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Abstract: Accurately mapping the spatial distribution of forests in sub-humid to semi-arid regions
over time is important for forest management but a challenging task. Relatively large uncertainties
still exist in the spatial distribution of forests and forest changes in the sub-humid and semi-arid
regions. Numerous publications have used either optical or synthetic aperture radar (SAR) remote
sensing imagery, but the resultant forest cover maps often have large errors. In this study, we propose
a pixel- and rule-based algorithm to identify and map annual forests from 2007 to 2010 in Oklahoma,
USA, a transitional region with various climates and landscapes, using the integration of the L-band
Advanced Land Observation Satellite (ALOS) PALSAR Fine Beam Dual Polarization (FBD) mosaic
dataset and Landsat images. The overall accuracy and Kappa coefficient of the PALSAR/Landsat
forest map were about 88.2% and 0.75 in 2010, with the user and producer accuracy about 93.4% and
75.7%, based on the 3270 random ground plots collected in 2012 and 2013. Compared with the forest
products from Japan Aerospace Exploration Agency (JAXA), National Land Cover Database (NLCD),
Oklahoma Ecological Systems Map (OKESM) and Oklahoma Forest Resource Assessment (OKFRA),
the PALSAR/Landsat forest map showed great improvement. The area of the PALSAR/Landsat
forest was about 40,149 km2 in 2010, which was close to the area from OKFRA (40,468 km2), but much
larger than those from JAXA (32,403 km2) and NLCD (37,628 km2). We analyzed annual forest cover
dynamics, and the results show extensive forest cover loss (2761 km2, 6.9% of the total forest area
in 2010) and gain (3630 km2, 9.0%) in southeast and central Oklahoma, and the total area of forests
increased by 684 km2 from 2007 to 2010. This study clearly demonstrates the potential of data fusion
between PALSAR and Landsat images for mapping annual forest cover dynamics in sub-humid to
semi-arid regions, and the resultant forest maps would be helpful to forest management.
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1. Introduction

In sub-humid and semi-arid regions, forests play an important role in protecting the land
from degradation and conserving biodiversity; however, they are vulnerable to degradation due
to low rainfall and deforestation, including the overexploitation of trees from clear-cutting forests for
agricultural and logging purposes [1]. Relatively large uncertainties still exist in the spatial distribution
of forests and deforestation, especially in sub-humid and semi-arid regions with low forest canopy
coverage [2,3], which may result in large discrepancy in the estimation of forest biomass and carbon
emission [4,5]. Therefore, accurate forest distribution maps with low uncertainties are critical to
assessing the forest change in these regions and understanding the role of forests in providing valuable
ecosystem services, thus supporting the policy towards Reducing Emissions from Deforestation and
Forest Degradation (REDD+).

Remote sensing has been widely applied for mapping the spatio-temporal patterns of forests from
local to global scales. Such applications are quite valuable in regions that are remote with limited forest
information. Past studies have generated forest maps primarily from optical remote sensing imagery,
including 8- or 1-km Advanced Very High Resolution Radiometer (AVHRR) [6,7], 500-m Moderate
Resolution Imaging Spectroradiometer (MODIS) [8–10], and 30-m Landsat TM/ETM+ images [11,12].
Although the 500-m, 1-km, and 8-km forest maps adequately describe the general patterns of the
spatial distribution of forests and forest change, these coarse resolution datasets have limited utility in
fragmented landscapes. Landsat imagery has been widely used for regional and global forest mapping
and land cover classification [11–15]. These 30-m forest products provide more detail in the spatial
distribution of forests and forest change than those derived from AVHRR and MODIS datasets.

Active microwave remote sensing has the advantage of the all-weather capability to map land
surfaces and has been widely used for forest mapping. L-band synthetic aperture radar (SAR) data have
relatively longer band wavelength, greater penetration into forests, and stronger volume scattering
signals than that of X- and C-band sensors. It exhibits substantial volume scattering and great sensitivity
to the biomass and structure of forests as incident energy interacts with large trunk and branch
components [16–18], and is preferred for forest mapping. Japan Earth Resources Satellite 1 (JERS-1)
images (1992–1998) were the first L-band SAR used for forest mapping at the continental scale.
JERS-1 was evaluated with stable backscatter values in both wet and dry seasons in different years in
the southwest Amazon [19] and were applied for mapping tropical forests [20–22]. The freely available
Advanced Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar
(PALSAR) and ALOS-2 PALSAR-2 offer wall-to-wall forest mapping capability [23], and have been
used to detect hotspots of forest cover changes (gain or loss of forest cover) [24–26]. C- and X-band
SAR have also been used for forest mapping [27]. However, their signals are often saturated at the
canopy, making it difficult to distinguish forests from crops.

Both optical and SAR remote sensing face certain challenges for accurately mapping forests.
Optical remote sensing imagery has been consistently available since the early 1970s and is a major
data source for historic forest mapping. However, the utility of optical remote sensing images is
often limited by the quality of observations (e.g., cloud and cloud shadow) [28]. To overcome this
problem, imagery from multiple years can increase the number of good-quality observations for forest
mapping, although combining images from multiple years diminishes the temporal sensitivity for
the detection of forest change [11]. Forests are also easily confused with some other land cover types
(e.g., shrub), as they have similar phenology and greenness features [29,30]. The SAR-based forest
maps tend to include some commission errors from buildings and rocky land due to similarities in the
structure of features. Previous studies introduced the potential of the integration of SAR and optical
remote sensing images for mapping ice shelf change, urban areas, crops, forest biomass, and forest
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disturbance [18,31–34]. Therefore, the integration of SAR and optical remote sensing images may
improve the accuracy of forest mapping, as demonstrated in several recent studies [35–37].

This study took place in Oklahoma—a region dominated by a sub-humid and semi-arid
climate—located in the southcentral United States (Figure 1). The objectives of this study are three-fold:
(1) map forests, which combines structure- and biomass-relevant information from ALOS PALSAR
images with greenness-relevant information from Landsat images using a pixel- and rule-based
algorithm; (2) analyze the uncertainties of the selected forest maps of circa 2010 in Oklahoma;
and (3) investigate the spatio-temporal changes of forests in Oklahoma from 2007 to 2010.
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ecoregions in Oklahoma.

2. Materials and Methods

2.1. Study Area

The elevation increases from east to west in Oklahoma, ranging from 83 to 1517 m above sea
level. The climate ranges from humid subtropical in the east to semi-arid in the west. Warm, moist air
moving northward from the Gulf of Mexico exerts much influence over weather patterns in the state,
particularly the southern and eastern parts. The annual average temperature decreases from the south
(17.2 ◦C) to the north (12.8 ◦C), and the rainfall decreases from east (1320 mm) to the west (450 mm).
Summers are long and usually very hot. There are nine different forested ecological system types and
164 tree species in Oklahoma [38].

2.2. Advanced Land Observation Satellite (ALOS) Phased Array Type L-Band Synthetic Aperture Radar
(PALSAR) Images and Pre-Processing

The 25-m ALOS PALSAR Fine Beam Dual polarization (FBD) products from 2007 to 2010,
generated with the selected images acquired between June and October [23], were downloaded
from the Earth Observation Research Center, Japan Aerospace Exploration Agency (JAXA). The data
are organized in 1 latitude degree by 1 longitude degree, about 4500 columns by 4500 rows. HH and
HV gamma-naught, mask information (ocean flag, effective area, void area, layover and shadowing),
local incidence angle, and total dates from the ALOS launch are included in the dataset. PALSAR HH
and HV backscatter data were slope corrected and ortho-rectified with a geometric accuracy of about
12 m, using the 90-m Shuttle Radar Topography Mission (SRTM) Digital Elevation Model (DEM),
before being radiometrically calibrated. The Digital Number (DN) values (amplitude values) were
converted into gamma-naught backscattering coefficients in decibels (γ

◦
) using a calibration coefficient.
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γ
◦
= 10× log10 < DN2 > +CF (1)

where CF is the absolute calibration factor of −83 [39]. PALSAR Difference and Ratio layers were
calculated as follows:

Difference = HH−HV (2)

Ratio =
HH
HV

(3)

In order to match Landsat images at 30 m spatial resolution, we also resampled the 25 m PALSAR
images (HH, HV, Difference and Ratio layers) to 30 m PALSAR images, using the nearest neighbor
method. The resultant 30 m PALSAR images were then combined with Landsat images to compose
a PALSAR/Landsat data cube.

2.3. Landsat Images and Google Earth Engine

Google Earth Engine (GEE), an open and powerful platform for satellite imagery processing,
was used for Landsat image processing. All the 2210 Landsat TM/ETM+ images in 23 tiles (path/row)
were used in this study from 2007 to 2010 (Figure 1). Landsat has a 16-day revisit cycle, but the spatial
overlaps among Landsat tiles provide additional observations for part of the images. The Landsat
Ecosystem Disturbance Adaptive Processing System (LEDAPS) was used to convert the top of
atmosphere reflectance (TOA) into surface reflectance (SR). A CFmask was applied to identify the bad
observations (i.e., cloud, cloud shadow, snow) of Landsat images. Over 99.8% of pixels have more than
20 observations and ten good-quality observations in each year. The number of total observations and
good-quality observations of Landsat images are relatively lower in 2007 than those in 2008, 2009 and
2010 (Figure 2). About 55.6%, 83.2%, 69.9% and 84.3% of pixels have more than 30 total observations in
2007, 2008, 2009 and 2010, respectively. About 55.9%, 77.0%, 74.8% and 76.0% of pixels have more than
20 good observations in 2007, 2008, 2009 and 2010, respectively. Most pixels have a percentage of good
observations to total observations in the range of 50% to 80%.
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The Normalized Difference Vegetation Index (NDVI) was calculated using Near Infrared band
(0.85–0.88 µm) and Red band (0.64–0.67 µm) for all good-quality observations. The annual maximum
NDVI (NDVImax) values were calculated for each year from 2007 to 2010.

NDVI =
NIR− Red
NIR + Red

(4)

2.4. Algorithms for Mapping Forests through the Analyses of Landsat and PALSAR Images

Figure 3 illustrates a workflow that uses PALSAR and Landsat TM/ETM+ images to map forests
(Figure 3). First, we use only PALSAR data (HV, Difference, and Ratio) to generate PALSAR-based
forest maps. Second, we combine both PALSAR and Landsat NDVImax data into a data cube and
generate PALSAR/Landsat forest maps, with an aim to reduce commission error in the forest maps.
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2.4.1. PALSAR-Based Forest Mapping Algorithm

As shown in Figure 4A, a false color composite of PALSAR data in Red (HH), Green (HV) and
Blue (Difference) in 2010, the land cover types illustrate different color patterns. Forests present strong
volume scattering signals in HV in green pixels; urban areas present strong volume scattering signals
in both HH and HV in white pixels. The other land cover types without obvious structure properties
(e.g., water bodies, agriculture land, and bare lands) show low volume scattering signals in dark
color pixels.

According to the forest cover definition by the United Nations Food and Agriculture Organization
(FAO), a forest is defined as a unit of land (>0.5 hectares) with tree crown cover of more than 10% and
the minimum height of 5 m [40]. A histogram of typical land cover types (forests, croplands, urban,
and others) in PALSAR HH, HV, Difference (HH-HV), and Ratio (HH/HV) in mainland Southeast Asia
demonstrated the potential of a PALSAR dataset to identify these land cover types [26]. First, water has
low values in both HH and HV and can easily be identified, since it reflects most of the backscatter
through specular reflection. Second, L-band PALSAR has great penetration into forests, and its incident
energy interacts with large trunks and branch components which causes substantial volume scattering.
Forests have high values in both HH and HV, and low values in Difference (HH-HV); however, there is
partial overlap with urban land cover types. Third, most croplands can also be identified, although
they may partly overlap with water. Following the above analysis, a rule-based algorithm for forest
mapping using 50 m PALSAR data was developed and assessed in China [41], Southeast Asia [26] and
monsoon Asia [3]. In this study, we updated the PALSAR-based forest mapping algorithm, based on
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25 m PALSAR data and large patches of training samples of typical land cover types (forests, croplands,
urban, and others). The thresholds for the PALSAR-based forest mapping algorithm were updated as
−16 < HV < −8 and 2 < Difference < 8 and 0.3 < Ratio < 0.85.
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2.4.2. PALSAR/Landsat-Based Forest Mapping Algorithm

The PALSAR-based forest maps often have a commission error associated with some natural
features (e.g., rocky lands) or manmade structures (e.g., urban, buildings), which tend to have
lower NDVI. Forest has leaf area index greater values than 3 m2/m2 with NDVImax values
greater than 0.7 [29,42,43], while rocky lands and urban areas have relatively low NDVImax values
(Figure 4B). In order to differentiate forests from other natural or manmade land cover types,
the PALSAR/Landsat-based forest mapping algorithm uses both Landsat NDVImax (>0.7) and the
above-mentioned PALSAR data (Section 2.4.1), which helps reduce commission error of forest maps.
In this study, the thresholds for the PALSAR/Landsat-based forest mapping algorithm were updated
as −16 < HV < −8 and 2 < Difference < 8 and 0.3 < Ratio < 0.85 and NDVImax > 0.7 for the 30 m
PALSAR/Landsat data cube.

2.4.3. Implementation of the Forest Mapping Algorithms

We ran the PALSAR-based forest mapping algorithm for the PALSAR data. For each pixel,
we identified whether it was forested or non-forested by year (2007, 2008, 2009, and 2010). A temporal
and logical consistency check was applied to reduce the noise or misclassification of this four-year
forest/non-forest sequence [44], which has 16 different Forest (F)/Non-forest (N) permutations.
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Isolated states of forest or non-forest in a sequence is not reasonable and should be modified
according to its temporal contexts. Therefore, the consistency filter was applied to the unreasonable
permutations (NNFN→NNNN, NFNN→NNNN, FNFF→FFFF, and FFNF→FFFF), which reduced the
misclassification. The reasonable (NNNN, NNNF, NNFF, NFFF, FNNN, FFNN, FFFN and FFFF) and
random (NFNF, NFFN, FNNF and FNFN) permutations remained unchanged, as the consistency filter
could not reduce the misclassification of random permutations, especially for short time permutations.
We ran this procedure for all pixels and generated annual forest maps in 2007, 2008, 2009, and 2010.
A median filter (5 × 5 pixels) was applied to exclude the isolated pixels and reduce the “salt and
pepper” noise in the annual forest maps. The resultant 25-m forest maps were resampled to 30 m forest
maps for comparison with other forest cover datasets, using the nearest neighbor resample method,
here referred to as the PALSAR-based forest maps.

We also ran the PALSAR/Landsat-based forest mapping algorithm for the PALSAR and Landsat
NDVImax data. The same procedures as described above were used to generate annual forest maps in
2007–2010, here referred to as the PALSAR/Landsat-based forest maps.

2.5. Validation Samples for Accuracy Assessment of PALSAR/Landsat Forest Maps

In an effort to generate the Oklahoma Ecological Systems Maps, extensive ground surveys were
conducted to collect validation ground samples for 14 typical land cover types by the Oklahoma
Biological Survey and the University of Oklahoma in 2012 and 2013. The collection of these ground
samples included the following general procedure [38]:

Sample plots were selected and located either near a road or on accessible lands based on road or
property access and variation in image signature or soil types. The locations were recorded in precise
latitude and longitude coordinates, based on the use of a GPS receiver integrated with GIS software.

Samples along roads were collected at approximately 1.6 km intervals, often on both sides of the
same road, starting from a random location. In addition, samples were collected at many stream/road
crossings, and where uncommon plant communities were noted.

For data collected along the roads, all sample plots were located at least 60 m from the road within
the center of a square with sides of at least 50 m, to help ensure that the footprint of a corresponding
30-m satellite pixel fell within a homogeneous land cover patch. Field survey table data and field
photos were taken to record the detailed information of each sample plot.

The resultant in situ dataset was made available to us for evaluating the PALSAR- and
PALSAR/Landsat-based forest maps. We made a 30 m buffer circle around each sample plot in the
shapefile format in ArcGIS. Finally, we got 1496 and 2253 ground sample plots for forests and non-forest,
respectively, for the accuracy assessment of the PALSAR/Landsat forest map in 2010 (Figure 5).
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2.6. Multiple Forest Datasets for Spatial and Areal Comparison in Oklahoma in Circa 2010

To analyze the consistency and uncertainty of the available forest maps at relatively high
spatial resolutions in Oklahoma, we carried out the area and spatial comparison between the 30-m
PALSAR/Landsat forest map in 2010 and the 25-m JAXA forest/non-forest map (JAXA F/NF) [23],
30-m National Land Cover Database 2011 (NLCD2011) [14,15], 10-m Oklahoma Ecological Systems
Map (OKESM) [38], and the Oklahoma Forest Resource Assessment 2010 (OKFRA2010) [45]. The 25 m
JAXA FNF was resampled into a 30 m binary forest/non-forest map using nearest interpolation
algorithm. The 10 m OKSEM was aggregated into 30 m forest map under the original forest definition.
Table 1 provides the brief introduction of these forest products in Oklahoma.

Table 1. Summary of the forest products for the area and spatial comparison in Oklahoma in circa 2010.

Forest Cover
Datasets (Extent) Forest Cover Types Spatial Resolution

(Meters) Algorithms Data Sources Major
References

JAXA F/NF
(Global)

Woody vegetation coverage
over 10% determined by
high spatial resolution
images in Google Earth

25 Rule-based
PALSAR FBD Polarization

mode data in main
growing season

[23]

NLCD2011
(National)

Areas dominated by trees
generally greater than 5 m

tall, and greater than 20% of
total vegetation cover.

30 Decision tree Landsat images in
circa 2011 [14,15]

OKESM
(State)

>25% total tree canopy
(>4 m tall) 10 Decision tree

Landsat images and aerial
imagery from National

Agriculture Imagery
Program (NAIP)

[38]

OKFRA2010
(State)

Areas dominated by trees
and shrubs greater than 20%

of total vegetation cover.
30 Decision tree Landsat images in

circa 2001 [45]

PALSAR/Landsat
(State)

Woody vegetation coverage
over 10% determined by
high spatial resolution
images in Google Earth

30 Rule-based

PALSAR FBD Polarization
mode data in main

growing season and
Landsat NDVImax

This study

3. Results

3.1. The PALSAR/Landsat Forest Map in Oklahoma in 2010

The spatial distribution of PALSAR/Landsat forest in 2010 showed a relatively good spatial match
with climate conditions (Figure 6). For example, the climate in eastern and central Oklahoma is warm
and humid, and subsequently large areas of forests were mapped; however, in western Oklahoma
where it is warm and dry, only a small area of forest is distributed. As shown in the confusion
matrix generated by the ground samples of forests and non-forest (Table 2), the overall accuracy
and Kappa coefficient of the PALSAR/Landsat-based forest map in 2010 were about 88.2% and 0.75;
the producer and user accuracies were about 75.7% and 93.4%, respectively. Due to limited human and
financial resources, ground samples collected in 2012 and 2013 were used to assess the accuracy of the
PALSAR/Landsat forest map in 2010, which would include some uncertainty caused by forest change
within this three-year interval. It was estimated that the total forest area from the PALSAR/Landsat
forest map in 2010 was 40,419 km2, about 22% of the entire state area.
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Figure 6. The spatial distribution of PALSAR-forest and PALSAR/Landsat-forest maps in 2010.

Table 2. The confusion matrix of PALSAR/Landsat forest map in 2010 using random ground samples.

Class
Ground Reference (Pixels) Total Classified

Pixels
User Accuracy

(%)
Commission Error

(%)Forest Non-Forest

Classification
Forest 1133 80 1213 93.4 6.6

Non-forest 363 2173 2536 85.7 14.3
Total ground truth pixels 1496 2253 3749
Producer accuracy (%) 75.74 96.5 Overall accuracy = 88.2%
Omission error (%) 24.26 3.5 Kappa coefficient = 0.75

3.2. Spatial and Areal Comparison Among Multiple Forest Datasets Circa 2010

At the pixel scale, these forest maps showed relatively good consistency in the regions with high
forest coverage (e.g., the southeast of Oklahoma) and large uncertainties in the regions with low forest
coverage (e.g., the west of Oklahoma) (Figure 7). Out of the entire state area, about 12.5% and 67.3% of
pixels were identified as consistent forest and non-forest by those forest maps. In detail, about 16%,
17% and 20% of the total pixels were identified as consistent forest between PALSAR/Landsat forest
map and JAXA forest map, NLCD2011 forest map and OKESM forest map, as well as 76%, 74% and
69% of consistent non-forest pixels, respectively (Figure 8). Compared with the PALSAR/Landsat forest
map, JAXA forest map clearly underestimated forests in the western and central parts of Oklahoma
by about 7% of the total pixels (Figure 9) and included obvious commission errors from urban areas
(Figure 8A). In southeast and central Oklahoma, the NLCD2011 forest map underestimated the forested
area by 5% of the total study area, and it overestimated forest area by about 4% of the total study area
in the west (Figures 8B and 9). The OKESM forest map overestimated forest area about 9% of the total
study area, including shrublands in both western and southeastern Oklahoma (Figures 8C and 9).
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At the state scale, the total forested area from the PALSAR/Landsat-based forest map in 2010
was estimated to be 40,419 km2, which was close to the official forest statistics (40,468 km2) from the
OKFRA but higher than the estimates from the JAXA forest map (32,403 km2) and NLCD2011 forest
map (37,628 km2) and lower than the estimate from the OKESM forest map (48,665 km2). The forested
areas from the nine ecoregions and 77 counties had significant linear relationships among the datasets
(Figure 10). The OKESM tended to have higher forested areas, while JAXA and NLCD2011 tended
to have lower forest areas when compared with the forest area estimates from the PALSAR/Landsat
forest map in 2010 (Figure 10).
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3.3. Spatial and Areal Changes of Forests from 2007 to 2010

We overlaid the PALSAR/Landsat forest maps and identified those pixels that remained as forest
over the four-year period and those pixels experienced forest changes in Oklahoma from 2007 to 2010
(Figure 11). Limited to human and financial resources, we analyzed forested area change based on the
map-based forested areas instead of sample-based unbiased forested areas. Generally, total forested
area was relatively stable in Oklahoma from 2007 to 2010, with a slight increase from 39,465 km2 in
2007 to 40,419 km2 in 2010 (~2.4% increase). The annual average forest cover loss rate was about
1572 km2/year, and the annual average forest cover gain rate was about 1800 km2/year from 2007 to
2010, respectively. Geographically, there were two regions with relatively high forest cover changes
in Oklahoma. The Cross Timbers ecoregion showed the largest forest cover gain (about 1969 km2)
and loss (1486 km2) during 2007–2010, followed by the southeastern region (South Central Plains,
Ouachita Mountains, and Arkansas Valley ecoregions) of Oklahoma with large areas of pine plantations
(Figure 11). According to the Oklahoma Forest Resource Assessment, several possible causes are
responsible for forest cover change [45]. The relatively low price of pulpwood and the declining forest
industry in Oklahoma left landowners investing little management in forests. The industry’s standard
logging and planting cycles are primary causes for the forest cover loss and gain, which is especially
apparent in the pine plantation region of southeast Oklahoma. Furthermore, under the pressure of
urbanization and landowner income, some forests were developed or converted into pasture.
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Figure 11. The spatial distribution map of the PALSAR/Landsat forest change in Oklahoma from
2007 to 2010. (A–C) are the forest changes in Oklahoma and two zoom-in areas from 2007 to 2010,
respectively. (D–F) are the statistics of forest gain, forest loss, and net change in ecoregions from 2007 to
2010, respectively.

4. Discussion

4.1. Integration of PALSAR and Landsat Imagery for Forest Mapping

We applied a pixel-based algorithm to generate annual forest distribution maps at the spatial
resolution of 30 m in Oklahoma from 2007 to 2010, through the integration and analysis of PALSAR
and Landsat TM/ETM+ imagery. The proposed algorithm combined the advantages of forest
structure information from PALSAR imagery and greenness information from Landsat NDVImax.
Compared with the other forest data products at similar spatial resolution, the PALSAR/Landsat
forest maps have several advantages as follows. First, the PALSAR/Landsat forest maps had limited
commission error from shrubs. Distinguishing forests from shrublands is challenging in the sub-humid
and semi-arid regions, as some shrubs have similar greenness and phenology features with forest
trees [28,29]. The heights of shrublands were lower than those of forests, which may be distinguishable
in PALSAR HV. Based on the ground samples of shrublands, we analyzed the confusion condition
between forests and shrublands. The PALSAR forest map excluded 85.7% of shrublands and Landsat
NDVImax 74.2% of shrublands (Figure 12). In total, about 92.4% of shrublands were excluded from
the PALSAR/Landsat forest map. Second, Landsat NDVImax refined the PALSAR forest maps and
reduced the commission errors. In Figure 6, the PALSAR/Landsat forest and the PALSAR forest
showed the relatively large difference in the land cover of western Oklahoma and urban areas.
The inclusion of Landsat NDVImax could exclude the commission errors from shrublands and urban
areas in the PALSAR forest map (Figure 13). The areas of the PALSAR forest maps were about
43,787 km2, 42,820 km2, 44,579 km2 and 43,965 km2 from 2007 to 2010, respectively. After including
Landsat NDVImax, the areas of the PALSAR/Landsat forest maps were about 39,465 km2, 39,394 km2,
39,731 km2 and 40,149 km2, respectively, about 10% (~4000 km2) of shrub, buildings, and rocky land
were reduced.
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4.2. Reasons for the Differences between the PALSAR/Landsat Forest Map and Other Forest Data Products

There are several reasons to explain the differences between the PALSAR/Landsat forest map
and other forest data products in this study:

The first reason is the definition of forests. A major difference in the spatial distribution of forest
maps is located in the regions with low forest coverage, which was thought to be mainly contributed by
the definition of forests [2]. The PALSAR/Landsat forests and the JAXA forests both use the FAO forest
definition: forest canopy coverage >10% and tree heights >5 m with a minimum area >0.5 hectares.
The forests from OKFRA and NLCD2011 are defined as land cover with >20% forest canopy coverage
and trees >5 m in height. Compared with the PALSAR/Landsat forest map, NLCD2011 has a smaller
area of forest (37,628 km2), while OKFRA has a larger area of forest (40,468 km2), which may be
attributed to the refining process based on the areal images. Forest in the OKESM is defined as having
a land cover of >25% forest canopy coverage and tree heights >4 m, which has 8516 km2 more forest
area (21.2%) than that of the PALSAR/Landsat forest map.

The second reason is the data sources. The JAXA FNF was purely generated based on the
strong PALSAR backscatter of forest in HV gamma-naught, which included commission errors
from urban-rural areas and sparsely vegetated land [23]. Two or three cloud-free Landsat images,
selected from multiple years, are the major data source to generate the NLCD, OKESM and
OKFRA products, and the forests in these products were easily confused with other land cover
types; e.g., shrublands or recent forest openings due to logging activities and natural disturbances.
The PALSAR/Landsat forest maps were produced by the integration of ALOS PALSAR and Landsat
images, which contains more information to reduce commission errors in the forest maps. In this study,
the data sources for several forest products were in different years or a collection of multiple years.
This would cause certain underestimations or overestimations of the area and spatial distribution of
forests and is not preferred for mapping fast-changing forests, like those of southeast Oklahoma.

The third reason is the algorithms of forest mapping. All four forest mapping products were
generated by the decision tree algorithms with different pre-processing and post-processing techniques
(Table 1). Different input datasets and thresholds derived from training samples resulted in different
forest maps. For example, the JAXA FNF map was produced based on the PALSAR HV threshold
(>−14.2 DB) [23], which was larger than that of the PALSAR/Landsat forest mapping algorithm in this
study (HV > −16 DB). Thus, the JAXA FNF map tends to underestimate the forest distribution,
approximately 7746 km2 (~23.9%) smaller than the PALSAR/Landsat forest map and includes
commission error from urban areas (Figures 8A and 10). The NLCD2011 was updated based on
the NLCD2006 through the interpretation of two pairs of cloud-free Landsat images and several
ancillary datasets, as well as substantial post-processing [15], which is relatively complex. The OKFRA
forest dataset was from Oklahoma Forestry Services and derived from Landsat images.

The fourth reason is the spatial extent of forest products. JAXA and NLCD2011 provide
global and national forest maps, respectively, while OKESM and OKFRA2010 are statewide forest
products for Oklahoma. Although the PALSAR/Landsat forest product uses the rules collected from
large areas of training samples and a knowledge-based threshold and could be used for global
forest mapping, its application is currently only in Oklahoma. It is expected that statewide forest
products usually have high accuracy, and national/global forest products usually have good spatial
consistency, though relatively low accuracy of large spatial coverage rendering landscape conditions
more complicated.

4.3. Applications of the PALSAR/Landsat Forest Maps in the Forest Management in Oklahoma

It is challenging to manage the forest resources in Oklahoma, as the area and spatial distribution of
forest are being affected by multiple factors, including changing forest markets, climate, and landowner
income [45]. Lots of forests are being clear-cut and used for pulpwood production. Therefore,
timely and fine spatial resolution forest maps are critically needed for forest management and policy
development [46].
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The integration of PALSAR and Landsat images provided complementary information for other
datasets, including Forest Inventory and Analysis (FIA) and airborne LiDAR, to estimate and track
forests. FIA collects many informative inventory data (e.g., tree species, size and condition of trees,
and forest land ownership) from a grid of permanent plots established about three miles apart in
Oklahoma about every five years. LiDAR can capture the structure information of forests and has
a very good relationship with forest biomass [47]. Both FIA and LiDAR data are expensive and have
low observation frequency, which is not preferred for mapping fast forest changes in relatively large
areas. As cloud and cloud shadows restrict data availability and utility, Landsat images are often
selected from multiple years to increase the number of good-quality observations and to produce land
cover maps, including forest maps at large scales [12,15,48], which fails to detect forest changes and
could introduce large uncertainties in the estimation of forest fragmentation, forest biomass and carbon
cycling [2,46]. Based on the resultant PALSAR/Landsat forest maps, extensive forest cover loss and
gain were identified in Oklahoma from 2007 to 2010, especially in the southeastern region of Oklahoma.

The areas of forests have increased in central and western Oklahoma, where rangeland is
predominant and vulnerable to woody encroachment. The woody plant encroachment into grasslands
has considerable effects on the ecosystem, such as (1) increase in soil C and N [49]; (2) decline in grass
cover and soil pH; (3) significant declines in species richness [50]; (4) altered carbon balance [51];
(5) changes in the ecohydrological process [52]; and (6) a reduction in livestock production in
a highly productive area [53]. The PALSAR/Landsat forest maps could provide the forest extent
and its spatio-temporal changes to policy makers for identification and management of the woody
encroachment in the region.

5. Conclusions

In sub-humid and semi-arid regions, relatively large uncertainties and low temporal precision
occur when one estimates forest distribution based on either synthetic aperture radar (SAR) or optical
remote sensing images alone. In this study, taking Oklahoma in the central United States as an example,
we introduced a straightforward and robust rule-based algorithm for forest mapping using Advanced
Land Observation Satellite (ALOS) Phased Array type L-band Synthetic Aperture Radar (PALSAR)
Fine Beam Dual polarization (FBD) mosaic images and the Landsat annual maximum of Normalized
Difference Vegetation Index (NDVImax). The PALSAR/Landsat forest map in 2010 reached a relatively
high overall accuracy and showed improvements against selected forest maps. The forested areas
tended to increase about 684 km2 from 2007 to 2010. The resultant PALSAR/Landsat forest maps
would provide the timely and accurate data source for forest management and policy development in
this sub-humid to semi-arid climate transition zone with the complex landscape.
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