shown in Figure 5. Each dot
marks a SAR acquisition time, the subsidence rates labeled correspond to the slope of the best fitting
linear regression though each time series. The site names are labeled at the bottom left of each quadrant.
The top four quadrants correspond to black sand mining sites with no clear deformation. The other
sites are ordered from north to south. The quadrants labeled “InSAR” are sites displaying subsidence
but which were not originally identified as black sand mining sites. The last three INSAR sites are not
associated with black sand mining activities (gray).

The InSAR mean velocity map provides both a high spatial coverage (entire northwest coast
of Luzon Island) and a high spatial resolution, which allows us to evaluate the spatial extent of the
subsiding areas compared to the mining sites extent characterized from optical images (Figure 7).
We observe that the subsidence patterns extend much beyond the mining sites with an approximate
~10- to 100-times larger spatial extent (mining sites mostly extend on less that 0.05 km? while
subsiding areas cover up to 5-10 km?, Figure 7). This larger extent of the subsiding areas likely
reflects groundwater usage or sediment redistribution around the affected areas. We also notice that
the spatial extent of the subsiding areas associated with the black sand mining sites is small compared
to the extent of the land subsidence associated with other processes such as ground water extraction,
e.g., [13-15]; oxidation of peatlands, e.g., [31]; natural sediment compaction e.g., [32]; slope motion
e.g., [33]; sinkholes e.g., [34]; and hydrothermal or magmatic activity, e.g., [12,35]. Thus, the small
spatial extent of the land subsidence associated with black sand mining activities can be used to detect
black sand mining sites and isolate this process from others.
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Figure 7. Example of an optical satellite image (a) showing the location and extent of the mining
activities (black rectangles) and the corresponding INSAR mean velocity (b) for Site 4; (c) Mean times
series for the maximum subsiding area and its best-fitting linear subsidence rate; (d) Example of profiles
through the subsiding area showing the LOS velocity as a function of the distance along the profile
(location shown with red dashed lines on (b). The top profile (1) is oriented NW-SE and the bottom
profile (2) N-S. The black dots show the InNSAR data, the gray area the standard deviation, and the red
line the mean value. The horizontal black lines show the spatial extent of the mining site projected on
the profile compared to the extent of the subsiding area.

We calculate, for the coastal sites with detected subsidence, the time until which the elevation
will reach sea level and, thus, the area will be permanently flooded (Table 2). We follow the method
described earlier and provide worse-case scenario estimates considering linear rates of land subsidence
and of sea level rise (5.35 mm/year) to show what will happen if the conditions are maintained as
they are currently for decades. We use the lowest bound of the current elevation provided by the
DEM for these estimates and round them to one standard deviation. Sites with subsidence rates of 1.8
and 3 cm/year are projected to be underwater in ~50-70 years. Sites with subsidence rates of 4.3 and
4.6 cm/year are projected to be underwater in approximately 3040 years. These results demonstrate
the vulnerability of the coastal areas to black sand mining with only a few decades before coastal areas
undergoing mining are permanently flooded.

Table 2. Projected time in years until a site reaches sea level and is exposed to permanent flooding.
Column 1 is the site name; Column 2 the LOS subsidence rate; Column 3 the subsidence rate converted
to vertical; Column 4 is the vertical subsidence taking into account the mean predicted sea level rise;
Column 5 is the mean elevation above sea level in meters; Column 6 is the estimated time until the site
is at sea level elevation based only on subsidence rate; Column 7 is the time until the site is at sea level
elevation considering subsidence and sea level rise.

Observed Vertical Vertical Mean Time to Sea Time to Sea
Site Mean LOS Subsidence Subsidence + Elevation Level Elevation  Level Elevation
Subsidence (cm/Year) Sea Level Rise above Sea (Years) without  (Years) with Sea
(cm/Year) cmiYear (0.5 cm/Year) Level (m) s.l. Rise Level Rise
10 3 3.6 4.1 2-4 60 50
13 4.3 5.2 5.7 2-4 40 40
15 4.6 5.5 6.0 2-4 40 30
2 4.3 5.2 5.7 2-4 40 30

8 1.8 22 27 2-4 90 70
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4. Discussion

Combining optical images and InSAR analysis allows for an in-depth identification of legal and
illegal mining activities and their environmental impacts. To facilitate rapid response to illegal activities
these data should be made accessible quickly after acquisition and processing should be automated.
Implementation of systematic identification of new mining sites based on optical images is in the
process of being developed in the Google Earth Engine. Currently, no SAR satellite provides global
coverage of the Philippines. The Sentinel-1A, ALOS-2, and future NiSAR satellites should eventually
allow for global Earth coverage once the missions are fully operational. The L-band sensor onboard
the ALOS-2 and future NiSAR satellites would be particularly adapted for continuous monitoring
of mining activities and their impacts. Thus, rapid, systematic processing of the SAR data that are
planned to be distributed quickly after acquisition could lead to remote monitoring of illegal mining
activities worldwide.

Our analysis reveals subsidence at several cm/year collocated with mining activities. Processes
such as tectonic subsidence, natural compaction, and artificial settlement do not account for more than a
few mm/year of subsidence (2-5 mm/year [32,36]). Additionally, natural subsidence occurs uniformly
over large areas with consistent sediment deposits. In the Philippines InNSAR reveals subsidence rates
of ten times greater magnitude and with relatively small spatial extent. Thus, these subsidence rates
cannot be explained by natural processes and likely result from man-made activities [13]. Agricultural
activities often contribute to rapid land subsidence [13,15], as confirmed at the InSAR site 5 and
Aringay, labeled as fields and experiencing subsidence collocated with agricultural activities. However,
with the exception of the subsiding the site 15, the mining sites are located close to the shore and not in
the direct proximity of agricultural activities. Thus, groundwater extraction for agricultural activities
are unlikely the cause of the observed subsidence. The colocation of the mining sites and the subsiding
areas suggests a causal relationship with either the removal of material or associated effects, such as
ground water pumping.

However, we observe subsidence associated with some mining sites but not all, which makes the
causal relationship difficult to validate. Geology affects whether extraction results in land subsidence.
For example, groundwater extraction results in compaction and subsidence only in compressible
deposits [13,15]. In the Philippines, we notice that the majority of the mining sites (subsiding and
not) are located in compressible alluviums, which outline most of Luzon Island (beige in Figure 8).
Thus, the difference between subsiding and non-subsiding sites cannot be explained by differences
in geology. Two of the black sand mining sites of this study are not located on compressible deposits
and they experience subsidence (red squares in Figure 8). It is likely that some surficial compressible
deposits exist at these sites but have not been precisely mapped.

In mining areas where land subsidence was not detected it is possible that the rate of mineral and
water extraction was not great enough to trigger subsidence above our detection threshold (cm/year).
Recent data collection in the field confirms that a significant increase in illegal mining activity occurred
between 2010 and 2013 (Table 3), unfortunately outside the time covered by the ALOS data. Continuous
monitoring with new satellite platforms would help to better constrain the relationship between mining
and land subsidence.

Table 3. Number of villages per province (from north to south) with reported illegal mining activity
for different time periods. Due to timing and information constraints, we are unable to report mining
activity for La Union and Pangasinan.

Province (N to S) Before 2007 2007-2010 2010-2013 2013-Present

Cagayan 1 1 27 18
Ilocos Norte 1 1 0 0
Ilocos Sur 6 17 13 4

Zambales 2
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Figure 8. Map of the surficial geology of Luzon Island with the black sand mining sites identified
with diamonds (geological data from the MGB of the Philippines). Labeled in white are mining sites
with no coherence in the INSAR mean velocity. Labeled in cyan are the sites with coherence but no
subsidence. Labeled in orange are the subsiding black sand mining sites with the rates indicated in
cm/year. The two subsiding sites located in incompressible deposits are marked by red squares.

To better constrain the parameters that influence the occurrence of land subsidence additional data
are needed. In particular, the amount of subsidence likely depends on the time since the development
of the mining activities, the amount of mining, and the amount of water extraction. Unfortunately, such
data were not available to us due to the limited control on the mining activities. Future collaborations
with communities on the ground could help access such datasets and further constrain the parameters
controlling the amount and extent of land subsidence associated with mining.

The observation that mining is not always associated with subsidence does not allow us to validate
the direct causality between mining and subsidence. We are however able to identify communities
exposed to very high risk of flooding by typhoons and sea level rise. Escalation of legal or illegal
mining activities in these areas may further exacerbate this risk.
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5. Conclusions

Remote sensing data are critical to monitor, control, and respond to black sand mining activities
and their environmental and societal impacts. We show that optical images can be used to identify
mining sites and respond to development of illegal activities. On Luzon Island we identified a total of
twenty black sand mining sites, seventeen identified from contacts, news, and permits sources and
confirmed with optical images and three identified in the INSAR mean velocity map and confirmed
with optical images. We demonstrate that INSAR data can be used to characterize the land subsidence
associated with the mining activities despite the small spatial extent of the mining sites. Seven of the
twenty sites had no coherence in the INSAR data, thus no deformation could be measured, likely due to
the limited number of acquisitions; four showed no ground subsidence above our detection threshold
(cm/year); and nine experienced subsidence at rates ranging from 1.5 to 5.7 cm/year. The mean InSAR
velocity map also highlights that the extent of the areas affected by subsidence is significantly larger
than the mining sites themselves, likely associated with groundwater use or sediment redistribution
around the affected areas.

Our results highlight the threat posed to coastal towns nearby black sand mining activities. Since
most mining sites are at low elevation, the rapid subsidence results in high exposure to flooding and
seasonal typhoons, and amplifies the effect of climate change—driven sea level rise. We show that
several coastal areas will be at sea level elevation in a few decades due to the rapid subsidence. Since
subsidence likely continues to affect the areas even decades after the cessation of mining activities due
to the disruption of the sediment budget, characterization of the temporal evolution of land subsidence
with longer SAR temporal coverage will be critical to mitigate environmental and societal effects of
black sand mining activities.

Supplementary Materials

We produce a Google Earth product (Figure S1) with the velocity maps to enable browsing of
the large spatial area covered and to illustrate the ground deformation associated with black sand
mining activities.
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