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Abstract: Vegetation moisture and dry matter content are important indicators in predicting the
behavior of fire and it is widely used in fire spread models. In this study, leaf fuel moisture content
such as Live Fuel Moisture Content (LFMC), Leaf Relative Water Content (RWC), Dead Fuel Moisture
Content (DFMC), and Leaf Dry Matter Content (LDMC) (hereinafter known as moisture content
indices (MCI)) were calculated in the field for different forest species at 32 sites in a temperate
humid forest (Zaringol forest) located in northeastern Iran. These data and several relevant
vegetation-biophysical indices and atmospheric variables calculated using Landsat 7 Enhanced
Thematic Mapper Plus (ETM+) data with moderate spatial resolution (30 m) were used to estimate
MCI of the Zaringol forest using Artificial Neural Network (ANN) and Multiple Linear Regression
(MLR) methods. The prediction of MCI using ANN showed that ETM+ predicted MCI slightly better
(Mean Absolute Percentage Error (MAPE) of 6%–12%)) than MLR (MAPE between 8% and 17%).
Once satisfactory results in estimating MCI were obtained by using ANN from ETM+ data, these data
were then upscaled to estimate MCI using MODIS data for daily monitoring of leaf water and leaf
dry matter content at 500 m spatial resolution. For MODIS derived LFMC, LDMC, RWC, and DLMC,
the ANN produced a MAPE between 11% and 29% for the indices compared to MLR which produced
an MAPE of 14%–33%. In conclusion, we suggest that upscaling is necessary for solving the scale
discrepancy problems between the indicators and low spatial resolution MODIS data. The scaling up
of MCI could be used for pre-fire alert system and thereby can detect fire prone areas in near real
time for fire-fighting operations.

Keywords: leaf moisture content; leaf dry matter content; temperate humid forest; remote sensing;
artificial neural network; multiple linear regression; upscaling; fire danger

1. Introduction

Fire is a common form of disaster in forested and grassland areas across temperate regions of
the world. Although fire is a critical environmental issue in many regions, including Iran, there is no
adequate monitoring or detection of fire in Iran and that makes fire detection and control quite difficult.
Intervention of forest fires can occur at an early stage of fire ignition by monitoring and forecasting the
factors such as leaf moisture content and leaf dry matter content (MCI) that influence biomass burning.
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A comprehensive collection of relevant environmental variables is required to understand fire
occurrence and hazard. Fuel moisture content is an important parameter in the heat energy of
pre-ignition because fuel moisture content restricts water vapor released from burning fuel in the
preheating phase [1]. Indices of vegetation moisture have a relationship with the fire probability
because when plants experience water deficits or nutrients stress, leaves may eventually become more
yellow and brown so the vegetation indices will then change. Decreasing vegetation indices suggest
an increased fire probability where stressed plants are more vulnerable to fire ignition [2]. Fuel moisture
content influences fire behavior (slow or fast spread), propagation, intensity, ignition delay, the degree
of flammability and the emissive power of flames. The relationship between ignitability and leaf dry
matter will help us to understand the functional role (fuel load) of leaf in fire-prone ecosystems as
leaves with low dry matter will have reduced ignitability [3]. Hence, fuel moisture and plant dry
matter are considered to be important parameters in any forest fire modeling that attempts to predict
fuel ignition. Such models can be used to provide early warning of increased forest fire potential at the
pre-ignition stage.

There are a number of fire early warning systems based on remote sensing and Geographic
Information System such as the Canadian Forest Fire Danger Rating System (CFFDRS) [4], Forest Fire
Danger Forecasting System (FFDFS) [5], and early warning system for wildfire (EWSFire) [6] that
all have varying structural and/or dynamic parameters (e.g., slope, aspect, elevation, and weather
variables). However, there is inadequate availability of information on live and dead fuel moisture
contents in Iran that makes forest fire hard to predict. Commonly used indicators for moisture content
are Live Fuel Moisture Content (LFMC), Leaf Relative Water Content (RWC), Dead Fuel Moisture
Content (DFMC), whilst Leaf Dry Matter Content (LDMC) is an important plant functional trait in
plant studies because it is related to many critical aspects of a plant’s performance in response to
environmental changes during plants’ growth and survival [7]. These indicators are very important
for monitoring forest fire that may change under different heat and water stress conditions such as
drought and severe heat wave.

Among the fuel moisture indices, LFMC has been widely used for fire danger studies [8,9] because
it is not only simple to calculate but also the ignition delay and degree of flammability (the quantity
of heat necessary to evaporate water) are correlated to the amount of water in live fuels [1]. In areas
of high vegetation productivity, such as this study, a small reduction in fuel moisture may enhance
the dry matter productivity (i.e., an increase in dead fuel load and connectivity) [10], and therefore
fuel consumption is increased by fire. LDMC is related to the lifecycle of a leaf and it shows the
production of dry matter per leaf [11] and is a plant trait that sets the amount of dry material that
is available for combustion [12]. Flammability of fuel is expected to be greater in tree species with
high leaf dry matter content [12] and increases as a function of the drying rate of live or dead material.
DFMC is a significant parameter in most empirical models for fire spread [13]. Variation of fine
dead fuel moisture such as needles, leaves, twigs, and bark can be influenced by air temperature,
relative humidity, moisture content of duff, and topsoil. RWC has been widely accepted as a meaningful
index of plant water status and water balance of a plant because leaf photosynthetic activity decreases
as RWC is reduced under plant water stress [11]. RWC could be a useful parameter as it has previously
been used to screen for drought tolerance of tree species [14]. Thus, LFMC and DFMC are broadly used
in early warning fire systems but RWC and LDMC could be also assessed as alternatives to implement
them in early warning systems.

One of the methods used to measure moisture content and dry matter content in the field is
the gravimetric method for specific classes of fuels, such as live and dead. This method is easy to
use, involves high levels of accuracy, and can be performed on different fuel types (e.g., leaves and
branches), however, it is time consuming, often requires destructive sampling, is labor intensive and
is costly to conduct repetitive samplings over large areas. Additionally, these measurements are
point based and do not have uniform and extensive spatial coverage of the study area. Alternatively,
remote sensing data provides an instantaneous and non-destructive way for vegetation studies at large



Remote Sens. 2016, 8, 961 3 of 25

scales because it presents a quick look evaluation of the vegetation conditions, which is important
for water stress detection and fire hazard assessment. Changes in the water content of vegetation can
result in different spectral characteristics that provide the potential to estimate the status of vegetation
moisture using spectral data [15]. According to the electromagnetic spectrum, there is a link between
a plant’s moisture content and its spectrum. The spectral responses for live fuel moisture levels
were explored in the visible, NIR (near-infrared), SWIR (short-wave infrared) and thermal infrared
wavelengths, so these wavelengths are used to estimate fuel moisture content [16]. On the other hand,
dead fuel moisture is primarily affected by soil moisture (which would also be affected by weather)
near the dead fuel surface [17]. Some studies showed that surface soil moisture could be estimated
using optical data for croplands, short grass lands [18,19], and forest-dominated areas (deciduous
species) [20]. Given this information, vegetation indices could be used indirectly to estimate dead
leaves covering the forest floor.

A great deal of effort has gone into estimating DFMC and LFMC using meteorological variables
and remote sensing data (See Table 1 for more details). Previous studies have estimated LFMC using
coarse spatial resolution remote sensing data such as MODerate resolution Imaging Spectroradiometer
(MODIS) and Advanced Very High Resolution Radiometer (AVHRR) usually by making a direct
comparison between field measurements and large view angle remote-sensing data [21,22]. This can be
done if the surface is large and perfectly homogeneous or a sufficient number of point measurements
can be made during the satellite overpass [23]. MODIS and AVHRR have high temporal resolution
which makes them useful for providing fuel moisture content in near real time because moisture
content of the fuel is a function of short term vegetation-biophysical indices and atmospheric variables.
Nevertheless, the estimation of accurate leaf water-content and dry matter information is currently
critically limited because of the disparity in scale between ground measurements (plot based) and
lower spatial resolution remote sensing data (i.e., 1 km). Such coarser resolution information does
not give enough detail for some fire management activities and, therefore, satellite data with high
to moderate spatial resolution is desired for upscaling ground measured MCI before low spatial
resolution data can be used to provide estimates of MCI over a regional scale in near real-time. Hence,
upscaling ground “point” measurements from ETM to the MODIS resolutions using high-resolution
remotely sensed imagery is a necessary and critical step to obtain accurate MCI from MODIS data.
Thus, the aim of this study was to quantify MCI (leaf water-related properties LFMC, DFMC, RWC and
dry matter content (LDMC)) using daily field measurements in a temperate humid forest in Iran and
then to spatially predict MCI using remotely sensed data with Landsat Enhanced Thematic Mapper
plus (ETM+). Daily maps of MCI are derived by upscaling MCI from plot scale to higher spatial
resolution satellite data (30 m) and from higher spatial to higher temporal resolution (daily) satellite
images (MODIS) at 500 m spatial resolution. The data and methods adopted to achieve the aim of the
study are described in the following sections.

Table 1. Overview of models/statistical methods used to estimating live and dead fuel moisture
content using meteorological and remote sensing data.

Type of Fuel Parameters Used Satellite Data Vegetation Type
(Study Area) Method Reference

Litter Dead fuel
Relative Humidity (RH),

Air Temperature (AT),
Wind Speed, Cloudiness

Not used Red Pine
forests-Taiwan

Linear
Regression (LR)

R = 0.7
[24]

Litter Dead fuel

AT, RH, Precipitation, Incoming
Solar Radiation; Moisture Content,

Fuel Surface Temperature, wind
speed and direction

Not used
Grasses and
herbaceous

vegetation-Hawaii

LR
R = 0.01–0.85 [25]

Litter,
Grasslands
Dead fuel

Temperature, Humidity Not used
Grasslands,
shrubs and

deciduous-Spain

LR
R = 0.11–0.52 [26]
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Table 1. Cont.

Type of Fuel Parameters Used Satellite Data Vegetation Type
(Study Area) Method Reference

Litter Dead fuel Maximum Daily Temperature,
Minimum Daily RH Not used

Jarrah and Karri
forests-southwest
Western Australia

LR
R = 0.66 [27]

Live leaves NDVI ,LST, Relative Greenness
Index (RGRE) AVHRR Herbaceous and

shrubs-Spain
LR

R = 0.68 [22]

Live leaves
MSI, NDWI, Water Index (WI),
TM5/TM7, Global Vegetation

Moisture Index (GVMI)
LOPEX Mediterranean

Species-UK
LR

R = 0.71 [28]

Live leaves NDVI, NDWI MODIS Shrubs-US LR
R = 0.6–0.8 [29]

Live leaves

NDVI, NDWI, Vegetation Dryness
Index (VDI), Improved VDI (IVDI),

Accumulated Relative NDVI
Decrement (ARND)

SPOT veg Herbaceous-South
Africa

LR
R = 0.75 [30]

Live leaves NDWI, Normalized Difference
Infrared Index (NDII) MODIS Cypress stands,

shrubs-US
LR

R = 0.51 [31]

Live leaves NDII, NDWI, Visible Atmospheric
Resistant Index (VARI) MODIS Chaparral

(shrubs)-US
LR

R = 0.72 [32]

Live leaves Shortwave Infrared Water Stress
Index (SIWSI) MODIS Tropical

rainforests-Malaysia
LR

R = 0.68 [33]

Live leaves

NDVI, Soil Adjusted Vegetation
Index (SAVI), Enhanced Vegetation
Index (EVI), Global Environmental
Monitoring Index (GEMI) ,VARI,
NDII, NDWI, Global Vegetation

Moisture Index (GVMI)

MODIS Grasslands and
shrub-lands-Spain

IM, LR
R = 0.7−0.92 [34]

Live leaves VARI, NDVI MODIS Evergreen shrub,
brush-US

LR
R = 0.72 [21]

Live leaves
NDVI, NDWI, NDII, Vegetation

Index (VI green), VARI, Enhanced
Vegetation Index (EVI)

MODIS Chaparral, coastal
sage scrub-US

LR
R = 0.72–0.85 [35]

Live leaves NDVI, VARI, NDWI, NDII, MSI,
SRWI, Spectral Reflectance MODIS Deciduous

forest-Argentina
LR

R = 0.72 [36]

Live leaves NDVI, NDWI, Canopy Water
Content (CWC), Soil moisture (SM) MODIS Gambel oak and

big sagebrush-US
LR

R = 0.49 [37]

Live leaves NDWI, NDII, SRWI, MSI, GVMI MODIS Savanna-Senegal LR
R = 0.63 [38]

Live leaves Spectral Reflectance
range 410–2500 nm LOPEX Area of the JRC,

Ispra, Italy

GA-PLS
regression

R2 = 0.87–0.89
[39]

Live leaves Spectral Reflectance
range 400–2500 nm LOPEX Area of the JRC,

Ispra, Italy
PLS

R2 = 0.74–0.92 [40]

LR = Information not available.

2. Materials and Methods

2.1. Study Area

Northern Iran is an understudied area in terms of forest fire monitoring and management
which requires appropriate attention. The region contains the Northeastern Hyrcanian forests
(Golestan province) that are one of the most critical areas in terms of forest fire in Iran where,
for example, in November 2010 more than 80 fires occurred in this area and 70 protected areas
of the forests were affected by fires [41]. Fires are mainly in the form of surface fires and the extremely
dry conditions in the forested area in this year were the major cause of widespread fires [41]. It seems
that these forests experience fires every year and the number of fire incidents increased from 2001
to 2008. Most land fires occur in this region during the time when the leaves are still green (August until
the end of December) due to a decrease in humidity and increase in wind speed [42]. It has been shown



Remote Sens. 2016, 8, 961 5 of 25

in the study area that elevation is inversely correlated with fire hazard (94%) because of its influence
on rainfall, temperature, fuel moisture content and population density [43].

One possible way to reduce the impact of fires on the forest ecosystem is by mapping the
MCI of the forest and thereby providing early warning of forest fire at the pre-ignition stage.
We utilized the Zaringol forest within the vulnerable Hyrcanian forests to test and evaluate our
approach. The Hyrcanian forests are found along the coast of the Caspian Sea of Iran and are
important refugia, as they comprise the last remnants of temperate deciduous broadleaved forests in
this part of the world. Hyrcanian forests consist of mixed broadleaf deciduous species. These natural
mixed-hardwood forests have rich tree species diversity such as beech (Fagus orientalis), hornbeam
(Carpinus betelus), alder (Alnus glutinosa), oak (Quercus castaneafolia), maple (Acer velotonia), ironwood
(Parotia persica), etc. [44]. The Zaringol forest is one of the Hyrcanian forests found in the province
of Golestan and these forests are found on a hillside about 15 km southeast of the city of Aliabad-e
Katul (Figure 1a) and 50 km east of the city of Gorgan. As shown in Figure 1b, eight dominant forest
species, namely Crataegus sp., Parrotia persica, Acer sp., Quercus castaneifolia, Alnus subcordata, Pinus sp.,
Carpinus schuschaensis, and Carpinus betulus, are found in the Zaringol forest area.
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Figure 1. (a) Location of the province of Golestan in Iran; (b) boundary of Zaringol forest in Golestan
province and location of the 32 sampling sites that cover different forest species in the Zaringol forest
area. Locations are shown on ETM+ satellite image dated 20 July 2000.

2.2. In Situ Leaf Moisture and Dry Matter Content Data Collection

In this study, we collected live (including shedding and non-shedding leaves as possible) and also
dead leaves from tree branches and the forest floor in the field in Southeast Aliabad region (Figure 1).
Leaves were collected from 32 sampling plots where each sampling plot had an area of 30 × 30 m2.
This size was used for sampling because each Landsat ETM+ pixel represents a 30 × 30 m2 ground
area and samples were collected within 5 × 5 m2 and 15 × 15 m2 from the center of the plot at
four cardinal directions (north, east, south, and west). Live and dead leaves were collected from 8 trees
from each sampling plot per species (i.e., the samples of live and dead leaves were not mixed together)
at different locations covering different elevation, slope gradient, and aspect over a period of 3 days
(5–7 August 2012) with the help of forest experts from the Golestan Forests, Range and Watershed
Management Organization. Dead and live leaf samples were collected when no rainfall occurred
in the previous week to avoid the effect of surface water on the leaves, especially for dead leaves.
Most samples were collected in locations with slopes of less than 22◦ because steep slopes are not
easily accessible. Four full zip locked bags of live and dead leaves were collected (60 g each) between
11:00 a.m. and 16:00 p.m. local time, as this period coincides with the Landsat overpass time in the
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study area and, when the air temperature was at its highest, most stable and when fuel was most
vulnerable to ignitions [45]. All live samples were immediately measured for their fresh weight using
an electronic balance with 0.01 g precision. These samples were further processed in the laboratory
to measure their moisture content. All the live leaves were placed in a bucket of cold distilled water
and were stored in a refrigerator for 24 h to determine their turgid weight (weight obtained after
rehydrating leaves to full water saturation). The temperature of the refrigerator was set to 4 ◦C and
a fan was used to homogenize cool air inside the refrigerator. Then, the live leaves were removed
from the refrigerator to find the weight of turgid leaves using the turgid measurement protocol [46].
Any water remaining on the leaves were removed using tissue paper and the weights of the turgid
leaves were measured. The samples were then transferred to an oven for drying where they remained at
70 ◦C for 48 h. All collected dead samples were also oven-dried for 24 h at a temperature of 100 ◦C [47].
The samples (both live and dead leaves) were then weighed again using an electronic balance.

2.3. Calculation of Leaf Moisture and Dry Matter Content

The four MCI calculated in this study and the equations used to calculate them are shown in
Table 2. A one way analysis of variance (ANOVA) and coefficient of determination (R2) were computed
to describe the relationships between MCIs and different species. ANOVA tests the hypothesis that the
mean values of different MCIs of eight different forest tree species are equal.

Table 2. Leaf moisture and dry matter content indices (MCI) calculated in this study.

MCI Caculated Equation

Live Fuel Moisture Content (LFMC) LFMC = Mf−Md
Md

× 100 (%)

Dead Fuel Moisture Content (DFMC) DFMC = Mfm−Md
Md

× 100 (%)

Leaf Dry Matter Content (LDMC) LDMC = Md
Mt

× 100 (%)

Leaf Relative Water Content (RWC) RWC = Mf−Md
Mt−Md

× 100 (%)

Notes: Mf is the fresh weight of live leaves that were measured in the field during sampling, Md is the weight
of the same sample of leaves after they were oven-dried. Mt is the turgid mass after rehydrating the leaves,
and Mfm is the fresh weight of dead materials that was measured in the field [48].

2.4. Remotely Sensed Data

Landsat 7 ETM+ and MODIS data were used to calculate vegetation and biophysical indices,
and retrieve atmospheric variables to estimate the four MCI as shown in Table 2. This study used
one scene of level 1T Landsat 7 ETM+ SLC-off image dated 6 August 2012 acquired at 11:20 a.m.
local time (coinciding with field measurements) provided by the USGS Global Visualization server
(GloVis) at http://glovis.usgs.gov/ in GeoTIFF file format. In addition, MODIS level 1B (calibrated
and geo-located radiance product) data on board the Terra satellite with 500 m (MOD02HKM) and
1 km (MOD021KM) spatial resolution and their geolocation products with 1 km (MOD03) were
downloaded with the same overpass time as the ETM+ image. On 6 August 2012, MODIS crosses the
study area at 11:40 a.m. local time (Terra) and 1:20 p.m. local time (Aqua) during the daytime dated
6 August 2012, thus vegetation and temperature conditions can be retrieved twice daily. Although
we only demonstrate the utility of this approach with a single image, the high temporal frequency is
critical for operational monitoring of fuel moisture content and providing an early warning of forest
fire potential.

2.5. Pre-Processing of Remote Sensing Data

The ETM+ image was atmospherically and topographically corrected using the ATCOR3 program
that is used for mountainous areas <3.5 km above sea level. The thermal bands of this image
were corrected for atmospheric attenuation using the Radiative Transfer Equation Atmospheric

http://glovis.usgs.gov/
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Correction Parameters Calculator (RTE-ACPC), an online web-based tool that was developed by
Barsi, et al. [49]. For MODIS data, the SMAC (Simplified Method for Atmospheric Correction) program
was used for atmospheric correction of the first 7 bands, whilst the thermal bands of MODIS data
(Bands 31 and 32) were corrected using a split-window algorithm [50] which was used to retrieve land
surface temperature. This method can correct the thermal bands using water vapor content and surface
emissivity data [51].

The MODIS image was geometrically corrected by selecting control points (CPs) from ETM+
image dated 10 May 2003 had been geometrically corrected by the National Cartographic Center
of Iran (NCC). CPs were selected from well-defined locations such as road junctions, intersections,
and other well defined features. The total RMS location errors of the ETM+ and MODIS images were
0.52 and 0.54 pixels, respectively. The Landsat 7 ETM+ sensor had a Scan Line Corrector (SLC) failure
where all Landsat ETM+ images have a wedge-shaped gap on both sides of a scene, resulting in
approximately 22% data loss [52]. We tested several gap filling methods including USGS gap fill
method (triangulation interpolation), Inverse Distance Weight, Local Polynomial Interpolation (LPI),
Radial Basis Functions, and Kriging with different variogram models and compared them with the
simulated SLC-off images, which helped us to understand their accuracy quantitatively. The result
showed that Kriging could accurately describe the spatial dependence of gaps (an overall RMSE value
of 5 raw DN value). Geostatistical methods (kriging or co-kriging) are commonly used as the most
suitable method to fill the data gaps [53,54]. Thus, we used the kriging interpolation technique as
the most suitable method for estimating pixel values (DN) for locations that had gaps (no data) in
ETM+ raw data [53,54] (dated 6 August 2012) covering the Zaringol area for all bands except for the
panchromatic band (band 8). There were repetitive stripes over the entire image of MODIS Terra
band 5 (1.230–1.250 µm). Band 5 was used in this study to calculate the vegetation and bio-physical
indices such as Albedo and the Normal Difference Water Index (NDWI) as a measure of fuel moisture
content. Similar to the processing of Landsat ETM+, kriging (ordinary) interpolation was used to
correct the stripe noise of Band 5 of the MODIS data (dated 6 August 2012). Various vegetation indices,
biophysical and atmospheric variables that are relevant to estimating MCI in this study are provided
in Appendix A.

2.6. Upscaling In Situ Leaf Moisture and Leaf Dry Matter Content Using Landsat ETM+ Data

Upscaling is a way of taking information based on observations that have a small spatial domain
and extending that domain to a larger geographic area. MCI calculated using field data were combined
with spectral indices calculated using ETM+ data to develop empirical models to estimate MCI
at a large spatial scale. Both Multiple Linear Regressions (MLR) and Artificial Neural Network
(ANN) techniques were used for scaling up (see below). We identified 13 parameters (vegetation
indices, biophysical and atmospheric variables) that were potentially relevant to the estimation of MCI
(Appendix A) along with the subset of specific ones used in this study. As our predictor variables
include multiple factors, multicollinearity can be a computational problem that arises in the analysis of
regression and ANN models when there is inter-correlation between several independent variables.
As a result of the interrelationships, Principle Component Analysis (PCA) was used in this study to
reduce the collinearity of the predictor variables, which can extract the smaller number of uncorrelated
components for modeling. We reduced the initial set of 13 parameters to 4 pertinent ones by utilizing
a PCA. The first and second principal components usually contain the most variance. However, in order
to extract the greatest information from these predictor variables the Varimax rotation (a procedure in
which the eigenvectors/factors are rotated in an attempt to achieve simple structure) of PCA was used.

Varimax1 and Varimax2 were used to generate two different sets of equations for ETM+; one for
DFMC and another one for LFMC, RWC, and LDMC as shown in Equations (1)–(4). The PCA consists of
a transformation of the input dataset (e.g., Air temperature, RH, LST, LAI and Albedo for Equation (1))
to reduce the dimensionality of data sets and produce uncorrelated output data. The first and second
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Varimaxes were extracted from Equations (1) and (4) which explain the total variance of 80% for
Equations (1) and (2) and 84% for Equations (3) and (4).

VARIMAX1DFMC = (0.13 × AIRTEMPERATURE) + (0.017 × RH) + (0.11 × LST)
+ (−0.34 × LAI) + (0.08 × ALBEDO) + (−10.34)

(1)

VARIMAX2DFMC = (−0.084 × AIRTEMPERATURE) + (0.094 × RH) + (0.02 × LST)
+ (0.28 × LAI) + (0.08 × ALBEDO) + (−6.07)

(2)

VARIMAX1LFMC,RWC,and LDMC
= (1.02 × GBNDVI) + (0.0002 × NCI) + (2.04 × NDII) + (0.58 × NDVI)
+ (2.99 × NDWI) + (0.61 × OSAVI) + (0.53 × SLAVI) + (0.61 × VARINIR)
+ (0.07 × AIRTEMPERATURE) + (0.03 × RH) + (0.05 × LST) + (0.1
× LAI) + (0.05 × ALBEDO) + (−12.47)

(3)

VARIMAX2LFMC,RWC,and LDMC
= (−0.68 × GBNDVI) + (−1.75 × NCI) + (0.97 × NDII)
+ (−0.89 × NDVI) + (1.59 × NDWI) + (−0.86 × OSAVI)
+ (0.23 × SLAVI) + (−0.86 × VARINIR)
+ (0.13 × AIRTEMPERATURE) + (0.03 × RH) + (0.1 × LST)
+ (−0.09 × LAI) + (0.07 × ALBEDO) + (−8.52)

(4)

2.6.1. Multiple Linear Regression (MLR)

Multiple linear regression (MLR) is a form of linear regression that is used to model the relationship
between two or more independent variables and a dependent variable by finding the best-fitting linear
equation to observed data. MLR analysis was conducted to estimate MCI over the entire study area of
Zaringol. Varimax1 and Varimax2 (Equations (1)–(4)) were used instead of the 13 and 5 variables as
shown in MLR Equations (5)–(8). Out of a total of 32 samples, 77% of the data collected in the field
were used to train the MLR model in the regression analysis, while the remaining 23% were used for
validating the performance of the model.

RWC = 64.4 + 7.6X1 + (−8.83X2) (5)

LDMC = 25.15 + (−2.85X1) + 3.61X2 (6)

LFMC = 183.44 + 51.29X1 + (−34.35X2) (7)

DFMC = 17 + (−3.26X1) + 4.1X2 (8)

where X1 and X2 are Varimax1 and Varimax2, respectively.

2.6.2. Artificial Neural Network (ANN)

Typically, neural networks are organized in layers. In this study, the typology of the ANN used to
estimate MCI from ETM+ data consisted of an input layer, a hidden layer, and an output layer. In the
input layer, the neurons perform preprocessing procedures on input data (e.g., Varimax1 and Varimax2)
such as normalization or scaling. However, the main processing occurs in the hidden and output
layers. There are neurons in the hidden layer and output layer. Each neuron has an activation function
that connects the output of a neuron to a given input. One hidden layer is usually enough in such
networks to realize any relating input to output data [55]. The size of the hidden neurons is between
the size of input and output layers. Based on [56], three neurons in one hidden layer of a network
structure were used in this study for the two input layers (Varimax1 and Varimax2 obtained from
PCA (Equations (1)–(4)) and one output layer, either LFMC, RWC, LDMC, or DFMC. The activation
function of the hidden layers used in this study was Tanh Axon which applies a bias and tanh function
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to each neuron in the layer. The algorithm used for training is the feed forward multilayer perceptron
(MLP) using the Levenberg Marquardt back-propagation method. The Newton Levenberg Marquardt
was used for training the ANN because it does not need learning rates and momentum making them
easier to use compared to the backpropagation method [57]. The data set was divided into training,
testing, and validation. Out of a total of 32 samples, 65% (21 plots) of the data set was used for training,
23% (7 plots) was used for cross validation, and 12% (4 plots) was used for random testing. During
training the ANN, mean squared error (MSE) was used to keep the network from overfitting.

2.7. Upscaling Fuel Moisture and Leaf Dry Matter Content Derived from ETM+ to MODIS

Although Landsat ETM+ can provide comparatively detailed information on MCI at a large
spatial extent, these data are not suitable for daily monitoring of MCI, which is critical for forest fire
monitoring. Therefore, we used MODIS data that has daily coverage over the study area. We up-scaled
MCI estimated using ETM+ data to MODIS data resolution using MLR and ANN techniques. The MCI
estimated from Landsat ETM+ were aggregated from 30 m to 500 m using the nearest neighbor
resampling method, a common up-scaling scheme. The structural similarity index (SSI) was used
to compare the original 30 m MCI and aggregated 500 m MCI. SSI was used mainly to measure the
structural information similarities between the two images, which is better than traditional methods
such as peak signal-to-noise ratio (PSNR) and mean squared error (MSE).

The same vegetation indices and biophysical and atmospheric variables (Appendix A) were
calculated using MODIS data and these parameters were correlated with resampled MCI at 500 m.
Direct upscaling from in-situ MCI measurements (30 m) to MODIS data (500 m) may cause errors when
estimating MCI because of the scale discrepancy between these data sets as explained in Section 3.3.
As for the ETM+ data, we used PCA to retrieve fewer and less co-related spectral indices and
atmospheric variables calculated using MODIS data. The Pearson correlation was used to determine
the maximum possible relationship of each factor to four MCI indicators. A high correlation was
found between both Varimax1 and Varimax2 with LFMC (R = 0.8 and 0.03), RWC (R = 0.84 and −0.1)
and LDMC (R = −0.84 and −0.07). For DFMC the first two components of PCA produced higher
correlation coefficient (R = −0.6 and 0.52) compared to Varimax1 and Varimax2 (−0.58 and 0.23)
therefore, Principle components 1 and 2 were used to estimate DFMC. The aggregated ETM+ MCI
at 500 m and Varimax1 and Varimax2 were used to estimate LFMC, RWC, and LDMC and PC 1
and 2 of PCA were used to estimate DFMC. Two different sets of equations were generated, one for
DFMC and another one for LFMC, RWC, and LDMC as shown in Equations (9)–(12). The first and
second principal components in Equations (9) and (10) explained 83% and 90% of the total variation in
Equations (11) and (12), respectively.

Principle Component1DFMC
= (0.13 × LST) + (0.2 × AIRTEMPERATURE) + (20.28
× ALBEDO) + (−0.87 × LAI) + (0.04 × RH) + (−12.55)

(9)

Principle Component2DFMC
= (−0.03 × LST) + (−0.03 × AIRTEMPERATURE) + (0.36
× ALBEDO) + (0.76 × LAI) + (0.12 × RH) + (−3.46)

(10)

VARIMAX1LFMC,RWC,and LDMC
= (0.0017 × LST) + (0.0076 × AIRTEMPERATURE)
+ (6.3 × ALBEDO) + (0.83 × GBNDVI) + (1.79 × NDWI) + (0.95
× VARINIR) + (0.22 × SLAVI) + (0.23 × LAI) (0.03 × RH)

+ (1.56 × OSAVI) + (0.89 × NDVI) + (0.95 × NDII) + (0.7 × NCI)
+ (−6.17)

(11)
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VARIMAX2LFMC,RWC,and LDMC
= (0.05 × LST) + (0.099 × AIRTEMPERATURE)
+ (21.2 × ALBEDO) + (0.17 × GBNDVI) + (1.52 × NDWI) + (0.39
× VARINIR) + (0.12 × SLAVI) + (0.09 × LAI) (0.08 × RH)

+ (1.13 × OSAVI) + (0.33 × NDVI) + (0.61 × NDII) + (−2.3 × NCI)
+ (−11.37)

(12)

2.7.1. Multiple Linear Regression (MLR)

Principle components 1 (PC1) and 2 (PC2) and Varimax1 and Varimax2 (Equations (9)–(12))
were used to estimate LFMC, RWC, LDMC, and DFMC using MLR as shown in Equations (13)–(16).
Approximately 77% of the study area (2029 pixels) was used to train the model, and 15% (606 pixels)
was used to validate the performance of the model.

RWC = 69.57 + 11.16X1 + (−6.71X2) (13)

LDMC = 2497 + (−8.18X1) + 2.74X2 (14)

LFMC = 209.81 + 61.84X1 + (−23.32X2) (15)

DFMC = 18 + (−1.39X1) + 2.60X2 (16)

where X1 and X2 indicate VARIMAX1, VARIMAX2 (for LFMC, RWC, LDMC), and PC1, and PC2
(for DFMC).

2.7.2. Artificial Neural Network (ANN)

The structure of the ANN model implemented to estimate MCI from MODIS was similar to the
structure implemented with the ETM+ data. However, the input layers were Varimax1, Varimax2,
PC1 and PC2 which were obtained from PCA (Equations (9)–(12)). Approximately 65% (1713 pixels)
of the aggregated MCI dataset were used to train the ANN, 23% (606 pixels) was used for cross
validation, and the remaining 12% (316 pixels) was used to assess the accuracy of the results produced
by ANN and also for the optimization of the ANN model. In this study, cross validation was used to
detect over-fitting of data during the training stage of the neural network. This analysis stops training
to avoid over-fitting in the output (LFMC, RWC, LDMC, and DFMC) and the performance of the
model can be accurately assessed and Mean Square Error (MSE) was used to avoid ANN over fitting
(ANN was stopped when the MSE began to rise).

2.8. Validation of Empirical Models

The results of estimated MCI indicators (using ANN and MLR models) using Landsat ETM+
(30 m) were validated with MCI data collected in the field (30 m plot size). Subsequently, the results
of MCI estimated using MODIS data were validated with MCI estimated by ETM+ (aggregated
pixels from 30 m to 500 m to match with the MODIS data). Various statistical measures such as
Root Mean Square Error (RMSE), Mean Absolute Error (MAE) and the Mean Absolute Percentage
Error (MAPE) were used to validate results from the model. The aggregated Landsat products and
the MODIS products were compared using the residual standard error measure which shows the
difference (residuals) between values of MODIS derived indices (LFMC, RWC, LDMC, and DFMC
values) and aggregated MCI metrics from ETM+. This is a useful method because it represents the
spatial differences of aggregated Landsat MCI and MODIS MCI between ANN and MLR. It can clearly
show locations with similar or dissimilar MCI values obtained from both MLR and ANN techniques.
A value of zero residual standard error means MODIS derived indices (either using ANN or MLR)
were similar to the MCI metrics aggregated from ETM+ data.
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3. Results

3.1. Leaf Moisture and Dry Matter Content (MCI)

MCI calculated using data collected in the field are shown in Figure 2 and show that most of the
species have a large range of values except for Ainus Subcordata, however, there was no inter-species
variation between all the four MCI metrics. The R2 values suggest that 38%, 35%, 33%, and 26%
of the variability in LFMC, RWC, LDMC, and DFMC was explained by different species (data not
shown). Results of the analysis of variance (ANOVA) also indicated that the influence of species on
MCI indicators was not statistically significant (p values > 0.05). The results of ANOVA are as follows:

LFMC-(F8, 32 = 2.09, p = 0.08)

RWC-(F8, 32 = 1.81, p = 0.13)

LDMC-(F8, 32 = 1.70, p = 0.15)

DFMC-(F8, 32 = 1.20, p = 0.34)

where F8, 32 = number of tree species considered in this study from a total of 32 samples collected in
the field. p = significance level (any p values of more than 0.05 shows the difference in MCI values
among the 8 tree species is not statistically significant at 95% confidence level).
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Figure 2. Box plots showing the distribution of MCI calculated using data collected in the field.
Whiskers represent highest and lowest value of MCI metrics, solid lines of the box represent the median
and the 25th and 75th percentiles.

3.2. Validation of Leaf Moisture and Dry Matter Content (MCI) Estimations Using Satellite Data

MCI estimated using satellite data were validated using MCI that was determined using field data
(Figure 2). The validation results using MAPE (Table 3) showed that the error of estimation of LFMC
(5.9%), LDMC (7.7%), and DFMC (12.2%) from ETM+ for ANN was lower compared to LFMC (16%),
LDMC (17.3%), and DFMC (16.6%) for MLR. In addition, the RMSE and MAE values derived from
the ANN model for these indicators were also low compared to MLR (Table 3). However, the MAPE
of the RWC for ANN (6.1%) was approximately as accurate as the values obtained from MLR with
MAPE (7.7%). ANN and MLR models were run based on the training data set and another set of data
was used to validate their performance. The correlation (R) between MCI estimated with satellite
data and MCI calculated using field data and aggregated Landsat products ranges between 0.85 and
0.97 for ETM+ and between 0.83 and 0.88 for MODIS (p < 0.001 data not shown). Overall, the results
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showed that the ANN method had a higher accuracy for the validation dataset (testing) in predicting
and spatially mapping LFMC, RWC, LDMC, and DFMC for the study area. It can also be concluded
that MCI estimation results from the ANN had better accuracy and generalization performance for the
new data (validation dataset which is not in the training set) in comparison with MLR. Coefficients
of determination (R2) showed that using the ANN method to predict MCIs (LFMC, LDMC, RWC,
and DFMC) generates good precision (R2 ranges from 0.76 to 0.94 for ETM+) and also precision from
MODIS ranges from 0.7 to 0.78 (in Table 3). The statistical accuracy assessment of ANN and MLR
models for MCIs are summarized in Table 3.

Table 3. Accuracy assessment of MCI estimated with satellite images using ANN and MLR models
with MCI calculated using field data and aggregated Landsat products. The validation results are
shown in bolded numbers.

Estimated Indicators Dataset RMSE MAE MAPE R2

LFMC (ETM+)

Training (ANN) 14 11.3 7.6%
0.94Validation (ANN) 15.6 12.6 5.9%

Training (MLR) 19.9 15.4 9.82%
0.90Validation (MLR) 24.4 20.7 16.03%

LFMC (MODIS)

Training (ANN) 43.4 31 26.63%
0.70Validation (ANN) 48 33 29.25%

Training (MLR) 47.1 34.6 30.21%
0.65Validation (MLR) 50.2 36.8 32.98%

RWC (ETM+)

Training (ANN) 4.4 3.8 6%
0.94Validation (ANN) 5.8 3.6 6.1%

Training (MLR) 3.5 2.9 4.59%
0.90Validation (MLR) 6.4 5.1 7.77%

RWC (MODIS)

Training (ANN) 7.3 4.5 7.84%
0.75Validation (ANN) 8 5 8.58%

Training (MLR) 7.6 5 8.87%
0.73Validation (MLR) 8.3 5.5 9.42%

LDMC (ETM+)

Training (ANN) 2.5 1.9 8%
0.76Validation (ANN) 2.2 1.8 7.7%

Training (MLR) 2.2 1.7 7.14%
0.73Validation (MLR) 5.2 4.1 17.32%

LDMC (MODIS)

Training (ANN) 4.8 2.9 11.19%
0.78Validation (ANN) 4.6 2.9 11%

Training (MLR) 5.4 3.7 14.41%
0.72Validation (MLR) 5.2 3.7 14.6%

DFMC (ETM+)

Training (ANN) 1.7 2.5 12.67%
0.79Validation (ANN) 3 2.2 12.2%

Training (MLR) 2.8 2.2 14.43%
0.76Validation (MLR) 4.8 3.8 16.68%

DFMC (MODIS)

Training (ANN) 2.17 1.4 9.6%
0.71Validation (ANN) 2.6 1.7 12.1%

Training (MLR) 2.45 1.7 11.6%
0.64Validation (MLR) 2.9 1.99 13.9%

The structural similarity index used to compare the original 30 m MCI and aggregated 500 m MCI
using nearest neighbor shows a value of 0.99 (high similarity between the two data sets). Comparison of
residual standard errors between the aggregated (30 m–500 m) MCI and MCI estimated using MODIS
data (500 m) are shown in Figure 3. The residual standard errors show that the spatial pattern of
estimation of LFMC and RWC from MODIS 500 m, for both models (MLR and ANN) was almost the
same (cream colored areas). However, the spatial pattern for LDMC and DFMC as calculated using
MODIS and Landsat products for both MLR and ANN was dissimilar. For example, the value of
DFMC in the northwestern corner of the study area indicated that the residual for the MLR model
was notable, but near zero for the ANN model. In this case, zero means that the estimated DFMC
equals the aggregated DFMC. Based on Figure 3 it can be concluded that both estimated MCI and
aggregated MCI are fairy equivalent to −0.5 to 0.5 residual standard errors (in cream colored area),
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thus the scaling up approach adopted in this study is successful in preserving the spatial information
of fuel moisture.Remote Sens. 2016, 8, 961  13 of 25 
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Figure 3. Visual comparison of residual standard errors between estimated LFMC, RWC, LDMC,
and DFMC from aggregated Landsat products and MODIS by MLR and ANN. Blue color shows the
values estimated by MODIS was more than ETM+ (overestimates) and the brown color displays the
values estimated by MODIS was less than ETM+ (underestimates). There were no differences between
the value aggregated Landsat products and MODIS in cream colored area.
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3.3. Scale Discrepancy between Plot and Satellite Data

The MCI indicators calculated using data collected in the field were correlated with various
parameters extracted from MODIS satellite data that are commonly used in MCI estimation. This was
done to investigate the scale discrepancy between plot and satellite data when plot data are directly
correlated to coarse spatial resolution satellite data. It was found that the R2 became very low and
non-significant when in-situ MCI measurements were directly matched to MODIS data (R2 for LDMC
ranges between 5% and 41%, for LFMC 7%–36%, RWC 6%–33%, and DFMC 6%–22% data not shown).
In contrast, there were high levels of correlation when the aggregated ETM+ derived MCI were linked
to MODIS data (R2 for LDMC ranges between 15% and 72%, for LFMC 20%–67%, RWC 22%–67%,
and DFMC 10%–50%). It is important to distinguish the influence of scale mismatch between the
data collected on the ground and the 500 m MODIS data. The overall correlation analysis from
the R2 showed that the aggregated ETM+ derived LDMC, LFMC, RWC and DFMC (500 m) was
better correlated with the MODIS data (500 m) than the in-situ MCI measurements (30 m). Therefore,
daily estimations of LDMC, LFMC, RWC and DFMC from MODIS data could be accurate if the
aggregated MCI data were used in MLR and ANN models.

3.4. Mapping Leaf Moisture and Dry Matter Content (MCI) Using ETM+ Data

MCI (LFMC, RWC, LDMC, and DFMC) calculated from Landsat ETM+ (6 August 2010) using the
ANN method is shown in Figure 4 (we only show the results of ANN as it yielded higher accuracy
compared to MLR-Table 3). Lower values for LFMC, RWC and DFMC were found in the central region
that was urbanized with relatively higher temperatures driving possibly dry live fuels, and northern
slopes of the study area that are dominated by the south dry warm Foehn wind [58]. Dry warm Foehn
wind is created by wind travelling from southern to northern slopes over the Alborz mountain range,
which dries fuels and makes ideal conditions for rapid spread of fires in the forested area. The LFMC
values were lower than 20% on the southern slopes where leaves on trees are generally considered to
be dead (not live) because southern aspects receive more direct solar radiation and absorb more of the
sun’s heat, causing high temperatures and evapotranspiration, robust winds, and low air humidity [59]
which results in low vegetation density and lower fuel moisture contents.

If live fuel moisture drops below 30%, the fuel is considered fully cured (no live fuel) [60]. Figure 4
shows some low values (1.3%–29%) of LFMC (only 7% of the entire study area) that could be due to
the nonlinear statistical technique (ANN) used in this study. A nonlinear relationship exists between
vegetation indices/atmospheric variables and MCI and, consequently, low values of MCIs could
be inadequately predicted or perhaps undetected by the model, these similar problems were also
encountered by Chuvieco, et al. [22], Chuvieco, et al. [61], and Dennison, et al. [29]. This is also the case
for the Caspian Hyrcanian Forests ecoregion in the early fall. The increase of rainfall on the north slopes
of the mountain ranges of the Alborz [62] can increase dead fine fuels’ moisture content while the effect
of rainfall on dead fine fuel moisture content is quite a complex process [63]. For example, less rain
could be absorbed by dead fine fuel when initial moisture content in fuel is high [64]. Dead (forest
understory) fuels contain a range of moisture with the highest values on the north slope position
and the lowest value on the south slope of the study area because south slopes were hotter and
drier than north slopes. In the valley bottoms of the study area, DFMC was high because nocturnal
air temperatures were coolest and humidity was highest. Aspects created heterogeneous dead fuel
moistures across the study area. Live fuel moisture with low LDMC (the ratio of leaf dry mass to
turgid mass) generally corresponds with dry mass of the live leaf and therefore, areas with high levels
of dry matter were found in the central and surrounding regions where both LFMC and RWC were
low. These results show that the material in the central region and surrounding regions of the study
area were more prone to combustion as the moisture content in the live fuels was low because leaves
were dead on the canopy (LFMC is lower than 30%).
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Figure 4. Estimated LFMC, RWC, LDMC, and DFMC (%) from ETM+ (30 m) using the ANN technique
for the Zaringol forest at 11:20 a.m. local time, on 6 August 2012.

3.5. Mapping Leaf Moisture and Dry Matter Content (MCI) Using MODIS Data

The four MCIs that were derived using upscaled data from 6 August 2012 are shown in Figure 5.
The results show that the spatial pattern of MODIS derived MCIs (500 m) were mostly similar as
Landsat ETM+ (30 m) but the range of values were slightly different. For example, the range of
values estimated by ANN for DFMC using ETM+ data were between 0% and 27% but for MODIS,
these values ranged from 7% to 23%. According to Figures 4 and 5, the visual interpretation confirms
that MCIs classes (pattern) were clearly discriminated in ETM+ and MODIS data by the ANN method.
Taking into account the statistical result, the Pearson correlation (R) between the aggregated ETM+
MCIs products at 500 m (i.e., using the nearest neighbor pixel of ETM+ MCI products) and derived
independent data from MODIS data at 500 m (i.e., vegetation indices and biophysical variables) for
estimating values of MCIs by ANN and MLR showed a good fit for all MCI with R ranging between
0.8–0.85 for MLR and 0.83–0.88 for ANN. However, upscaled 500 m MODIS MCIs generated from
ANN method presents higher accuracy than the MLR method with an overall R value of 0.85.
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4. Discussion

Optical remote sensing can effectively be used for estimating MCI because water influences
spectral reflectance through absorption of radiation within the near infrared and shortwave infrared
regions [65]. Thus, vegetation reflectance increases throughout the visible, NIR and MIR regions under
water stress conditions and vegetation indices have been developed using spectral bands to quantify
water content in vegetation [66]. In this study, we found that the spectral vegetation indices and
biophysical and atmospheric variables from ETM+ and MODIS remote sensing data were moderately
related to leaf moisture (LFMC, RWC, DFMC) and leaf dry content (LDMC) in each 30 by 30 m plot.
Spectral vegetation indices were highly correlated with LFMC (R2 60%) RWC (R2 62%), and LDMC
(R2 65%) (Section 3.3). This means that the multi reflectance data from different wavelength regions
(i.e., from visible to thermal infrared) were sensitive to the moisture content in a leaf and so could
be used for estimating LFMC [67]. The major seasonal variation in leaf moisture content is related to
precipitation, air relative humidity, air and surface temperature, wind, and cloud, as well as by fuel
factors such as surface to volume ratio, compactness, and arrangement [68]. RWC has been shown
to significantly increase from summer drought to winter in Mediterranean woody species [11] which
shows that water stress significantly reduces the RWC due to cellular degradation of the leaf [69].
Dead fuel moisture depends on time and weather variables such as temperature, atmospheric relative
humidity, incoming solar radiation and precipitation [25]. Soil moisture also can prevent temperature
increases at the land surface that influences dead fuel moisture above ground [70].

Estimation of dead fuel moisture content (DFMC) is important in the case of Zaringol forest
because most of the fires here are surface fires. However, estimation of DFMC from optical remote



Remote Sens. 2016, 8, 961 17 of 25

sensing data is difficult because at moderate/coarse spatial resolutions of 30 m/500 m there is a mixture
of live vegetation, dead vegetation, soil, bark, rock, shadows, etc. that can influence the spectral
reflectance. This means that pixels have mixed reflectance information from different land types on
low-spatial-resolution data such as MODIS (1 km2 at nadir). Although vegetation indices such as
SLAVI and the Normalized Canopy Index (NCI) can minimize the effects of soil (SLAVI) and the
effects caused by changes in the angle of the sun, atmosphere, canopy background, topography and
soil variations [71] the issue of mixed pixels could be the reason for the poor relationship between
the spectral indices (e.g., Albedo) and DFMC (R2 10%). In this study, up-scaling is used as a method
to minimize mixed pixels that in turn results in higher accuracy of DFMC at the coarser resolution
such as MODIS. Moreover, water interactions with dead fuels are complex (i.e., water vapor pressure
difference between the atmosphere and fuel particle) [72] and difficult to generalize from individual
dead fuel samples directly, especially when the canopy cover is high (high leaf area index) and causes
large shaded areas such that dead fuels are shaded from direct solar radiation. Therefore it is difficult
to generalize and estimate DFMC in shaded areas. Other studies such as that of Finney [73] found that
LAI and surface reflectance influenced DFMC because leaves of broadleaf forests can create full leaf
shadows (high LAI) for the dead fuels on the ground that in turn increases the amount of moisture
in a fuel. This may be one of the reasons for the high correlation between LAI and DFMC, as found
in this study (Section 3.3). In this study, the relative humidity (RH) was the fourth most significant
variable that influenced moisture content in dead fuels (R = 0.48). This was similar to the findings of
Nolan, et al. [74] who found a strong link between vapor pressure deficit and DFMC (MAE was less
than 5.0%). Dead fuel dries out during times when relative humidity is low because the fuel moisture
is removed from leaves to the atmosphere. Increasing vegetation cover causes reduced solar radiation
and reduced turbulent mixing between the forest floor and the atmosphere which produces lower air
temperatures and higher levels of humidity and therefore higher fuel moisture [75].

The LDMC was found to decrease as LAI increased (R = −0.83). This is similar to other studies
which shows a negative relationship between LDMC and LAI [76]. It was also observed that the
moisture content of leaf litter in the forest understory could be estimated by LAI obtained using
remotely sensed data due to buffering effect of LAI on the understory microclimate [77]. Forest interiors
often cause slightly different local microclimates and disturbance regimes than forest edges because
dense vegetation reduces incoming solar radiation, reducing mean ambient temperatures wind,
and many types of environmental disturbances [78].

Fuel moisture content has been estimated using statistical/empirical methods and physical model
based approaches (Table 1). In a previous study, Sharples and Matthews [27], Merzouki and Leblon [79],
Lin [24], and Aguado, et al. [26] used LR models to estimate litter and duff moisture, while in the
present study, ANN models have had a superior performance, with Pearson correlation coefficients
of 0.8 for MODIS and 0.89 for ETM+ data (Table 1). Estimation of other indicators such as RWC and
LDMC has not been commonly attempted using remote sensing data and the result of this study
shows that satellite remote sensing data can be used to fill these gaps. ANN modelling estimated
RWC and LDMC with a Pearson correlation coefficients of 0.86 and 0.88, respectively, for upscaled
MODIS and ETM+ products. The ANN model greatly improved the accuracy of LFMC estimates (R of
0.97 for ETM+ and 0.83 for MODIS data) compared to previous studies such as that of Qi, et al. [37],
Sow, et al. [38], Verbesselt, et al. [30], and Dasgupta, et al. [31] who yielded R = 0.49, 0.63, 0.75, and 0.54,
respectively, with a LR model (Table 1).

Empirical methods for LFMC and DFMC estimation are commonly based on statistical fitting
between field-measured LFMC and spectral measures based on reflectance of remote sensing data
(Table 1). In this study, since ANNs provided a more accurate prediction of MCI than MLR, we conclude
that MCI have nonlinear pattern with spectral information of remote sensing data. Most of the previous
studies have used linear regression methods to estimate LFMC, however, as shown in the accuracy
assessment, the ANN technique was also more stable to new data (validation data) than MLR. This is
due to the fact that vegetation indices (i.e., Normalized Dry Matter Index, Dry Matter Content Index,
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Normalized Difference Water Index and Normalized Difference Infrared Index) have a non-linear
and polynomial trend relationships with LFMC [80] and ANNs are able to compute any function
for estimating MCI because the relationship between input data and output data can be non-linear,
whereas the MLR model cannot identify these non-linear relationships. Although empirical models
such as MLR are easy to use and can be applied to a large temporal dataset [24,27,37,38], they have
a serious limitation of not being able to capture nonlinear relationships in the data. ANNs have been
found to produce lower errors of estimation (e.g., fuel moisture content) than linear regression [57,81].
There were nonlinear associations between MCIs and PC1, PC2, Varimax1 and Varimax2 (p-value
for curvature <0.001). The error of estimation of any empirical model is important; for example,
an error of ±20% added to 90% of estimated LFMC changed the fire danger of shrub land from low to
high [82]. In this study, the estimated MCI using ETM+ satellite data and ANN technique was closer
to the actual value obtained from in-situ data (MAPE < 12%). This implies that fire danger can be
predicted with reasonable accuracy as previous studies by Chuvieco et al. [83] and Chuvieco et al. [22]
showed an error of 23% for both Landsat Thematic Mapper, and AVHRR data in LFMC estimation of
woodlands, and grassland/shrubland. However, sensitivity analysis must be performed in future to
test the effect of different degree of errors in MCI for predicting fire danger.

Nevertheless, differences in vegetation bio-physical characteristics over a large area make
extrapolating from a single site to regional or global scale using empirical methods problematic [84].
Therefore, several studies have formulated and used radiative transfer models (RTM) [85,86] to
estimate fuel moisture. A performance comparison of statistical and physical approaches to derive
LFMC in the Mediterranean shrubland and grassland species from MODIS reflectance data have
shown that both methods produce good estimates of LFMC. The RTM produced lower standard
errors of estimation compared to the statistical fitting methods [34], nevertheless, the RTM is based
on simulated data and therefore intensive computing is required and it is more complex to extract
parameters and characteristics of actual canopy [87,88] than statistical methods but RTMs have the
ability to simulate actual canopy characteristics for use in realistic terrestrial environments [88]. Clearly,
soft computing approaches including ANN can offer more flexible equations since they allow us
to use non-linear prediction ability and the generalization ability to create models for finding the
best fit model between the measured and modelled MCI, and therefore these methods offer better
generality than traditional techniques. Statistical models such as partial least square regression (PLSR),
principal component regression (PCR), Bayesian model averaging or spectral un-mixing approaches
are also easy to apply [89] and they will be explored in future studies.

The type of satellite sensors and their spatial resolutions used to estimate fuel moisture
content is an important consideration for any method (either empirical or physical). Table 1
summarizes some examples of the applications of remote sensing data for various fuel moisture indices.
Most of the studies are focused on high temporal resolution sensors such as AVHRR and MODIS.
Medium-spatial-resolution sensors such as Landsat Thematic Mapper (TM), Enhanced Thematic
Mapper + (ETM+), SPOT Veg and IRS sensors have also been used to estimate LFMC because they
contain more spatial detail of fuel moisture compared to the coarse spatial resolution images of MODIS
and AVHRR [83,90]. Although Chuvieco et al. [61] found a slightly stronger correlation between
field-measured LFMC and vegetation indices calculated from Landsat TM data compared to AVHRR
and SPOT-Vegetation, the poor temporal revisit time of Landsat satellite (16 days) limits its use for
forest fire monitoring purposes.

In this study, LFMC calculated from the Landsat ETM+ image resulted in higher mean absolute
accuracy (MAE 13%) compared to MODIS data (MAE 33%) (Table 3). It was shown that the MAE
for LFMC of 8%–23% was acceptable for fire danger applications [83]. As the spectral properties of
leaves change due to seasonal variation, moisture in vegetation also changes. In this study, our model
was applied on one day of the warm season (fire season) so it cannot be used for estimating MCI on
a cold season. Our model was developed based on satellite data which was acquired around midday,
so the model cannot be used in the early morning or late afternoon hours as it may introduce some
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noise such as time discrepancy between biomass burning and MCIs satellite data. Therefore, the error
(MAPE 7%–29%) associated with MODIS data may make it unsuitable for fire danger applications for
Caspian Hyrcanian forest since tree species in this forest are more variable throughout the year.

5. Conclusions

Estimation of fuel moisture based on remote sensing data have so far focused on live fuels, but is
less commonly used to estimate dead fuel moisture. In this study, both live and dead fuel moisture
were estimated using medium (low temporal) and coarse spatial (high temporal) resolutions of Landsat
ETM+ and MODIS satellite data for a temperate humid forest in northeastern Iran. More specifically,
the leaf water-related properties (LFMC, RWC, DFMC) and leaf dry matter content (LDMC) were
calculated in the field using leave samples collected from 32 trees, representing eight different species.
These data and remotely sensed indices (vegetation, atmospheric and biophysical) were calculated
using ETM+ and MODIS data and used to estimate the MCI of Zaringol forest by empirical models
(i.e., Multiple Linear Regression (MLR) and Artificial Neural Network (ANN)). The ANN method had
an overall mean predictive absolute error of less than 15% for all four up-scaled MCI in the validation
data set compared to the MLR with 18%. The ANN was found to be a robust statistical method to
upscale MCI. These MCI did not show any significant inter-species differences. We have shown that
MCI can be monitored and upscaled across large spatial areas using statistical methods. Moreover,
the temporal upscaling procedure (with MODIS) developed and used in this research showed
promising results for instantaneous (near real time) monitoring of live and dead leaves (fuel) moisture
in temperate zones and the proposed methodology can be used on larger areas with similar climatic
and geographic conditions (i.e., Caspian Hyrcanian forest ecoregion) in the warm season. The method
which was developed using empirical relationships between spectral-biophysical indices calculated
using remote sensing data and MCI using ground data may not be suitable for a regional or global
scale mapping. This is due to the spatially varying leaf and canopy characteristics, soil background,
climatic conditions, etc. In previous studies (Table 1), researchers usually developed methods to
estimate fuel moisture for small areas with limited regional/global database. For regional or global
scale moisture content indices (MCI) mapping, it is necessary to have a global field measurements
network. Estimating MCI from remotely sensed data is a difficult task because it is dependent on
several parameters such as the physical properties of leaves and background soil that can influence
the accuracy of the MCI estimations. However, remote sensing data provide an easy and useful
spectral and atmospheric basis for estimating MCI on different spatial and temporal scales, especially
when used together with the approach adopted in this research. Improved spatial and temporal
monitoring of MCI using remote sensing data (result of this study) can assist forestry organizations
and the general public on the risk of fire occurrences and to better manage fire protective resources
in fire prone landscapes. Future studies can focus on developing MCI estimated using remotely
sensed data into fire risk assessment for operational fire monitoring. Our future study will focus on
developing an operational daily fire susceptibility index (during the fire season in Zaringol forest)
using information related to live and dead leaves for various tree species in the forest of Zaringol at
a spatial resolution of 500 m and using Rothermel’s pre-ignition heat function.

Acknowledgments: We acknowledge the Ministry of Education Malaysia (through research grant
Q.J130000.2427.02G20 and Q.J130000.2527.13H44) for providing funding to conduct the study. Beringer is funded
under an ARC Future Fellowship (FT110100602).

Author Contributions: Hamed Adab designed the research and wrote the manuscript; Kasturi Devi Kanniah
supervised the research and wrote the manuscript; Jason Beringer reviewed and edited the manuscript.

Conflicts of Interest: The authors declare no conflict of interest.



Remote Sens. 2016, 8, 961 20 of 25

Appendix A

Table A1. Descriptions of variables potentially related to MCI indicators of humid temperate forest in
Iran. Variables used to estimate LFMC, LDMC, RWC are marked as * and variables used to estimate
DFMC are marked as #.

Biophysical Indices and Atmospheric Variables

* # Leaf Area Index (LAI)ETM+ = 0.57 exp (2.33NDVI) [91]
* # LAIMODIS = [NDVI × (1 + NDVI) / (1 − NDVI)]0.5 [92]

* # AlbedoETM+ = 0.356ρ1 + 0.130ρ3 + 0.373ρ4 + 0.085ρ5 + 0.072ρ7 − 0.0018 [93,94]
* # AlbedoMODIS = 0.160ρ1 + 0.291ρ2 + 0.243ρ3 + 0.116ρ4 + 0.112ρ5 + 0.081ρ7 − 0.0015 [94]

* # LSTETM+ = K2

ln
(

K1
CVR2

+1
) [95]

* # LSTMODIS = btm31 + 1.02 + 1.79 × (btm31 − btm32) + 1.2 × (btm31–btm32)2 +
(34.83 − 0.68 × W)× (1 − e) + (−73.27 − 5.19 × W)× de

[50]

* # Ta = Ts −
(

HraH
ρAIRCp

)
[96]

* # Relative Humidity (RH) = α((bx1 + c)2 + (dx2 + e)2) [97]

Vegetation Indices

* Specific Leaf Area Vegetation Index (SLAVI) = ρNIR
(ρRED+ρSWIR2)

[71]

* Normalized Difference Infrared Index (NDII) = (ρNIR−ρSWIR2)
(ρNIR+ρSWIR2)

[30]

* Normal Difference Water Index (NDWI) = (ρNIR−ρSWIR1)
(ρNIR+ρSWIR1)

[34]

* Normalized Canopy Index (NCI) = (ρSWIR1−ρGREEN)
(ρSWIR1+ρGREEN)

[71]

* Visible Atmospherically Resistant Index (VARINIR) = (ρNIR−ρRED)
(ρNIR+ρRED−ρBLUE)

[21]

* Green − Blue NDVI (GBNDVI) = NIR−(ρGREEN+ρBLUE)
NIR+(ρGREEN+ρBLUE)

[98]

* NDVI = (ρNIR−ρRED)
(ρNIR+ρRED)

[30]

* Optimal Soil Adjusted Vegetation Index (OSAVI) = (ρNIR−ρRED)
(ρNIR+ρRED+L) [65]

* Normalized Difference Infrared Index (NDII) = (ρNIR−ρSWIR2)
(ρNIR+ρSWIR2)

[35]

Abbreviations: ρi is equal to corrected reflectance of each band, CVR2 is the atmospherically corrected spectral
radiance in W/(m2·ster·µm) and K2 and K1 are pre-launch calibration constants. For LANDSAT 7 ETM+,
K2 = 1282.71 K, and K1 = 666.09 mW·cm−2·sr−1·µm−1 [49], btm31 = brightness temperature obtained from
MODIS band 31, btm32 = brightness temperature obtained from MODIS band 32, W = Water vapor content
(The MODIS product (MOD 05) consists of column water-vapor amounts at the 1 km spatial resolution of
the near-infrared), e = Surface emissivity, de = Surface emissivity. Ta = Air temperature (K), H = Sensible
Heat Flux (W·m−2), ρAIR = Density of Air humidity (1.27 kg·m−3), Cp = Air specific heat in constant pressure
(~1004 J·Kg−1·K−1), Ts=Surface temperature (K), HraH = Aerodynamic resistance (sm−1). RH = air relative
humidity (percent), x1= elevation (meter), x2 = downscaled water vapor in Near-Infrared of MODIS (g·cm−2),
a: 4.03, b: −0.001, c: 3.34, d: −0.35, e: 3.04. L = soil brightness correction factor.

Abbreviations

The following abbreviations are used in this manuscript:

ARND Accumulated Relative NDVI Decrement
ETM+ Enhanced Thematic Mapper Plus
GVMI Global Vegetation Moisture Index
IM Inversion Models
IRS Infra-Red Scanner (HJ-1B IRS)
IVDI Improved VDI
LOPEX Leaf Optical Properties Experiment
LR Linear Regression
LST Land Surface Temperature
MSI Moisture Stress Index
MCI Moisture Content Index
MODIS MODerate-resolution Imaging Spectroradiometer
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NDII Normalized Difference Infrared Index
NDVI Normalized Difference Vegetation Index
NDWI Normalized Difference Water Index
RGRE Relative Greenness
SIWSI Shortwave Infrared Water Stress Index
SPOT Satellites Pour l’Observation de la Terre or Earth-observing Satellites
SRWI Simple Ratio Water Index
TM Landsat Thematic Mapper
VARI Visible Atmospheric Resistant Index
VDI Vegetation Dryness Index
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