
 

Remote Sens. 2016, 8, 948; doi:10.3390/rs8110948 www.mdpi.com/journal/remotesensing 

Article 

Environmental and Anthropogenic Degradation of 
Vegetation in the Sahel from 1982 to 2006 
Khaldoun Rishmawi and Stephen D. Prince * 

Department of Geographical Sciences, University of Maryland, College Park, MD 20782, USA;  
rishmawi@umd.edu 
* Correspondence: sprince@umd.edu; Tel.: +1-301-405-4062 

Academic Editors: Rasmus Fensholt, Stephanie Horion, Torbern Tagesson, Martin Brandt, Clement Atzberger 
and Prasad S. Thenkabail 
Received: 14 June 2016; Accepted: 10 November 2016; Published: 13 November 2016 

Abstract: There is a great deal of debate on the extent, causes, and even the reality of land 
degradation in the Sahel. Investigations carried out before approximately 2000 using remote sensing 
data suggest widespread reductions in biological productivity, while studies extending beyond 
2000 consistently reveal a net increase in vegetation production, strongly related to the recovery of 
rainfall following the extreme droughts of the 1970s and 1980s, and thus challenging the notion of 
widespread, long-term, subcontinental-scale degradation. Yet, the spatial variations in the rates of 
vegetation recovery are not fully explained by rainfall trends. It is hypothesized that, in addition to 
rainfall, other meteorological variables and human land use have contributed to vegetation 
dynamics. Throughout most of the Sahel, the interannual variability in growing season ΣNDVIgs 
(measured from satellites, used as a proxy of vegetation productivity) was strongly related to 
rainfall, humidity, and temperature (mean r2 = 0.67), but with rainfall alone was weaker (mean r2 = 
0.41). The mean and upper 95th quantile (UQ) rates of change in ΣNDVIgs in response to climate 
were used to predict potential ΣNDVIgs—that is, the ΣNDVIgs expected in response to climate 
variability alone, excluding any anthropogenic effects. The differences between predicted and 
observed ΣNDVIgs were regressed against time to detect any long-term (positive or negative) trends 
in vegetation productivity. Over most of the Sahel, the trends did not significantly depart from what 
is expected from the trends in meteorological variables. However, substantial and spatially 
contiguous areas (~8% of the total area of the Sahel) were characterized by negative, and, in some 
areas, positive trends. To explore whether the negative trends were human-induced, they were 
compared with the available data of population density, land use, and land biophysical properties that 
are known to affect the susceptibility of land to degradation. The spatial variations in the trends of the 
residuals were partly related to soils and tree cover, but also to several anthropogenic pressures. 

Keywords: productivity; vegetation; land degradation; desertification; Sahel; remote sensing; 
residual trends; RESTREND; NDVI; rain-use efficiency; RUE 

 

1. Introduction 

Since the 1990s, the human population in the Sahelian and Sudanian ecoclimatic zones 
(collectively referred to here as the “Sahel”) increased from approximately 120 million to over 280 
million [1]. Population growth has been accompanied with cropland expansion and agricultural 
intensification [2–4], and with an increase in livestock numbers, from approximately 200 to over  
430 million [5,6]. These changes coincided with two sequences of extremely dry years in 1972–1973 
and again in 1983–1984 that were part of a longer drought that lasted from the end of the 1960s to the 
mid-1990s [7,8]. 

Coincident with intensification in land use and with the 1970s–1980s droughts, were noticeable 
reductions in vegetation productivity [9] and numerous studies, albeit local in scale, have reported 
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cases of land degradation (e.g., [10–12]). These, plus anecdotal accounts of a progressive southwards 
march of the Sahara Desert [13,14], led to the popular view that population growth in the 
predominantly agrarian economies of the Sahelian countries was causing an extension of cultivation 
into marginal lands, shortened fallow periods, increased grazing intensity, and increased fuel-wood 
extraction, and that these population pressures coupled with the prolonged drought had caused 
widespread land degradation [15]. 

The existence of such widespread degradation has been challenged in a growing number of case 
studies that have found significant local variations in the relation between the increasing food 
demands, changes in land use patterns, and land degradation (e.g., [16–19]). It has been demonstrated 
that, under certain conditions, the standard degradation scenario has not occurred, owing to 
agricultural intensification and the emergence of mixed crop-livestock farming systems [20], and, 
furthermore, different measurement techniques have often resulted in different conclusions [21]. To 
date, the existence, causes, extent, and severity of land degradation throughout the Sahel remain 
controversial [22–25]. 

In contrast to the widespread belief in dryland degradation (“desertification”) of the Sahel, 
analysis of multitemporal satellite data from the 1990s onwards has revealed a consistent trend of 
vegetation recovery from the extreme droughts of the 1970s and early 1980s [26–31], suggesting that 
the perceived widespread degradation in the Sahel can largely be attributed to climate variability and 
not to irreversible changes in land productivity [28,30,32]. Currently, there is little if any evidence 
that the Sahelian drought alone (i.e., independent from human utilization of the land) has caused any 
land degradation [15]. Thus, it seems logical to distinguish between the effects of drought, which are 
temporary, and human-induced land degradation, which may have a trend of increasing severity, 
and can reach an end point of degradation that is usually long-term and even irreversible. The 
management implications for even extreme drought are very different to a system that will never 
return to its former state once climatological norms return [33]. 

The term land degradation is taken here to refer to the process by which less-productive biophysical 
conditions emerge owing to the excessive utilization of land with respect to its resilience [33]. Since net 
primary production (NPP) provides the energy that drives most biotic processes on Earth, persistent 
reductions in NPP from its potential—that is, the NPP expected in response to climate variability 
alone, excluding any human-induced changes in productivity—provides a useful indicator for land 
degradation monitoring [32–34]. This definition also serves to distinguish drought, in which 
vegetation and edaphic factors fully recover from a temporary reduction in rainfall, and land 
degradation, in which, over time, there is incomplete recovery [35] . It is important to note, however, 
that negative or positive trends in vegetation production relative to its potential are not necessarily 
the result of land degradation or land improvement as they can be caused by other factors including 
changes in land use, agricultural intensification, and CO2 fertilization, among others. Therefore, 
negative trends only highlight potentially degrading areas where further examination is necessary to 
confirm the diagnosis [30,33,36]. However, in drylands, interannual variation in NPP is dominated 
by meteorological conditions, particularly by erratic rainfall [37], which mask more subtle and 
gradual changes such as degradation [36]. Thus, it is difficult to interpret trends in NPP without first 
accounting for the effects of meteorological variability on productivity [38]. 

A key requirement for detection of degradation is the availability of a reference—often the 
potential or non-degraded condition [39–41]. However, such sites are rarely known a priori, hence 
detection techniques are needed. Process-based, prognostic vegetation models (e.g., BIOME-BGC [42], 
LPJ-DVGM [43]) can estimate potential NPP for entire regions, however, the scarcity and coarse 
resolution of the necessary input data [44] and the requirement for many parameters, some complex  
(e.g., quantitative measures of the outcome of competition between plant functional types), largely 
exclude this type of model except for spatially uniform vegetation—an unusual occurrence. 
Furthermore, no existing process models can simulate human disturbance of the sort associated with 
degradation. 
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The method employed here uses NPP estimated using a light use efficiency approach in which 
satellite measurements of spectral reflectance are used to calculate the normalized difference 
vegetation index (NDVI), which is then summed over each growing season (ΣNDVIgs). The potential, 
or non-degraded NPP is inferred from the observed relationship of ΣNDVIgs and rainfall by 
regression—that is the rain-use efficiency (RUE, [32]). This method is an example of diagnostic, data-
oriented, sometimes called “top-down” modeling. An important strength is that comparisons with 
the reference are made for each individual site, so differences between sites in unaccounted factors 
(such as soil differences) are normalized, allowing direct inter-site comparison. It can also be used at 
scales from local to global. However, the use of RUE in its simple form is subject to some important 
preconditions (Table 1) which are often not met; ideally, each of these must either be addressed in a 
more elaborate normalization than is used in RUE or at least acknowledged to be unknown, hence 
qualifying the findings. 

Table 1. Preconditions for valid application of Rain Use Efficiency (RUE) for detection of dryland 
degradation. 

Precondition 
Number Precondition  

i NPP must be primarily and linearly related to rainfall [32,45] 
ii NPP responds to rainfall within the current year with no carry-over from earlier years 
iii There are no supplements to current season rainfall, for example run-on from neighboring areas 
iv Within-season temporal patterns of rainfall do not affect NPP 
v The rainfall–NPP relationship does not vary between wet and dry years 

vi 
Potential NPP can be detected amongst data for sites both at their potential and degraded when 
mixed, and the status of each site is unknown 

vii Interannual trends in deviations between degraded and reference NPP are linear 

viii 
Deviation of ΣNDVIgs from the potential is a result of land degradation, not recognizing any other 
processes 

The most important of these preconditions is that a reference, potential, or maximum NPP can 
be determined from the observed NPP of all sites, degraded or not (vi). Given that it is not known 
which sites are degraded, a regression of NPP on rainfall is inevitably affected by sites that are 
degraded, usually reducing the slope and the estimation of reference NPP. Quantile regression 
techniques [46–48], in particular, upper quantile (UQ) regression, on the other hand, use the 
probability distribution of NPP to select the higher NPP values for each amount of rainfall, and 
therefore can reduce (but not eliminate) the bias caused by degraded sites. More generally UQ 
regression has the distinct advantage of predicting the ΣNDVIgs—rainfall relationship in any part of 
the conditional distribution of ΣNDVIgs response to rainfall. Here, a number of different conditional 
UQ regression models were tested to predict potential ΣNDVIgs using the mean and upper 95th 
quantile distributions of observed ΣNDVIgs responses to rainfall. 

In a study of vegetation responses to climate variability in the Sahel [37], it has been shown that 
variations in ΣNDVIgs were overall better explained by precipitation, specific humidity (ratio of mass 
of water vapor to the mass of air in which it is mixed—dimensionless—used here to remove the 
temperature effect on humidity), atmospheric pressure, and incident solar radiation [49] and 
temperature than by precipitation alone (thus not satisfying precondition (i) for RUE, Table 1). 
Therefore, these additional variables were included here in conditional UQ regressions to develop 
upper boundary functions of ΣNDVIgs response to: (a) rainfall; (b) its seasonal variance; (c) seasonal 
skewness; (d) specific humidity; and (e) temperature. 

The objectives of this study were to detect degradation in vegetation productivity by comparison 
with the undegraded potential by regressing the deviations in ΣNDVIgs each year from the UQ 
regression line on time, and testing for significance of any trends in the time-series (a technique called 
RESTREND analysis [50]). RUE is the relationship between rainfall and NPP, typically calculated 
with data for multiple years, while RESTREND is a temporal derivative of RUE in which the RUEs 
for individual sites are rearranged into a temporal sequence in order to detect interannual trends. In 
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so far as significant negative trends indicate an ongoing process of land degradation, we tested the 
hypothesis that high population density and land use intensity lead to land degradation [19,36,51–53] 
against the alternative that site biophysical properties determine the susceptibility of land to 
degradative processes [54]. The results of this study are relevant to the ongoing debate on the 
location, extent, and causes of land degradation in the Sahel [25]. 

2. Materials and Methods 

2.1. Remote Sensing Data 

The AVHRR daily reflectance data in the Land Long Term Data Record (LTDR) version 2 [55] 
were used to reconstruct daily NDVI values from 1982 to 2006 at a spatial resolution of 0.05°. The 
study was limited to 1982–2006 since the LTDR record using AVHRR terminated in 2006. While it 
could have been continued with MODIS data, the consistency of the LTDR data source was judged to 
be more important than the added 3 years. Details of the data and it post-processing are given in [37,56]. 
It should be noted that, in comparison with the various 15-day GIMMS data sets, LTDR data are 
daily, which allows better within-season resolution, especially necessary in areas with short growing 
seasons. ΣNDVIgs was calculated as the sum of daily values between the onset of leaf development 
and leaf senescence [37]. Annual and growing season sums of daily NDVI, precipitation, average 
temperature, and humidity were calculated for each year (1982–2006). (For details of the 
meteorological data, see Section 2.2 below) 

The data were aggregated to 3 × 3 AVHRR pixels to reduce spatial and random error [57]. 

2.2. Meteorological Data 

The Princeton Hydrology Group (PHG), bias-corrected, hybrid, meteorological datasets of daily 
precipitation, surface air temperature, and specific humidity [49] were used in this study. The 
datasets were constructed from the National Center for Environmental Prediction–National Center 
for Atmospheric Research (NCEP–NCAR) reanalysis data and corrected for biases using station 
observation datasets of precipitation and air temperature. The daily data for the period 1982–2006 
were downscaled spatially from 1° to the 0.05° resolution of the AVHRR dataset using bilinear 
interpolation. In addition to growing season precipitation totals, any effects of within-season 
distribution of precipitation were assessed to test precondition (iv) (Table 1) by calculating two 
higher-order moments of growing season precipitation, namely variance and skewness. High 
variance indicates higher than normal deviation from mean seasonal precipitation and can result 
from extended periods of drought or from intense precipitation events, or a combination of both, 
while skewness is a measure of the dominant frequency of either high intensity precipitation events 
(negative skewness) or low intensity precipitation events (positive skewness). 

2.3. Demography, Land Use, and Livestock 

Sahelian population data were obtained from the Gridded Population of the World (GPW) 
population density data (ver. 3) for the year 2000 [58]. These data are constructed from national and 
sub-national census data, but data deficiencies in large areas of Chad, Sudan, and Guinea reduce the 
resolution there. 

Global agricultural, gridded landcover data for the year 2000 was obtained from SEDAC [59]  
A gridded dataset of livestock density for the entire Sahel was obtained from the Food and 

Agriculture Organization (FAO) GeoNetwork database [60] for the year 2000. The dataset includes 
information on cattle, sheep, and goats (animals per km2). In this study, the data were transformed 
to total livestock unit (LSU) density using the FAO species coefficients for sub-Saharan Africa [61]. 
Because the impact on soil erosion of shrub or tree cover, reduction is usually considered to be more 
severe than that associated with reductions in grass cover [15]. Browser and grazer LSU densities were 
also calculated using livestock species food preferences: studies of goats and sheep food preferences 
estimate the diet of goats to be made up of approximately 80% shrub and tree browse and 20% grasses 
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and forbs, whereas sheep eat, on average, 20% browse and 80% herb (e.g., [62–64]). Cattle, on the 
other hand, were considered to depend mainly on grasses and forbs [65]. 

Human land use pressures are not limited to grazing and agricultural production, but also 
include, among others, waste disposal, urbanization, construction, and fuel-wood collection. These 
factors have been aggregated in the index of Human Appropriation of NPP (HANPP) at a spatial 
resolution of 0.25° [66]. 

All coarse resolution, mapped data were resampled to the 0.05° resolution of the AVHRR dataset 
using bilinear interpolation before aggregation to the same 3 × 3 pixel cells used for ΣNDVIgs. 

2.4. Soil and Land Cover 

Soil physical and hydrological data were obtained from the Harmonized World Soil Database 
(HWSD [67]). In the Sahel region, the database merges the soil map units (SMU) from the FAO Soil 
Map of the World at a scale of 1:5 million with Soil and Terrain (SOTER) regional studies in Sudan, 
Ethiopia, Senegal, and Gambia, at scales ranging between 1:1 million and 1:5 million. Thus, the spatial 
detail and quality of the data varied across the Sahel. In the HWSD database, estimates of topsoil and 
subsoil variables within each SMU are derived using soil profiles (contained in the second version of 
the WISE database [68]) and soil taxonomy-based pedotransfer functions. In addition to the variables 
contained in the HWSD, the Soil Erodibility Factor was estimated using a mathematical 
representation [69] of a nomograph method [70]. 

The proportional estimates of bare ground and woody and herbaceous vegetation cover for the 
year 2000, provided by MODIS MOD44B Vegetation Continuous Fields product [71], were used. 
These data provide an improved depiction of spatially complex landscapes, compared with discrete 
classifications [71]. 

As with human population and land use, the soil mapping units were rasterized to a spatial 
resolution of 0.05° to match that of the ΣNDVIgs data. 

2.5. Potential ΣNDVIgs 

Potential growing season ΣNDVIgs values were estimated using OLS and UQ linear regression 
techniques from the observed ΣNDVIgs response to: (i) precipitation; (ii) precipitation, specific 
humidity, and air temperature; and (iii) precipitation, growing season precipitation variance, and its 
skewness—giving six regression models in all. The models were applied to every grid cell (3 × 3 
AVHRR pixels) within the study area. To reduce the risk of model overfitting, either the full set or a 
subset of the explanatory variables was selected to predict potential ΣNDVIgs [72]. The selection 
criteria included a test for multicollinearity between the explanatory variables [73] and a search for 
the subset that resulted in the highest r2 value adjusted for degrees of freedom [74]. Further details 
on the selection criteria can be found in [37]. 

Inferences of standard errors for the UQ regressions were obtained using the “wild bootstrap” 
method [75], and the standard errors for the OLS regressions were calculated from the regression 
goodness of fit (r2) and the standard deviation of observed ΣNDVIgs values. Potential ΣNDVIgs 
prediction errors were then calculated from the standard errors of the intercept and slopes at the 95% 
confidence level. An important qualification is that the standard errors were estimated with the 
assumption that the regression covariates were measured with no error (see discussion below). 

2.6. Residual Trends (RESTREND) 

The residuals, calculated by the difference of the observed ΣNDVIgs and potential ΣNDVIgs, were 
regressed against time by the linear OLS or UQ regressions. Negative or positive slopes (trends in 
time), if significant, indicated persistent, multi-year changes in ΣNDVIgs relative to the potential, as 
calculated from one or more of the meteorological variables. To estimate the errors associated with 
the calculation of residuals, the errors of the AVHRR NDVI measurements [37] were combined with 
the errors of the regression used to estimate potential ΣNDVIgs. The standard errors of the ΣNDVIgs 
values were estimated to range between ±1.47 ΣNDVIgs units in grasslands (~3.3% of the ΣNDVIgs 
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signal) and ±3.3 ΣNDVIgs units in forests (~4.1% of the ΣNDVIgs signal) [37]. Both sources of error 
were combined using the sum rule for the propagation of error. The errors of the residuals were then 
propagated to the time-series linear regression used to estimate the RESTREND (see Equation (1)) [76]. 
Significant RESTREND values were identified as the ones statistically different from zero (probability 
of the F value <0.05) and having absolute values greater than their respective uncertainties at the 95% 
confidence level. 

σஒ = ۈۈۉ
ۇ ∑ 1σ୧ଶ୒୧ୀଵ൭∑ 1σ୧ଶ୒୧ୀଵ . ∑ x୧σ୧ଶ୒୧ୀଵ − ቆ∑ x୧σ୧ଶ୒୧ୀଵ ቇଶ൱ۋۋی

଴.ହۊ
											 (1) 

where σஒ  is the 1 standard deviation uncertainty of the slope value β, σ௜  is the standard error 
associated with each residual value ݕ௜, ݔ௜ is the time variable, and N is the number of observations. 

The capability of temporal trend models to detect significant trends in degradation has been 
simulated for an example data set [77]; the findings were a specific case of well-known issues that 
arise when analyzing short time series (e.g., [78]). Rather than using simulation to determine the 
boundary conditions of significance, here we propagated the errors from the OLS and UQ linear 
regressions of observed ΣNDVIgs on the sets of meteorological variables to the RESTREND analysis. 
As in [77], many apparent negative trends were rejected following this test of significance. A different 
limitation arises if there were changes in slope within the time series, however, splitting a time series 
of 24 years will decrease the degrees of freedom and reduce the capability of the method to detect 
trend, particularly since such a break is unlikely to happen in the middle of the time series, so one 
segment must have <11 points. Thus, it is a choice: risk missing changes in slope or risk reducing the 
significance of the regression. Here we chose to risk missing changes in slope. 

2.7. Relating RESTREND to Population, Land Cover, and Soil Variables 

The relationships of RESTREND with land use and environmental factors were explored using 
statistical summaries, multivariate linear regression, and regression tree analysis (RTA, [79]). 
RESTREND values were ranked by each anthropogenic metric (e.g., population density) and placed 
in 25 equal-sized groups. The mean and standard deviation of the RESTREND values within each 
group were plotted against the corresponding mean of the anthropogenic metric. In addition to these 
univariate statistical summaries, multivariate linear regression models were used to detect additive 
effects of population metrics. 

Environmental factors may attenuate or accelerate the effects of population on land  
productivity [33,80] and RTA has been found to be effective in uncovering such hierarchical  
relations [79], both additive and multiplicative [81]. Two RTA techniques were used: (i) Classification 
and Regression Trees (CART; [82]), which provided hierarchical maps of the relations between the 
explanatory variables and RESTREND value; and (ii) Random Forests (RF; [83,84]), which evaluated 
the ability of the explanatory variables to account for the variability in RESTREND values, based on 
reductions in percentage variance explained when the explanatory variable was omitted. 

Several RF models were developed, each using a subset of uncorrelated explanatory  
variables—for example, soil erodibility and soil texture were not used in the same model. Five 
hundred trees were grown for each RF model, each using a randomly selected training sample of 67% 
of the entire population of significant RESTREND values and their covariates. The remaining 33% of 
the data produced 500 “out-of-bag” samples [84], each corresponding to one RF model. Each tree was 
then used to predict the RESTREND value for each data point in its out-of-bag sample. The 
predictions were averaged and compared with their corresponding observed values to calculate the 
mean square error (MSE) and the strength (r2) of the model [79,84]. To test the accuracy of the  
out-of-bag method, 10 set-aside test sets were selected randomly, each about one-third the total 
population size. The remaining data (i.e., training sets) were used to develop ten RF models, which 
were used to predict the RESTREND values of the test sets. The predicted and original RESTREND 
values were compared to estimate the errors and strengths of the RF models. The MSE and r2 values 
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obtained by cross-validation were almost equal and even sometimes slightly better than the 
corresponding values obtained from the out-of-bag method. 

3. Results 

3.1. Potential ΣNDVIgs 

As expected, overall, UQ estimates of potential ΣNDVIgs were higher than those of OLS 
regression models (Table 2). Furthermore, the UQ precipitation regression coefficients were 
consistently higher than their OLS counterparts. The differences between the predicted values  
(UQ–OLS) were higher in wet years than in dry years (Figure 1a). Model A is the RUE, in which only 
precipitation was used and OLS regression. It had the highest mean error of all the models tested 
(Table 2).  Adding specific humidity and temperature or seasonal precipitation distribution variance 
and skewness as co-independent variates in the OLS regression models (Table 2, models B & C) 
increased the ability of these models to account for the observed variability in ΣNDVIgs (Figure 2d), 
the consequences of which were more constrained predictions of potential ΣNDVIgs values. However, 
UQ regressions using precipitation alone, on average, had the lowest prediction errors (Table 2). The 
geographical distribution of prediction errors was characterized by a pronounced latitudinal gradient 
with larger errors at lower latitudes (e.g., Figure 2a). Adding specific humidity, air temperature, 
seasonal precipitation variance, and skewness to precipitation as predictor variables in OLS 
regression models decreased potential ΣNDVIgs prediction errors, particularly at middle and higher 
latitudes (Figure 2b,c). 

 
Figure 1. Properties of the models used to estimate potential ΣNDVIgs from the relationship between 
observed ΣNDVIgs and climate variables. (a) The OLS and UQ regression lines of ΣNDVIgs on 
precipitation and their prediction intervals (Pred. Int) at the 95% confidence level for a cropland site 
(3.725°W, 11.525°N); (b) The difference between the OLS and UQ precipitation coefficient values for 
all sites throughout the Sahel study region; (c) The ability of precipitation (model A), precipitation 
and its intra-seasonal distribution (model B) and precipitation, specific humidity and temperature 
(model C) to account for the variations in ΣNDVIgs. SHUM—specific humidity. 
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Figure 2. Potential ΣNDVIgs prediction errors: (a) errors of the OLS regression between ΣNDVIgs and 
precipitation (model A); Compared with model A are: (b) percentage reduction in potential ΣNDVIgs 
prediction errors of the OLS regression between ΣNDVIgs and precipitation, specific humidity, and 
temperature (model B); and (c) percentage reduction in potential ΣNDVIgs prediction errors of the 
OLS regression between ΣNDVIgs and precipitation, its seasonal distribution variance, and skewness 
(model C); (d) Frequency distribution of prediction errors for the three models normalized by the 
range of ΣNDVIgs values (prediction error/maximum ΣNDVIgs–minimum ΣNDVIgs); and (e) 
frequency distribution of the values in (b,c). The red lines from north to south are the 300 mm, 700 
mm and 1100 mm rainfall isohyets. 

Table 2. Independent variables used in OLS and UQ regression models to estimate potential ΣNDVIgs 
values. The mean regression coefficient values and potential ΣNDVIgs prediction errors at the 95% 
confidence level are the averages of all regression equations estimated for each 3 × 3-pixel grid cell. 
SHUM—specific humidity; OLS—ordinary least squares; UQ—upper quartile regression;  
SKEW—skewness of intra-annual, daily precipitation frequency; ppt—precipitation; T—air temperature. 

Model Name 
Abbreviation 

Model to Estimate 
Potential NPP 

Independent Variables Mean Coefficient Value(s) 
Mean Errors 
in ΣNDVIgs 

Model A OLS 
precipitation 

0.028 × ppt 28.1 
Model D UQ 0.032 × ppt 19.8 

Model B OLS precipitation, specific 
humidity and 
temperature 

0.013 × ppt + 19.8 × SHUM-0.0016 × T 22.0 

Model E UQ 0.015 × ppt + 19.7 × SHUM − 0.0045 × T 20.6 

Model C OLS precipitation, variance 
and skewness of  
intra-annual 
precipitation 
frequency 

0.151 × ppt − 0.10 × var + 2.4 × SKEW 24.7 

Model F UQ 0.154 × ppt − 0.13 × var + 2.55 × SKEW 21.7 
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3.2. Residual Trends 

The total errors of the residuals calculated from potential ΣNDVIgs and observed ΣNDVIgs error 
components were larger at lower (wetter) than at higher (drier) latitudes, thus preconditions (v) and 
(vii) for a simple RUE (Table 1)) were not met. At higher latitudes, the two error components were 
similar in magnitude and contributed equally to the residual errors. At lower latitudes, however, 
residual errors were dominated by the uncertainties of potential ΣNDVIgs values. 

A comparison of the combined errors (Equation (1)) and F tests for four example sites (Figure 3) 
showed that the test for uncertainty was sufficient: the probability of the F value test was <0.05 for all 
slope values greater than their uncertainty, while the reverse was not always true (Figure 3c,d). Note, 
however, some indication of a change in slope after 1998 for the site shown in (c), in contravention of 
precondition (vii) of the RUE (Table 1). 

 

Figure 3. Temporal trends (slopes) of ΣNDVIgs residuals (observed–potential) regressed over time at 
four locations in the Sahel. The trends in sites (a,b) are significantly different from zero (p value of the 
F test <0.05 and their absolute values are greater than their respective uncertainty), whereas the trends 
for the sites shown in (c,d) have a p values of the F test <0.05, but the slope values are less than their 
respective uncertainty. 

The geographical patterns of the residuals and their significance for the six models (Figure 4) 
were similar. There were relatively large areas with significant negative trends: in western Sudan, 
centered on Nyala; in southern Niger around the cities of Zinder, Maradi, Dosso, and Niamey; in 
Nigeria, extending between Kano in the north and Abuja in the south; and throughout Burkina Faso. 
However, there were areas of disagreement between the models, including in western Senegal and 
in Ethiopia, to the east of Lake Tana. Large areas with positive trends (i.e., increases in productivity 
beyond what can be explained by meteorological conditions) were recorded in Chad, Benin, Togo, 
Ghana, and elsewhere (Figure 4a–f). The six RESTREND models (Table 2) showed that, compared to 
the OLS (Figure 4a–c), the maps of the UQ regression models (Figure 4d–f) had more area with 
significant negative trends and less with significant positive trends. Expressing HANPP [66] as a 
percentage of NPP (%HANNP) revealed considerable heterogeneity in the spatial patterns of 
consumption and production throughout the Sahel (Figure 4g). 
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Figure 4. Residual trends and two maps of human land use. (a–f) Trends (slopes) of NDVIgs residuals 
(observed–potential) over time as obtained from the six RESTREND models (A) through (F); see Table 
2); (g) % Human Appropriation of Net Primary Production (%HANPP); and (h) proportion of 
cropland datasets used to explore the relationship between RESTREND value and land use [5,59].  
The red lines from north to south are the 300 mm, 700 mm and 1100 mm rainfall isohyets. 
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3.3. Relating RESTREND to Population, Land Use, and Soil Variables 

The geographic patterns of the trends of the residuals and population and land use show close 
visual correspondence between negative trends and high %HANPP, livestock unit density, and 
percentage of land area used for agriculture (Figure 4g,h). 

Significant trends were compared with population and land use. Plots of the mean and standard 
deviation of 25 equally sized groupings of RESTREND values ranked by each population and land 
use variable (Figure 5) showed a poor relationship between population density and the magnitude 
of the trends of residuals, although, overall, a negative trend is clear (Figure 5a). However, there was 
a significant inverse relationship between RESTREND and %HANPP values (Figure 5b), possibly 
because %HANPP accounts for the effects of population density and the geographical variation in 
per capita consumption levels. The plots also suggest a near-linear inverse relationship between 
RESTREND and livestock unit density and a similar relation with livestock unit density divided by 
productivity (LSU/NPP) (Figure 5c,d). However, Figure 5e shows a weak inverse logarithmic 
relationship between RESTREND value and %crop cover. This relationship was further investigated 
using an index (% crop cover/mean annual precipitation—MAP) to assign higher values to the same 
% crop cover in drier, compared with wetter, areas. Residual trends were found to be inversely 
related to this index (Figure 5f). This suggests that agricultural extensification affects land 
productivity disproportionately more in dry areas. 

The multivariate linear regression analysis of RESTREND and the additive effects of multiple 
land uses within a grid cell (Table 3) were better related than the univariate correlations. The highest 
goodness of fit (r2 = 0.49) was between model E RESTREND and the three variables (%HANPP, 
LSU/NPP, %crop cover/MAP), while the lowest (r2 = 0.34) was for the trends calculated using model D. 

The RF regression analysis indicated that, in addition to population and land use, land cover 
and soil properties were significant (model E) (Table 4). The addition of fraction tree cover, soil bulk 
density, and soil erodibility increased r2 values (Tables 4 and 5). For example, the percentage variance 
in RESTREND values accounted for by the variables LSU/NPP, crop density, and population density 
was approximately 60%. Adding soil bulk density or fraction tree cover increased the percentage 
variance explained (r2) by more than 14% (Table 4). Similarly, %HANPP alone explained 25% of the 
variability in RESTREND values, but adding soil bulk density and fraction tree cover increased the 
percentage variance accounted for to approximately 80% (Table 5). The r2 and the RMSE values of the 
RF models estimated using the “out-of-bag” method were similar to those obtained using the cross-
validation approach, which indicates that, while RF trees were grown to a maximum without 
pruning, there was no evidence of model overfitting. Cross validation results for two RF models with 
relatively high r2values are shown in Figures 6c and 7c. The most important variables in relation to 
the spatial distribution of RESTREND values listed in descending order were: fraction tree cover; soil 
bulk density; soil erodibility; livestock unit density divided by local NPP (LSU/NPP); the index of 
cropping density divided by mean annual precipitation (% crop/MAP); and, finally, population 
density (Figures 6b and 7b). The component loadings obtained from principal component analysis 
suggest that, except for fraction tree cover, all other variables were inversely related to RESTREND 
values (Figures 6a and 7a). The same analytical procedure was repeated, but by utilizing RESTREND 
values calculated from the other models (i.e., models A, B, C, D, & F; Table 2). While the nature of the 
relationships with land use, land cover, and the geographical positions of soil properties were similar 
to these described for model E, the strength of the relationships (r2 values) were persistently lower 
when RESTREND values for models A & D were used in RF regression analysis, whereas the r2 values 
for model B approached the corresponding model E values. 
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Table 3. Correlation values (r) between RESTREND, population, and land use. The multi-correlation value was estimated from the relation of RESTREND values to Human 
Appropriation of Net Primary Production (%HANPP), livestock unit density normalized by site net primary productivity (LSU/NPP), and %crop cover/mean annual 
precipitation (%crop/MAP). Stronger relations are shown in bold. SHUM—specific humidity; OLS—ordinary least squares; UQ—upper quartile regression. 

Residual 
Trends 
Model 

Model-Independent 
Variables 

Pearson Product Correlation Values Multiple 
Correlation 

Grazer 
LSU 

Browser 
LSU 

Total 
LSU %Crop 

Human 
Population 

Density 
HANPP %HANPP LSU/NPP %Crop 

/MAP 

%HANPP + 
LSU/NPP + 

%Crops/MAP 
A (OLS) 

precipitation 
−0.22 −0.26 −0.24 −0.19 −0.08 −0.21 −0.49 −0.5 −0.41 0.65 

D (UQ) −0.18 −0.2 −0.2 −0.25 −0.08 −0.19 −0.41 −0.43 −0.37 0.59 
B (OLS) precipitation, specific 

humidity and temperature 
−0.11 −0.18 −0.13 −0.29 −0.1 −0.19 −0.5 −0.42 −0.48 0.67 

E (UQ) −0.05 −0.15 −0.07 −0.37 −0.1 −0.21 −0.55 −0.43 −0.55 0.7 
C (OLS) precipitation, variance and 

skewness of intra-annual 
precipitation frequency 

−0.21 −0.24 −0.23 −0.21 −0.09 −0.16 −0.46 −0.51 −0.45 0.66 

F(UQ) −0.15 −0.19 −0.17 −0.26 −0.07 −0.15 −0.4 −0.42 −0.4 0.6 
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Figure 5. Mean RESTREND values (observed–potential) within groupings of: (a) population density 
(persons/ha); (b) percentage human appropriation of NPP (HANPP%); (c) livestock unit density 
(units/ha); (d) livestock unit density normalized by site productivity; (e) fraction land area used for 
crops; and (f) fraction land area used for crops normalized by mean annual precipitation. Filled circles 
are trends of the residuals where potential NDVI was obtained from OLS multivariate regression 
between NDVI and precipitation, specific humidity, and temperature. Open circles are trends of the 
residuals where potential NDVI was obtained from OLS multivariate regression between NDVI and 
precipitation, its seasonal variance, and skewness. Error bars are ±1 standard deviation around the 
mean. Dashed lines mark the zero RESTREND values. 
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Figure 6. The relationship between significant RESTREND values and four explanatory variables, soil 
erodibility factor, livestock unit density normalized by site productivity (LSU/NPP), fraction land 
used for agriculture (cropping density), and population density. (a) biplot of the first and second 
principal component loadings of a principal component analysis; (b) variable importance values 
calculated by the Random Forest (RF) regression tree model; (c) comparison between RESTREND 
values modeled from the NDVIgs time series (x-axis) and RESTREND values predicted by RF analysis 
(y-axis); and (d) histogram of the differences between the plotted values in (c). Residual trends 
insignificantly different from zero were excluded. 

Table 4. Spatial variation in RESTREND values correlated with land use (livestock unit density—LSU 
and cropping density—CD), land use and soil properties, and land use and land cover, using RF 
regression tree models. LSU/NPP—livestock unit density normalized by site primary productivity; 
CD/MAP—cropping density normalized by mean annual precipitation. 

Model Explanatory Variables Used in the Regression Tree Model Variance Explained (r2)

Land use 
LSU/NPP 0.31 
LSU/NPP + CD/MAP 0.54 

Land use plus: 

+ Available Water Capacity 0.58 
+ Soil Texture 0.62 
+ Soil Erodibility Factor 0.64 
+ Soil Bulk Density 0.69 
+ Land cover type 0.52 
+ Fraction herb cover 0.60 
+ Fraction tree cover 0.68 
+ Topographic Slope 0.56 
+ Fire density 0.62 
+ Population density 0.64 

“Best” models 
Land use + Population density + Soil Erodibility Factor 0.72 
Land use + Population density + Fraction tree cover 0.76 
Land use + Population density + Soil Bulk Density 0.80 
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Figure 7. The relationship between significant RESTREND and the three explanatory variables, 
fraction tree cover (fTree), percentage human appropriation of NPP (%HANPP), and soil bulk 
density. (a) biplot of the first and second principal component loadings of a principal component 
analysis; (b) variable importance values calculated by the regression tree model Random Forest (RF); 
(c) comparison between RESTREND values modeled from the NDVIgs data time series (x-axis) and 
RESTREND values predicted by RF analysis (y-axis); and (d) histogram of the differences between 
the plotted values in (c). Residual trends insignificantly different from zero were excluded. 

Table 5. Spatial variation in RESTREND values correlated with %HANPP and soil properties, and 
%HANPP and land cover, using RF regression tree models. 

 Explanatory Variables Used in the RF Regression Tree Model Variance Explained 
(r2) 

%HANPP plus: 

+ Available water capacity 0.56 
+ Texture 0.66 
+ Erodibility factor 0.69 
+ Soil Bulk Density 0.74 
+ Land cover type 0.53 
+ Fraction herb cover 0.64 
+ Fraction tree cover 0.73 
+ Slope 0.64 
+ Fire density 0.65 
+ Population density 0.74 

“Best” models 
%HANPP + Soil Bulk Density + Fraction tree cover 0.80 
%HANPP + Soil Bulk Density + Fraction tree cover + Fire density 0.81 
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CART single tree models did not capture the spatial variability in model E RESTREND values 
so well as RF models, nonetheless they provided a graphical demonstration of the nature of the 
relation of RESTREND values to the explanatory variables (Figures 8 and 9). Negative RESTREND 
values were associated with areas characterized by high soil erodibility (>0.41) and population 
densities above 6.5 persons per km2, whereas areas with very high soil erodibility and population 
density below 6.5 persons per km2 had on average positive RESTREND values. Other areas associated 
with negative RESTREND values were characterized by high LSU/NPP values (>1.41), intermediate 
soil erodibility (0.24–0.41) and high population density (>19.5), or by intermediate LSU/NPP values 
(0.3–1.41), intermediate soil erodibility (0.24–0.41), and high cropping density/MAP (>0.41) (Figure 8). 
The areas with low fraction tree cover (<8.5%), high soil bulk density (>140.5), and high %HANPP 
(>24.5%) were generally associated with negative RESTREND values, whereas areas with high 
fraction tree cover (>18.5%) and low soil bulk density (<136.5) were associated with positive trend values. 

 
Figure 8. Pruned regression tree showing the hierarchical relations of RESTREND to land use, 
population, and soil erodibility. Regression tree r2 = 0.6 and RMSE = 0.23; LSU/NPP (livestock unit 
density normalized by site net primary productivity); Cropping density (fraction land area used for 
crops); S.V.—node split value; S.D.—standard deviation of values at the node; V.—value at terminal 
node; N—number of observations at terminal node. 

 
Figure 9. Pruned regression tree showing the hierarchical relations of RESTREND to %HANPP and 
to soil and land cover properties. Regression tree r2 = 0.65 and RMSE = 0.21; f Tree—fraction tree cover; 
%HANPP—percentage human appropriation of NPP; S.V.—node split value; S.D.—standard deviation 
of values at the node; V.—value at terminal node; N—number of observations at terminal node. 
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4. Discussion 

The analyses clearly indicated that variance in ΣNDVIgs (the surrogate for NPP) was better 
explained by combined growing season precipitation, specific humidity, and temperature, and by 
seasonal variance and skewness of precipitation, rather than by RUE (precipitation alone-Model A) 
(Figure 2d). This was expected because of the roles these meteorological variables play in growth and 
rates of development of vegetation throughout the Sahel [37,85–87]. However, it should be 
recognized that herbaceous and woody components of the vegetation, which may vary 
independently [88], were not distinguished here. 

The proportion of significant relationships between precipitation and ΣNDVIgs found here was 
similar to other reports [89]—the differences probably related to the different preprocessing of data 
used and inclusion or exclusion of precipitation outside the main growing season, although there is 
another study [28] that reported a very low percentage of the region with significant relationships. 

Despite significant increases in r2 values, the strength of the relationship between ΣNDVIgs and 
the meteorological variables was not uniformly high. For example, it was relatively weak south of 
the 900mm isohyet (Figure 3), presumably because the environmental variables studied do not limit 
NPP there to the same degree as in the drier areas  [37,88]. In drier areas, low correlations may arise 
near perennial lakes, rivers, and irrigated agriculture where the vegetation can utilize water from 
rainfall gathered elsewhere (in which case precondition (iii) for RUE would not be met (Table 1). 
Similarly, for trees which may access water deep in the soil profile [90] (also not satisfying 
precondition (iii). Table 1), or, in some cases, the rainfall–soil moisture relationship can become 
increasingly non-linear (not satisfying precondition (i)) owing to reduced infiltration and surface 
evaporation. 

Potential ΣNDVIgs prediction errors were calculated with the assumption that the 
meteorological datasets were error-free. This is clearly not the case and could reduce the extent of the 
areas with significant trends. Unfortunately, modeled meteorological data sets are rarely 
accompanied by measures of error, and tests with meteorological stations data are not valid since 
those data are used in calibration [49]. Moreover, the systematic error component of the AVHRR data 
has not been evaluated, since data from other sensors were not available for the full study period 
(1982–2006). However, the corrections applied to the meteorological and to the AVHRR data [49,57] 
have been applied to the processing stream and are reported to significantly reduce the systematic 
error components and therefore are not expected to have influenced greatly the findings of this study. 

Potential ΣNDVIgs values estimated from OLS regressions were generally lower than their 
counterparts obtained from the 95th upper quantile (UQ) distribution (Figure 1). This was expected, 
since OLS regressions can underestimate vegetation production potential because, in years when 
vegetation production was not only limited by precipitation, other factors, including humidity and 
temperature, in addition to degradation, can reduce the estimate of potential production [32]. 
Furthermore, a number of slow processes, such as depletion of seed and bud banks [91], nutrient 
limitations, excessive run-off, grazing, and fuel-wood collection [92] among other causes, may also 
contribute, and result in an under estimation of potential vegetation production [32]. Sites affected 
by these are indistinguishable from those at their potential (so precondition (vi) for use of RUE is not 
met (Table 1)) and the mean rates of change in ΣNDVIgs would underestimate the production 
expected in response to climate variability (i.e., potential ΣNDVIgs values), reducing the 
“degradation” signal and overestimating the “greening” signal. This is not to suggest that estimating 
potential ΣNDVIgs using UQ regression functions is without its own problems; it is still subject to the 
same errors as OLS because it is also affected by the degraded sites, albeit using a more appropriate 
statistical model. 
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Table 6. Comparisons between RESTREND results and published literature on the status of land degradation and land use in the Sahel. 

Geographical Region
& Period Studied 

Degradation Symptoms Pressures Opportunities Sources Residual Trends 
(RESTREND) Comparisons 

Maradi  
(southern Niger)  
and  
Kano (northern 
Nigeria)  
Departments  
(1960–2000) 

Soil fertility decline, soil 
erosion 

Grazing, cultivation without fertilization  
of outlying fields, loss of woody  
vegetation cover, aridity 

Greater use of manure and 
mineral fertilizers (1990–2000) 

[93,94] 

All models show significant 
negative residual trends 

Vegetation degradation 
Intensified grazing pressure, aridity, 
deforestation, agricultural expansion 

Stable or increasing densities of 
trees being maintained on 
farmland; but natural woodlands 
still under pressure 

[95–97] 

Loss of agricultural 
productivity 

Collapse of the long fallowing system 
Increased livestock production 
through transhumance and 
increased use of crop residue 

[95,97] 

Diourbel Region 
(Senegal)  
(1960–2000) 

Drop in groundnut yields/mm 
rainfall. Millet yields/mm 
rainfall stable (1982–1998) 

Shortening of the fallow period,  
insufficient application of manure,  
high prices of inputs (e.g., mineral fertilizers) 

No data [98] 
OLS models (insignificant 
negative trends); UQ based 
models (significant negative 
trends) 

Vegetation degradation. 
Woody cover declined from 
7.7% in1978 to 2.8% in1989 

Fuelwood and construction timber collection, 
aridity, farm expansion 

Increasing densities of trees being 
maintained on farmland 

[99] 

Decline in soil fertility 
Shortening of fallow cycle, reduction in 
mineral fertilization post 1980 

Increasing manure application 
from the buoyant livestock sector 

[98] 

Senegal (Ferlo region) 
Decline in woody cover but 
mainly attributed to drought 

Expansion of agriculture into climatically 
marginal regions), encouraged by national 
policy (maintaining land in production); % 
cropland area reached 16% by 2000. 

No data [100] 
Large areas of the Ferlo have 
negative trends though 
insignificant in most models. 

Senegal (ferruginous 
pastoral ecoregion) 

High rates of woody cover 
mortality; expansion on barren 
land from 0.3% in 1965 to 4.5% 
in 1999 

Aridity, overgrazing, soil compaction No data [100] 

Negative–significant negative 
trends in the eastern parts of 
the region; positive 
insignificant trends in western 
parts 

Senegal (West central 
agricultural ecoregion, 
or Peanut Basin) 

No data 
Post 1985 abandonment of agricultural land 
(%area dropped from 
80% to 67% in 2000) 

No data [100] 

Positive but insignificant 
trends in the northern part; 
negative but insignificant 
trends in the southern part. 



Remote Sens. 2016, 8, 948 19 of 26 

Senegal (Eastern 
transition zone) 

No data 

Half of the wooded savannas has been 
degraded by charcoal production (post 1985). 
Bushfires, agricultural expansion (4% of the 
total area) and grazing are secondary 
pressures 

No data [100] 

Northeastern area with 
negative–significantly negative 
trends; remaining area have 
positive but insignificant 

Senegal (Agricultural 
expansion region and 
Saloum agricultural 

Deforestation and degradation 
inferred from analysis of aerial 
photos 

Conversion of wooded savannas and forests 
into agriculture (almost the entire area was 
transformed) 

No data [100] 
Negative–significant negative 
trends. Lower values were 
obtained for the Saloum region.

Shield ecoregion 
(South -east Senegal) 

No data 
Agriculture (only 2% of the landscape) with 
long fallow periods still practiced 

No data [100] Significant positive trends 

Senegal—Casamance 
(Sudano—Guinean 
zone in South) 

No data 
Post 1985 rapid agricultural expansion in the 
middle eastern part of the region, coupled 
with fuel wood extraction 

No data [100] 

Positive–significantly positive 
trends in the eastern and 
western parts. Negative but 
insignificant trends in in the 
middle parts of the region 

Sahel region 
Coordinates of degraded/non-
degraded landscapes 
throughout the Sahel. 

No data No data 
Tappan, 
G. pers. 
comm. 

Good agreement (>70%) with 
model results 
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The OLS RESTREND models (models A, B, and C) resulted in larger areas with significant 
positive trends than the UQ based RESTREND models (models D, E, and F) (Table 7), however, in all 
cases the largest areas had no significant trends (mean of all models 70%), in agreement with other 
studies (e.g., [28,101]). Despite the differences between the models in the significance of these trends, 
they all indicate large and spatially coherent areas that “greened” faster than can be accounted for by 
changes in meteorological conditions (Figure 4) [88,102]. Similarly, after removing the effects of 
rainfall on NDVI, positive trends have been found, for example, over parts of the Senegal, Southern 
Mali, and Chad and the entire Sahel [28,30,88,103–105]. Explanations of the greening trends in the 
literature include agricultural intensification, improvements in soil and water conservation 
techniques, supplementary irrigation, and fertilization, all as a result of increased investment [88], 
CO2 fertilization, increased carry-over effects of soil moisture from previous wet years, and increases 
in seed and bud banks associated with high vegetation productivity in previous years [32,90,102,105–108]. 
The present results also detected large parts of Burkina Faso, northern Nigeria, southern Niger, and 
western Sudan with significant negative trends (Figure 4). Surprisingly, similar analyses (e.g., [105]) 
have not found this pattern, possibly because different data sets were used. In addition to the 
frequently quoted effects of excessive cultivation, increases in grazing, etc., suggestions for the 
negative trends include land abandonment associated with economic migration and civil strife, and 
transitions to new quasi-stable vegetation composition following the extreme droughts of the 1970s 
and 1980s [20,27,32,33,43]. Even though some disagreement can be expected due to differences 
between the climate datasets used here and in other studies, and because of differences in the AVHRR 
data used [105], the lack of agreement over such large areas is surprising. 

Table 7. Percentage land area with significant negative and positive trends. OLS—ordinary least 
squares; UQ—upper quartile regression. 

RESTREND 
Regression 

Models 

Model 
Independent 

Variables 

Significant 
Negative Trends 

Insignificant 
Negative Trends 

Significant 
Positive Trends 

Insignificant 
Positive Trends 

A (OLS) 
precipitation 

7.22% 28.72% 25.29% 38.78% 
D (UQ) 12.88% 27.22% 12.73% 47.18% 
B (OLS) precipitation, 

specific 
humidity, and 
temperature 

7.14% 18.86% 34.20% 39.80% 

E (UQ) 8.01% 20.93% 16.84% 54.22% 

C (OLS) precipitation, 
variance, and 
skewness of 
intra-annual 
precipitation 
frequency 

6.60% 25.40% 25.59% 42.41% 

F (UQ) 9.85% 30.77% 7.25% 52.12% 

The RESTREND results were compared qualitatively with published case studies of land 
degradation and rehabilitation in the Sahel ( [12,30,97,98,100–110]) and by comparison with field 
observations by experts (e.g., Gray Tappan, 2008 pers. com.). While these comparisons showed 
favorable agreement (Table 6), they should not be construed as validation results. Validation sensu 
stricto requires direct measurements of vegetation at appropriate scales over a distributed set of sites. 
Until such datasets become available, validation of satellite-derived degradation indices at the scales 
studied here will not be easy. 

Analysis of the relation between RESTREND values and population density did not support the 
notion that higher population density in the Sahel invariably causes reductions in land productivity 
(Tables 4 and 5). %HANPP, on the other hand, was related to reductions in land productivity (r = 
−0.55). It should be noted that the calculation of %HANPP [66] does not account for lateral flows 
(imports or exports) of NPP-based products. Including these effects may provide a better accounting 
of the pressures people impose on their local environment. Nevertheless, the relationship between 
%HANPP and RESTREND was strong enough to suggest that higher demands for NPP-based goods 
in relation to local NPP production are likely to impoverish local ecosystems [111].  
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Further examination of the relation of land uses such as livestock production and area of land 
used in cultivation with the RESTREND values found moderate–weak correlations (Table 4). 
However, stronger relationships were found between RESTREND and the ratios of both LSU to 
livestock carrying capacity (LSU/NPP; r = −0.51) and %crop area to mean annual precipitation 
(%crop/MAP; r = −0.55). While the inverse relationship between RESTREND values and LSU/NPP 
was expected, the relation with %crop/MAP suggests that the extension of cultivation into marginal lands, 
not suitable for agriculture, may result in long-term reductions in productivity or degradation [15,80]. 

A meta-analysis of case studies of land degradation [80] found that, contrary to the theory of 
single-factor causation [53,112], land degradation in Africa can more often be attributed to multiple 
factors, and even to remote influences, including changes in agricultural policies such as 
intensification of livestock production, production of cash crops, and irrigation. Also, the spatial 
variations in RESTREND values were not only better explained by a multiplicity of land uses but also 
by local variations in natural resource endowments (Figures 6 and 7). Of the biophysical variables 
explored, soil bulk density, soil erodibility, and the fraction land area covered by trees were strongly 
related to degradation of NPP. These variables also enhanced the adverse effects of population and 
land use pressures (Figures 8 and 9). One possible mechanism is that fuel wood collection, 
agriculture, and grazing reduce perennial plant cover and simplify the vegetation structure exposing 
the soil to wind and water erosion [15]; also soil erosion and dispersion rates are higher in landscapes 
with higher soil bulk density and soil erodibility [113–116]. 

5. Conclusions 

Many studies have demonstrated that the return of more favorable climate conditions in the 
Sahel following the extreme droughts of the 1970s and early 1980s has been accompanied by a net 
increase in vegetation greenness (e.g., [26,102,103,117]). Yet, the spatial variations in the rates of 
vegetation recovery can only partially be explained by climate trends [27,88,118], thus reinvigorating 
the debate about the influence of anthropogenic land degradation and restoration on vegetation 
productivity [22,23]. The focus of this study was therefore twofold: first, to investigate where the land 
surface in the Sahel has been greening “faster” (i.e., positive RESTREND), or “slower” (i.e., negative 
RESTREND) than what would be expected from the trends in climate; and, second, to relate the 
spatial variations in RESTREND values to land use and human population density. 

The results suggest that, over large areas of the Sahel, the average area of insignificant trends 
was 70%, similar or larger than reported in other studies (e.g., [88]). Overall, in >87% of the area, NPP 
(vegetation greenness) either exceeded (i.e., positive RESTREND) or did not significantly depart from 
what is expected from the trends in climate (i.e., insignificant RESTREND). The areas with positive 
RESTREND were frequently associated with relatively low population and land use pressures. 
Undoubtedly, there are places where land rehabilitation efforts have increased land  
productivity—perhaps irrigation, shortened fallow period, erosion control, fertilizer use, CO2 
fertilization (e.g., [20])—but, at the scale of observation used here, there was little evidence to suggest 
that land rehabilitation or agricultural intensification were adequate explanations of the long-term 
increases in NPP. The scales of the phenomena and the explanations must match; explanations that 
do include an increase in water use efficiency caused by CO2 fertilization, higher nitrogen deposition, 
higher atmospheric aerosol loadings, or transitions to new quasi-stable vegetation compositions following 
the extreme droughts of the 1970s and 1980s [43,119–122] and, perhaps, non-linear, accelerating responses 
of vegetation to the changing climate, do fit the scale of the satellite observations. 

Contrary to findings in similar studies [28,30], we found large (7%–13% of the study area), spatially 
coherent areas with significant negative trends in production. These areas were found to have high 
livestock densities relative to their carrying capacity, intensive cultivation, overworked marginal lands, 
or combinations of these. The results suggest that population and land use pressures have had a 
measurable impact on vegetation dynamics in some parts of the Sahel during the period 1982–2006. 
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