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Abstract: The imaging spectroscopy mission EnMAP aims to assess the state and evolution of
terrestrial and aquatic ecosystems, examine the multifaceted impacts of human activities, and support
a sustainable use of natural resources. Once in operation (scheduled to launch in 2019), EnMAP will
provide high-quality observations in the visible to near-infrared and shortwave-infrared spectral
range. The scientific preparation of the mission comprises an extensive science program. This special
issue presents a collection of research articles, demonstrating the potential of EnMAP for various
applications along with overview articles on the mission and software tools developed within its
scientific preparation.

Keywords: EnMAP; imaging spectroscopy; hyperspectral; Earth observation; satellite mission

1. Introduction

Imaging spectroscopy has been demonstrated to be a powerful tool for numerous environmental
applications [1–3]. So far, research has mainly been based on airborne hyperspectral image data
with restricted spatial and temporal coverage, while spaceborne imaging spectroscopy has been
strongly limited by data availability. Successful technology demonstrators include NASA’s Hyperion
launched in 2000 [4], ESA’s CHRIS launched in 2001 [5], MERIS on Envisat operated from 2002 to
2012 [6], and NASA’s HICO on the international space station operated from 2009 to 2015 [7],
among a few others.

The future German imaging spectroscopy mission EnMAP (Environmental Mapping and Analysis
Program) will represent a milestone towards high-quality hyperspectral observations of terrestrial and
aquatic ecosystems from space. It will enable the derivation of bio-chemical and bio-physical variables
with an accuracy not achievable by current optical broadband satellite sensors. As such, EnMAP is
destined to make a major contribution toward quantifying and modeling crucial ecosystem processes
and understanding the complexities of the Earth system. More specifically, the primary goals of the
mission are to investigate globally interconnected environmental processes and changes, to study the
diverse effects of anthropogenic impacts on ecosystems, and to support the sustainable management
of natural resources.

EnMAP will record more than 240 narrow spectral bands in a spectral range between 420 nm
and 2450 nm with a signal-to-noise ratio of 400:1 in the visible to near-infrared and 180:1 in the
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shortwave-infrared range at a reference radiance level [8]. EnMAP will cover a 30 km swath with
a ground sampling distance of 30 m and a total image data acquisition length of 5000 km per
day [9]. The scientific preparation of the mission includes an extensive science program dedicated to
demonstrate the scientific potential of future EnMAP data, develop image processing tools for efficient
data processing, and build an expert community to ensure exploitation of the full information content
of EnMAP data once operational.

In the framework of the EnMAP preparatory program, a large number of hyperspectral airborne
flight campaigns are carried out to support scientific application development in a wide range of
environments. The datasets are made freely available to the scientific community [10]. Furthermore,
preparatory activities involve the simulation of the entire image generation and processing chain
using the EnMAP end-to-end scene simulator (EeteS) [11]. EeteS comprises four main modules
(atmospheric, spatial, spectral, and radiometric) to generate EnMAP-like data products. The simulated
data facilitate the development of pre-processing algorithms as well as algorithms for the retrieval of
surface information for various applications. As part of the scientific preparation, the EnMAP-Box,
a free software toolbox that is specifically designed for handling future hyperspectral spaceborne
data, is being developed [12]. It provides basic processing and visualization functionalities as well as
advanced approaches for image analysis.

This special issue aims to give an overview of the EnMAP mission and ongoing research conducted
in the scientific preparation of the mission to demonstrate the potential of future EnMAP data for
a range of application areas, namely forestry, agriculture, inland and coastal waters, soils, and natural
ecosystems. The following section provides a brief summary of the 14 articles published within the
special issue.

2. Overview of Contributions

Guanter et al. [8] provide a comprehensive overview of the EnMAP imaging spectroscopy mission
and its current status, including a brief description of the mission and instrument requirements,
mission organization, components of the space and ground segment, the science program, as well as
on-going preparatory activities.

To study the potential of future spaceborne EnMAP image data for a range of applications,
the contributions in this special issue make use of simulated future EnMAP data generated from
airborne acquisitions. Furthermore, several studies in this issue focus on the comparison with other
missions, such as Sentinel-2, and discuss their potential synergetic use.

Managing and process-based modeling of forest ecosystems may strongly benefit from
information gained from future spaceborne imaging spectroscopy missions such as EnMAP.
Dotzler et al. [13] and Clasen et al. [14] analyzed the information content of EnMAP and Sentinel-2 data
for detecting drought stress and quantifying crown component fractions in temperate deciduous forest
ecosystems. Dotzler et al. [13] demonstrated that, different from other water- and chlorophyll-sensitive
indices, the photochemical reflectance index (PRI) applied to simulated EnMAP data was able to detect
drought plant stress at the time of observation. However, this could not be reproduced with simulated
Sentinel-2 data due to missing spectral bands. Clasen et al. [14] applied a multiple endmember spectral
mixture analysis (MESMA) approach to determine canopy components, including not only leaf and
soil but also bark fractions on different spectral scales.

The retrieval of accurate biochemical and structural vegetation properties, such as the leaf
area index (LAI) and their seasonal development, is of high relevance for agricultural management.
Locherer et al. [15] studied the influence of different selection criteria in the model inversion process
of the PROSAIL model on the retrieval of seasonal LAI without using prior information. In contrast to
this physically based model approach, Siegmann et al. [16] applied empirical models to predict the
LAI of winter wheat based on pan-sharpened EnMAP data using panchromatic bands from airborne
AISA Eagle and Sentinel-2 satellite data.
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Natural ecosystems are characterized by highly heterogeneous surface covers and gradually
changing cover fractions. Leitão et al. [17], Suess et al. [18], and Malec et al. [19] demonstrated
the benefit of future high-quality spaceborne imaging spectroscopy data for characterizing and
quantifying natural ecosystems and gradual transitions. Leitão et al. [17] explored the usage of
multi-date narrow-band spectral indices to estimate vegetation cover fractions by fitting boosted
regression tree models, while Suess et al. [18] and Malec et al. [19] studied the potential of sub-pixel
cover fraction estimation using synthetic mixtures in an adapted support vector classification model
parameterization and a MESMA approach, respectively.

Future spaceborne imaging spectroscopy missions, such as EnMAP, will open up new
opportunities for monitoring coastal and inland waters including the differentiation of phytoplankton
taxonomic groups. Xi et al. [20] tested the differentiation capabilities of phytoplankton taxonomic
groups using remote sensing reflectance directly compared to absorption spectra derived from
inversion models.

Besides the application-based contributions, several articles deal with techniques for assessing
and enhancing future EnMAP image data quality. Bachmann et al. [21] assessed the influence of the
expected radiometric and spectral calibration stability on the uncertainty in the future EnMAP ground
reflectance product. Cerra et al. [22] proposed an unmixing-based denoising approach to correct future
EnMAP image data, acquired under unfavorable illumination conditions and off-nadir viewing angles.
To facilitate applications requiring higher spatial resolutions while maintaining the high spectral
resolution, Yokoya et al [23] investigated the potential of fusion-based resolution enhancement using
simulated EnMAP and Sentinel-2 data. In particular, they investigated the performance of a matrix
factorization technique in comparison with two pan-sharpening techniques for improved mineral
mapping capabilities.

As part of the EnMAP scientific preparation program, image processing software is under
development, aiming to provide free access to pre-processing and application-based imaging
spectroscopy tools for a growing hyperspectral community. Van der Linden et al. [12] provide
an overview of the concept and functionality of the EnMAP-Box, while Mielke et al. [24] introduce
EnGeoMAP 2.0, an expert system for mineral identification.

3. Conclusions

This special issue provides an overview of the EnMAP mission and ongoing research conducted
in the scientific preparation of the mission y. EnMAP and other upcoming imaging spectroscopy
missions, such as HyspIRI [25], HISUI [26], PRISMA [27], HYPXIM [28], and SHALOM [29] will
deliver valuable information for various environmental applications towards a better understanding of
ecosystem processes and sustainable resource management. When operating in parallel, these missions
will allow for an increased spatial coverage and acquisition frequency of hyperspectral spaceborne
imagery. Furthermore, several authors in this issue stress the importance of developing concepts for
the synergetic use of EnMAP and Sentinel-2 satellite data. One major advantage is the proposed spatial
resolution enhancement by image fusion while maintaining a high spectral resolution. The increase in
both temporal coverage and spatial resolution will be beneficial for many environmental applications
and may even hold potential for new applications of spaceborne imaging spectroscopy that have not
yet been anticipated.
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