Supplementary Materials: Evaluation of the Quality of NDVI3g Dataset against Collection 6 MODIS NDVI in Central Europe between 2000 and 2013

Anikó Kern Hrvoje Marjanović and Zoltán Barcza

1. Basic Statistics between the Different NDVI Datasets

Table S1. Relationship between the different NDVI datasets (NDVI3g with different processing levels versus MODIS) at the grid of the NDVI3g for the selected study area for the 2000-2013 and 2003-2013 periods based on two different resampled datasets. Bias represents the mean difference between NDVI3g and NDVIMODIS.

		Maximum NDVI Based MODIS				Reflectance Based MODIS			
		R ² RMSE		E Bias	Mean Absolute	R ²	RMSE	Bias	Mean Absolute
					Deviation				Deviation
Terra (2000–2013)	Original NDVI3g	0.721	0.122	-0.008	0.095	0.739	0.125	0.046	0.101
	Bise-filtered NDVI3g	0.763	0.107	0.020	0.085	0.774	0.125	0.074	0.103
	Harmonized NDVI3g	0.954	0.034	-0.000	0.024	0.953	0.036	-0.000	0.027
Aqua (2003–2013)	Original NDVI3g	0.736	0.122	-0.010	0.095	0.747	0.126	0.045	0.102
	Bise-filtered NDVI3g	0.778	0.106	0.018	0.084	0.782	0.125	0.073	0.103
	Harmonized NDVI3g	0.966	0.029	-0.000	0.021	0.959	0.034	-0.000	0.025

Table S2. Relationship between the different Terra/MODIS and Aqua/MODIS NDVI datasets on the grid of the NDVI3g for the selected study area during the overlapping 2003-2013 period. Bias is defined as the mean difference between Terra/MODIS and Aqua/MODIS.

	Maximum NDVI Based Terra/MODIS (2003–2013)				Reflectance Based Terra/MODIS (2003–2013)			
	R ²	Rmse	Bias	Mean Absolute Deviation	R ²	Rmse	Bias	Mean Absolute Deviation
Maximum NDVI based Aqua/MODIS (2003–2013)	0.983	0.020	0.001	0.014	-	-	-	-
Reflectance based Aqua/MODIS (2003–2013)	-	-	-	-	0.974	0.027	0.002	0.018

2. Locations of the Selected Pixels with High Share of a Single Land Cover Type

LABEL1	LABEL2	LABEL3		
	11 I Juhan Jahria	111 Continuous urban fabric		
	11 Orban fabric	112 Discontinuous urban fabric		
		121 Industrial or commercial units		
	12 Industrial, commercial and transport	122 Road and rail networks and associated land		
	units	123 Port areas		
1 Artificial surfaces		124 Airports		
		131 Mineral extraction sites		
	13 Mine, dump and construction sites	132 Dump sites		
		133 Construction sites		
	14 Artificial, non-agricultural vegetated	141 Green urban areas		
	areas	142 Sport and leisure facilities		
		211 Non-irrigated arable land		
	21 Arable land	212 Permanently irrigated land		
		213 Rice fields		
2 Agrigultural areas		221 Vineyards		
2 Agricultural areas	22 Permanent crops	222 Fruit trees and berry plantations		
		223 Olive groves		
	23 Pastures	231 Pastures		
		241 Annual crops associated with permanent crops		

Table S3. CORINE land class types.

		242 Complex cultivation patterns		
		243 Land principally occupied by agriculture, with		
		significant areas of natural vegetation		
		244 Agro-forestry areas		
		311 Broad-leaved forest		
	31 Forests	312 Coniferous forest		
		313 Mixed forest		
		321 Natural grasslands		
	32 Scrub and/or herbaceous vegetation	322 Moors and heathland		
3 Forest and semi	associations	323 Sclerophyllous vegetation		
natural areas		324 Transitional woodland-shrub		
		331 Beaches, dunes, sands		
	33 Open spaces with little or no	332 Bare rocks		
		333 Sparsely vegetated areas		
	vegetation	334 Burnt areas		
		335 Glaciers and perpetual snow		
	41 Inland wetlands	411 Inland marshes		
	41 mand wenands	412 Peat bogs		
4 Wetlands		421 Salt marshes		
	42 Maritime wetlands	422 Salines		
		423 Intertidal flats		
	E1 Inland waters	511 Water courses		
	51 manu waters	512 Water bodies		
5 Water bodies		521 Coastal lagoons		
	52 Marine waters	522 Estuaries		
		523 Sea and ocean		

Figure S1. Location of the selected NDVI pixels at the grid of the NDVI3g dataset with a single land cover type share of minimum 80% for arable lands, forests, broadleaf forests and coniferous forests and with a minimum 70% share for grasslands. For more details see Section 2.8. Land Cover Database in the main paper.

3. Additional Maps and Figures Related to the Mean Seasonal Profile Comparison

Figure S2. Seasonal bias maps between the NDVI values of the NDVI3go and the NDVIMODIS datasets during the overlapping 14 years calculated only for (**a**) spring, (**b**) summer and (**c**) autumn. Positive bias means higher NDVI3go.

4. Additional Maps and Figures Related to the SOS Comparison

Figure S3. Maps of bias between the SOS derived from (**a**) NDVI3go and the Terra/NDVIMODIS datasets and (**b**) NDVI3gH and the Terra/NDVIMODIS dataset (expressed in days).

Figure S4. Maps of R between the SOS derived from (**a**) NDVI3go and the Terra/NDVIMODIS datasets and (**b**) NDVI3gH and the Terra/NDVIMODIS datasets, showing only the pixels with statistically significant R (p < 0.01).

Figure S5. Frequency distribution of R values of SOS during the 2000–2013 time period for NDVI3go (black), NDVI3g_F (light blue) and NDVI3g_H (dark blue) datasets relative to the Terra NDVIMODIS dataset (n = 20191).

Figure S6. (**a**–**f**) Frequency distribution of SOS bias during the 2000–2013 time period for NDVI3go (black), NDVI3g^F (light blue) and NDVI3g^H (dark blue) datasets relative to the Terra NDVIMODIS dataset for different land cover types. Positive bias means earlier SOS for MODIS.

5. Additional Maps and Figures Related to the EOS Comparison

Figure S7. Maps of bias (expressed in days) between the EOS derived from (**a**) NDVI3go and the Terra/NDVIMODIS datasets and (**b**) NDVI3gH and the Terra/NDVIMODIS dataset.

Figure S8. Maps of R between the EOS derived from (**a**) NDVI3go and the Terra/NDVIMODIS datasets and (**b**) NDVI3gH and the Terra/NDVIMODIS datasets, showing only the pixels with statistically significant R (p < 0.01).

Figure S9. Frequency distribution of R values of EOS during the 2000–2013 time period for NDVI3go (black), NDVI3g_F (light blue) and NDVI3g_H (dark blue) datasets relative to the Terra NDVIMODIS dataset (n = 20191).

Figure S10. (**a**–**f**) Frequency distribution of bias of EOS during the 2000–2013 time period for NDVI3go (black), NDVI3g_F (light blue) and NDVI3g_H (dark blue) datasets relative to the Terra NDVIMODIS dataset for different land cover types. Positive bias means earlier EOS for MODIS.

6. Additional Maps and Figures related to the Length of Season Comparison

Figure S11. Maps of bias for the length of the season derived from (**a**) NDVI3go and the Terra/NDVIMODIS datasets and (**b**) NDVI3gH and the Terra/NDVIMODIS datasets (expressed in days).

Figure S12. Maps of R between the length of the season derived from (**a**) NDVI3go and the Terra/NDVIMODIS datasets and (**b**) NDVI3gH and the Terra/NDVIMODIS datasets, showing only the pixels with statistically significant R (p < 0.01).

Figure S13. Frequency distribution of R values of length of the season during the 2000–2013 time period for NDVI3go (black), NDVI3gF (light blue) and NDVI3gH (dark blue) datasets relative to the Terra NDVIMODIS dataset (n = 20191).

Figure S14. (**a**–**f**) Frequency distribution of length of the season bias during the 2000–2013 time period for NDVI3go (black), NDVI3gF (light blue) and NDVI3gH (dark blue) datasets relative to the Terra NDVIMODIS dataset for different land cover types. Positive bias means shorter length of the season for MODIS.

7. Additional Maps and Figures related to the Maximum NDVI Comparison

Figure S15. Map of bias of the maximum NDVI values during the 2000–2013 time period derived from NDVI3go and the Terra/NDVIMODIS dataset.

Figure S16. Map of R between the maximum NDVI values derived from NDVI3g_H and the Terra/NDVIMODIS datasets, showing only the pixels with statistically significant R (p < 0.01).

Figure S17. Frequency distribution of R of maximum NDVI bias between the NDVIMODIS and the NDVI3go (black), NDVI3gF (light blue) and NDVI3gH datasets.

Figure. S18. (**a**–**f**) Frequency distribution of bias of maximum NDVI during the 2000–2013 time period for NDVI3go (black), NDVI3gF (light blue) and NDVI3gH (dark blue) datasets relative to the Terra NDVIMODIS dataset for different land cover types. Positive bias means higher peak for NDVI3g.

8. Additional Maps and Figures related to the Comparison of Timing of Maximum NDVI

Figure S19. Map of bias of the time of the maximum NDVI values during the 2000–2013 time period derived from NDVI3go and the Terra/NDVIMODIS dataset.

Figure S20. Map of R between the time of the maximum NDVI values derived from NDVI3g_H and the NDVIMODIS datasets, indicating the pixels with p < 0.01 with dots.

Figure S21. Frequency distribution of R of maximum NDVI timing between the NDVIMODIS and the NDVI3go (black), NDVI3gF (light blue) and NDVI3gH datasets.

Figure S22. (**a**–**f**) Frequency distribution of timing of maximum NDVI during the 2000–2013 time period for NDVI3go (black), NDVI3gF (light blue) and NDVI3gH (dark blue) datasets relative to the Terra NDVIMODIS dataset for different land cover types. Positive bias means earlier maximum NDVI for MODIS.

9. Additional Maps and Figures related to the Comparison of NDVI Anomalies

Figure S23. Maps of R values between the anomaly values derived from (**a**) the Terra/NDVIMODIS and NDVI3go and (**b**) the Terra/NDVIMODIS and NDVI3gH datasets during the overlapping 14 years taking into account all 15-day periods, indicating the pixels with p < 0.01 with dots inside.

Figure S24. Distribution of the R values that characterize the relationship between the anomaly values of the NDVIMODIS and NDVI3go (black), NDVI3gF (light blue), and NDVI3gH (dark blue) (**a**) for all 15-day periods and (**b**) only for the growing season (second half of April—first part of September; n = 20191).

10. Additional Figures related to Quantifying the Relationship between Climate and NDVI Anomalies

Figure S25. Box-whisker plots of the correlation coefficients between the temperature and NDVI anomaly for April, May, June, July, August and September derived from the NDVI3go (dark blue, first column in every LC group), NDVI3gF (purple, second column in every LC group), NDVI3gF (light blue, third column in every LC group) and NDVIMODIS (green, forth column in every group) datasets for all vegetated pixels of the domain, and for different land cover types. Box-whisker plots indicate maximum, upper quartile, median, lower quartile, and minimum values.

Figure S26. Box-whisker plots of the correlation coefficients between the precipitation anomaly of the previous month and NDVI anomaly for April, May, June, July, August and September derived from the NDVI3go (dark blue, first column in every LC group), NDVI3gF (purple, second column in every LC group), NDVI3gF (light blue, third column in every LC group) and NDVIMODIS (green, forth column in every group) datasets for all vegetated pixels of the domain, and for different land cover types. Box-whisker plots indicate maximum, upper quartile, median, lower quartile, and minimum values.

11. Additional Information on the Construction of NDVI3g

Table S4. Contributions of different AVHRR satellites to the NDVI3g dataset. Dates in the table denote the first day in the 15-day period of data acquisition.

Satellite	From Date	To Date	Full Year Coverage
NOAA-7	1 January 1982	16 Feburary1985	
NOAA-9	1 March 1985	16 October1988	
NOAA-11	1 November 1988	16 August 1994	
NOAA-9	1 September 1994	1 January 1995	
NOAA-14	16 January.1995	16 October 2000	
NOAA-16	1 November 2000	16 December 2003	2001–2003
NOAA-17	1. January 2004	16 December 2008	2004–2008
NOAA-18	1 January 2009	16 December 2011	2009–2011
NOAA-19	1 January 2012	16 December 2013	2012-2013

© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).