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Abstract: The high temporal resolution (4-day) charge-coupled device (CCD) cameras onboard small
environment and disaster monitoring and forecasting satellites (HJ-1A/B) with 30 m spatial resolution
and large swath (700 km) have substantially increased the availability of regional clear sky optical
remote sensing data. For the application of dynamic mapping of rice growth parameters, leaf area
index (LAI) and aboveground biomass (AGB) were considered as plant growth indicators. The HJ-1
CCD-derived vegetation indices (VIs) showed robust relationships with rice growth parameters.
Cumulative VIs showed strong performance for the estimation of total dry AGB. The cross-validation
coefficient of determination (R2

CV) was increased by using two machine learning methods, i.e., a back
propagation neural network (BPNN) and a support vector machine (SVM) compared with traditional
regression equations of LAI retrieval. The LAI inversion accuracy was further improved by dividing
the rice growth period into before and after heading stages. This study demonstrated that continuous
rice growth monitoring over time and space at field level can be implemented effectively with HJ-1
CCD 10-day composite data using a combination of proper VIs and regression models.

Keywords: dynamic mapping; rice growth monitoring; leaf area index (LAI); aboveground biomass
(AGB); HJ-1 charge-coupled device (CCD)

1. Introduction

Rice is recognized as one of the most important crops in the world and the staple food for more
than half of the world’s population [1]. Leaf Area Index (LAI) is defined as one-half the total green
leaf area per unit of ground surface area [2], and the total weight of plant parts above the ground
per unit area at any particular time is called the aboveground biomass (AGB). LAI and AGB are both
important vegetation biophysical variables that are widely applied in crop growth monitoring and
yield estimation [3]. Timely acquisition of crop information on LAI and AGB is vital for the design of
dynamic maps of rice growth parameters. Such data could support agronomic decisions that ensure
plant health, yield stability, and optimization of economic benefits.

Traditional crop growth monitoring methods are limited in space and time, especially in
meeting the requirements of continuous crop condition monitoring at regional scales. Remote sensing
techniques offer a feasible tool for parameter regionalization. Lu made a review of the potential and
challenge of remote sensing-based forest biomass estimation; Koppe et al. did a study on the estimation
of winter wheat biomass using 30 m resolution data from Hyperion on regional scale; and Liu et al.
explored the uncertainties in green LAI estimation from Landsat images over multiple growing seasons
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with several crop types [4–6]. However, few studies have been conducted on the dynamic mapping of
crop growth parameters, which is important for practical applications. Currently, the most widely used
method for estimating LAI or AGB of crops from remote sensing data is through the use of statistical
relationships between the parameters and spectral vegetation indices (VIs) derived from many different
kinds of optical remote sensing data [7–9] or other nonparametric methods [10,11]. Some researchers
have explored the physical model inversion methods with satisfactory results [10,12]. These inversion
models usually contain many parameters and often require extensive details of meteorological and/or
agricultural knowledge to run, making real-time inversion on a regional scale unsuitable. However,
less is known about the application of machine learning methods and their potentials in inverting crop
biophysical parameters using remote sensing data.

The Advanced Very High Resolution Radiometer (AVHRR), Moderate Resolution Imaging
Spectroradiometer (MODIS), Satellite pour l’Observation de la Terre VEGETATION (SPOT-VGT)
and Landsat-MSS have demonstrated advantages in rice monitoring from regional to global scales
due to wider coverage and relatively longer data archive [13–15]. Some coarse resolution data such
as AVHRR-NDVI, MODIS-NDVI, and MODIS-EVI have been preprocessed and provide standard VI
products at a global scale to end users [16–18]. However, coarse resolution satellite data are generally
prone to classification uncertainties as mixed land cover types are difficult to delineate, especially in
the highly fragmented rice fields in the eastern plains of China [19]. Moreover, in practice, crop LAI
was found to be significantly underestimated by the MODIS LAI product [20,21], which makes the
implementation of suitable field management practices at a local scale more complicated.

Middle to high spatial resolution satellite data, e.g., Landsat TM/ETM+/OLI, SPOT and China
Brazil Earth Resources Satellite (CBERS), are promising in capturing small patches of crop fields [22].
However, their cost and relatively long revisit cycles partially offset their advantages in spatial
resolution. Specifically, most of the rice fields located in the subtropical regions of China are influenced
by the monsoon climate, leading to inadequate acquisitions of cloud-free remote sensing data during
monsoon weather conditions. In precision agriculture, where rice growth information is critically
needed, high-resolution multi-temporal remote sensing data are advantageous, as the spatial variability
captured by remote sensing data is useful for adjusting crop properties while taking into account the
local conditions [5].

Two small environment and disaster monitoring and forecasting satellites (HJ-1A/B) were
launched by the China Center for Resources Satellite Data and Applications (CRESDA) in 2008.
The charge-coupled device (CCD) cameras of these satellites have a swath width of 700 km, four spectral
bands with a spatial resolution of 30 m in the visible bands, and a revisit cycle of four days (the revisit
cycle of the constellation is two days). This fine spatial resolution and short repeat cycle facilitate the
availability of images at all critical growth stages of crops [23,24].

Vegetation Indices (VIs) are robust empirical measures of vegetation activity at the land surface.
They are designed to enhance the vegetation signal from measured spectral responses by combining
two (or more) different wavebands, often in the red (0.6–0.7 µm) and NIR wavelengths (0.7–1.1 µm),
and are widely used in the studies of crop land classification, yield prediction, phenology, and crop
growth monitoring [25–27]. The normalized difference vegetation index (NDVI) [28] is by far the most
widely used index in the literature, and is advantageous for studying historical changes; however,
it is sensitive to canopy background variations and saturates in relatively high-vegetated areas [29,30].
The enhanced vegetation index (EVI) [30] and the two-band enhanced vegetation index (EVI2) [31]
differ from NDVI by attempting to correct for atmospheric and background perturbation, and appear
to be superior in discriminating subtle differences in areas of high vegetation density [32]. Cumulative
VIs have been proven as a surrogate for absorbed photosynthetically active radiation (APAR), which is
proportional to total biomass [33,34].

The objectives of this study were to evaluate the use of vegetation indices for continuous rice
growth monitoring over multiple years and at a regional scale using a newly constructed HJ-1 CCD
10-day composite data, explore the traditional statistical models and nonparametric methods for LAI
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and AGB retrieval based on extensive field campaign datasets, and propose a dynamic mapping
method for rice growth for in situ application in agricultural practice.

2. Materials and Methods

2.1. Study Site

The study was conducted in Deqing County, which lies in the western part of the Hangjiahu
Plain, Zhejiang Province, Southeast China (Figure 1). This area is characterized by a tropical monsoon
climate. The mean annual temperature ranges between 13 ◦C and 16 ◦C and there is an annual total
precipitation of 1379 mm. Deqing has a total area of 936 km2, and according to statistical data from the
local agriculture department, more than 91% of the crop area is single-cropped rice (SCR). However,
due to the countless lakes, ponds, and rivers scattered throughout this region, and the well-developed
road networks, an irregular crop land phenomenon is typical in the study area [19].
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management measures, including different transplanting dates and different rice varieties. Extensive 
crop parameters experiments were conducted during the rice growing seasons (June to November) 
for the years 2012 and 2013. Field and laboratory measurements included LAI, AGB, and plant 
density. The corresponding rice phenology dates and sample numbers for each date were recorded 
as well (Table 1). 
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until the maximum tiller number is attained at the highest plant density. About 50 to 60 days after 
transplanting or sowing (the transplanting or sowing dates for 2012 and 2013 were 21 June and 18 
June, respectively), rice plant canopies cover most of the soil area. The leaves continue to increase in 
total area and generally remain green until the heading stage. Due to intraspecific competition at the 
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Figure 1. HJ-1A charge-coupled device (CCD) false-color composite image of the study area of
Deqing County, Zhejiang Province, East China.

2.2. Measurement of Crop Parameters

Single-cropped rice is the most abundant crop in Deqing County. Most small patches of rice fields
were cultivated by small-scale individual farmers, whereas relatively larger fields were managed
by large-scale rice farmers, leading to time inconsistency in rice cultivation and management
measures, including different transplanting dates and different rice varieties. Extensive crop parameters
experiments were conducted during the rice growing seasons (June to November) for the years 2012
and 2013. Field and laboratory measurements included LAI, AGB, and plant density. The corresponding
rice phenology dates and sample numbers for each date were recorded as well (Table 1).

Rice is cultivated on flooded soils. At the early stages of growth, rice fields are a mixture of green
rice plants and open water [35]. Water depth generally varies from 2 to 15 cm. As rice continues to
grow, new leaves emerge. The development of tillers is slow at first and becomes faster until the
maximum tiller number is attained at the highest plant density. About 50 to 60 days after transplanting
or sowing (the transplanting or sowing dates for 2012 and 2013 were 21 June and 18 June, respectively),
rice plant canopies cover most of the soil area. The leaves continue to increase in total area and
generally remain green until the heading stage. Due to intraspecific competition at the reproductive
stage, the tiller number drops and the rice leaves gradually become yellow. This stage is also associated
with an increase in the dry aboveground biomass of rice until maturity (Figure 2) [36].
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Figure 2. The single-cropped rice calendar in Deqing County, Zhejiang Province, China:  
(a) machinery transplants rice seedlings, 21 June 2012; (b) tillering period, about two weeks after 
transplanting; (c) the tillering period reached the maximum tiller number on 30 July 2012; (d) ear 
differentiation period, 15 August 2012; (e) heading period, flowering, 31 August 2012; (f) ripening 
stage, ready to be harvested, 18 November 2012. Photos (a–f) were taken at the same rice sample plot, 
as there were several rice varieties planted, but the start date of each period is different. 

Fourteen rice sample plots with areas larger than 200 × 200 m2 in Deqing County were 
randomly chosen in order to measure the vegetation characteristics (Figure 1). A handheld global 
positioning system (GPS) receiver (Trimble Juno-SB, Trimble Navigation Ltd., Sunnyvale, CA, USA) 
was used to record the precise location and geometry of every sample plot with a positioning 
accuracy of approximately ±5 m. At every measurement time, five quadrants of 0.5 m × 0.5 m were 
selected from each plot, and all single-cropped plants within selected quadrants were harvested 
(Figure 3).  
  

Figure 2. The single-cropped rice calendar in Deqing County, Zhejiang Province, China: (a) machinery
transplants rice seedlings, 21 June 2012; (b) tillering period, about two weeks after transplanting; (c) the
tillering period reached the maximum tiller number on 30 July 2012; (d) ear differentiation period,
15 August 2012; (e) heading period, flowering, 31 August 2012; (f) ripening stage, ready to be harvested,
18 November 2012. Photos (a–f) were taken at the same rice sample plot, as there were several rice
varieties planted, but the start date of each period is different.

Fourteen rice sample plots with areas larger than 200 × 200 m2 in Deqing County were randomly
chosen in order to measure the vegetation characteristics (Figure 1). A handheld global positioning
system (GPS) receiver (Trimble Juno-SB, Trimble Navigation Ltd., Sunnyvale, CA, USA) was used
to record the precise location and geometry of every sample plot with a positioning accuracy of
approximately ±5 m. At every measurement time, five quadrants of 0.5 m × 0.5 m were selected from
each plot, and all single-cropped plants within selected quadrants were harvested (Figure 3).
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Table 1. Dates of the field campaigns and corresponding HJ-1A/B charge-coupled device (CCD)
images with sample numbers for each date.

No. Satellite Date Field Campaign Date
Samples

LAI AGB Plant Density

1 HJ-1A 29 June 2012 29 June 2012 9 9 9
2 HJ-1B 19 July 2012 20 July 2012 11 11 11
3 HJ-1A 29 July 2012 30 July 2012 11 11 11
4 HJ-1A 17 August 2012 15 August 2012 11 11 11
5 HJ-1B 2 September 2012 31 August 2012 * 11 11 11
6 HJ-1B 18 September 2012 16 September 2012 11 11 11
7 HJ-1B 29 September 2012 26 September 2012 11 11 11
8 HJ-1B 10 October 2012 13 October 2012 11 11 11
9 HJ-1A 23 October 2012 26 October 2012 11 11 11
10 HJ-1A 19 November 2012 18 November 2012 5 8 8
11 HJ-1A 1 July 2013 3 July 2013 10 10 10
12 HJ-1B 18 July 2013 17 July 2013 10 10 10
13 HJ-1B 6 August 2013 6 August 2013 10 10 10
14 HJ-1A 24 August 2013 24 August 2013 10 10 10
15 HJ-1B 10 September 2013 9 September 2013 * 10 10 10
16 HJ-1B 26 September 2013 26 September 2013 10 10 10
17 HJ-1B 11 October 2013 12 October 2013 10 10 10
18 HJ-1B 26 October 2013 27 October 2013 10 10 10
19 HJ-1A 16 November 2013 15 November 2013 9 9 9

* The heading stage of single-cropped rice (SCR) according to the field campaign. LAI: leaf area index;
AGB: aboveground biomass.
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Figure 3. Location of sample quadrats in a sample plot.

The aboveground parts of rice plants were separated into leaves, stems, and ear (after ear
differentiation) in the lab. The leaf areas of single-cropped rice were measured using a leaf area
meter (LI-3000C, with conveyor belt assembly, LI-3050C; Li-Cor, Inc., Lincoln, NE, USA). All plant
parts were weighted by an electronic scale in fresh conditions at first. Then they were put into the
oven at 105 ◦C for 30 min and kept at 70 ◦C for 72 h until they reached constant weight. The dry
aboveground biomass was weighted with the same electronic balance and scaled to total dry AGB
m2 using plant density, which was measured as the average number of plants of five quadrats in
each sample plot. The average LAI and AGB of five quadrats in each rice sample plot represent the
vegetation characteristic values of that sample plot.

2.3. Remote Sensing Data and Vegetation Indices (VIs)

HJ-1 CCD data from June to November in 2012 and 2013 over the study area were downloaded
from the China Centre for Resources Satellite Data and Application (CRESDA). The sensor characteristics
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are presented in Table 2. A total of 100 scenes of HJ-1A/B images (46 scenes and 54 scenes in 2012
and 2013, respectively) with cloud cover less than 20% during the single-cropped rice phenology in
the study area were selected for the following procedures. All the images collected were processed
through radiometric calibration, atmospheric correction, and geometric correction. The formulas and
coefficients for radiometric calibration were collected from the raw image package. The atmospheric
correction was performed using the Moderate Resolution Transmission (MODTRAN) 4 model
integrated in the Fast Line-of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module
in the Environment for Visualizing Images (ENVI) package. The images were co-registered using the
Second National Soil Survey Vector Map (scale 1:10,000) provided by the Deqing County Land and
Resources Bureau, and the geometric accuracy was less than 0.5 pixel (15 m).

Table 2. Technical specification of HJ-1-A/B CCD sensors.

Satellite Payload Band No. Spectral
Range (µm)

Nadir Spatial
Resolution (m)

Swath Width
(km)

Repetition
Cycle (Day)

HJ-1A/B
Multispectral
CCD camera

(CCD1 & CCD2)

1-Blue 0.43–0.52 30

360 (700 for two) 4
2-Green 0.52–0.60 30
3-Red 0.63–0.69 30
4-NIR 0.76–0.90 30

Only cloud-free images that corresponded to each field campaign date within three days were
selected for LAI modeling. Using Savitzky-Golay (S-G) filters, daily VI time series were created from all
the HJ-1 CCD images (100 scenes in two years). These images were used to verify the AGB estimation
before dynamic mapping [23,37]. After modeling and model validation, all of the images were
processed with cloud detection and maximum-value composite (MVC) methods to produce a new HJ-1
CCD 10-day composite data for use in the timely dynamic mapping of rice growth. Cloud-free pixels
usually have lower reflectances between 0 and 0.3 in the red band, whereas thick cloud-contaminated
pixels have higher reflectances distributed over large ranges between 0 and 1.7 [38]. The threshold
value for HJ-1 CCD data was selected as 0.25 for the red band after statistics calculated from 1214 cloud
pixels and 1029 cloud-free pixels randomly selected from HJ-1 CCD images. The flagged cloudy pixels
were set to no data. MVC was initially developed for AVHRR and MODIS VIs data and has been
widely used to minimize atmospheric effects, including residual clouds [39,40]. MVC was designed
based on the assumption that observations with a higher component of haze or cloud will show
a higher reflectance in the red band, thus a lower VI value to distinguish the edge between land and
residual cloud [38,41]. For modeling of LAI from HJ-1 CCD, there were 191 matching LAI sample sites
and 194 matching AGB sample sites.

In addition to the selected VIs, NDVI, and EVI2, cumulative VIs were adopted for the estimation
of AGB.

The matched cumulative VIs were calculated from day of year (DOY) 173 and 169 for 2012
and 2013, respectively, approximately representing the transplanting date or sowing date of SCR.

2.4. Deriving LAI and AGB via VIs

Pixel-based VI values from the corresponding HJ-1 CCD images at the 10 field measurement plots
were extracted from the images. As the SCR LAI drops after heading, the growth stages of SCR were
divided into before heading and after heading in order to improve the estimation results.

Best fit linear and non-linear relationships among VIs, LAI, and AGB were established first.
In addition to the five traditional regression equations (linear, exponential, power, logarithmic,
and quadratic polynomial regression), two machine learning methods, i.e., a back propagation
neural network (BPNN) and a support vector machine (SVM), were applied in model construction.
The neural network approach has the advantages of nonlinearity, input–output mapping, adaptivity,
generalization, and fault tolerance [27]. A SVM for regression analysis is accomplished by solving
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a convex optimization problem, more specifically a quadratic programming problem [42]. BPNN and
SVM have demonstrated their abilities in dealing with complicated datasets in many fields like
classification [43,44] and data mining [45,46].

In this work, the neural network function in the MATLAB package was used for the
BPNN regression; LIBSVM 3.20 [47] and LIBSVM-FarutoUltimate toolboxes (software available at
http://www.ilovematlab.cn) were used for the SVM analyses. The kernel function used in SVM was
the radial basis function (RBF) kernel [42]. The two tuning parameters used in the RBF kernel for
LIBSVM are “cost” (C) and “gamma” (γ). The ranges of γ and C were set to [–15, 15] and [–15, 15] for
regression, and the steps were 0.5 and 0.5, respectively. To find the optimal parameter, an iterative grid
search was applied in which the evaluation was provided by a 10-fold cross-validation for both BPNN
and SVM regression.

The leave-one-out cross-validation (LOO-CV) method was implemented to test the prediction
capability of the models. This method sets a single observation from the original sample as validation
data, and the remaining observations as training data. The performances of the models mentioned
above were compared on the basis of cross-validation coefficient of determination (R2

CV) and relative
cross-validation root mean square error (RRMSECV). RRMSECV facilitates comparison of the accuracy
of each estimation model and was calculated using the following equation:

RRMSECV =

√
1
n

n

∑
i=1

(Pi − Qi)
2 × 100

Q
(1)

where n is the number of samples and Pi and Qi are the predicted and observed values, respectively.
Q is the observed mean value. All analyses were conducted in the MATLAB program environment.

Furthermore, we verified the relationship between the 10-day composite VI data with AGB.
The AGB curve can be described with logistic curves [36]; the particular form of the logistic equation
available was written as:

W =
A

1 + eb−kt + C (2)

where W is the dry aboveground biomass weight of the crop, t is time, k is the growth rate, A + C
is the maximum theoretical AGB weight, and b is a constant term. The accuracy of the model result
was determined by R2 and was accomplished using the MATLAB program. The cumulative VIs were
calculated from all 10-day composite data and the corresponding AGB values were estimated from
the aforementioned logistic function. The relationships between daily cumulative VIs and 10-day
composite cumulative VIs were analyzed, and the best regression equation was built for the dynamic
mapping application.

2.5. Dynamic Mapping

The spatial distribution and temporal dynamics of LAI and AGB of SCR were determined using
the best regression model based on the HJ-1 CCD 10-day composite data during the SCR growth season.
Before the dynamic mapping process, the planting area of single-cropped rice was estimated using
a stepwise classification strategy proposed by Wang et al. [19]. The total acreage of the single-cropped
rice was about 94.0 km2. The levels of SCR growth parameters were visualized with different colors.

3. Results

3.1. Relationships between VIs and Rice Growth Parameters

To quantify the effects of NDVI, EVI2, cumulative NDVI, and cumulative EVI2 on SCR LAI
and AGB, we extracted the value of remote sensing data corresponding to the field campaign date.
The correlation between rice growth parameters and each feature before and after the heading stage
are analyzed in Table 3.

http://www.ilovematlab.cn
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Table 3. Correlation coefficients (r2) between image features and rice growth parameters at different
growth stages.

Image Features

LAI AGB

All Stages Before Heading After Heading All Stages Before Heading After Heading

n = 191 n = 93 n = 98 n = 194 n = 93 n = 101

NDVI 0.588 ** 0.811 ** 0.665 ** −0.040 0.786 ** −0.684 **
EVI2 0.622 ** 0.856 ** 0.652 ** −0.089 0.834 ** −0.644 **

cu NDVI - - - 0.963 ** 0.959 ** 0.722 **
cu EVI2 - - - 0.959 ** 0.950 ** 0.705 **

** Indicates correlations significant at the 0.01 level; cu NDVI: cumulative NDVI; cu EVI2: cumulative EVI2.
The same abbreviations are used hereafter.

The VIs were significantly correlated with LAI and AGB, except that between VIs and AGB at the
all-growth stage. Dividing the SCR growth period into before heading and after heading, the correlation
coefficients between LAI and image features increased to a great extent. EVI2 showed the highest
correlation coefficients with LAI at the before heading stage (i.e., 0.86). NDVI had the best relationship
with LAI at the after heading stage and its correlation coefficient was 0.67, which was higher than EVI2.
NDVI and EVI2 did not show a stable, positive correlation with AGB. Among the first two spectral
features in Table 3, EVI2 showed the best correlation coefficient of 0.83 with AGB at the before heading
stage. Even though cumulative NDVI and cumulative EVI2 had an overall high correlation at all
stages, their correlation coefficient, taking the after heading stage alone, was relatively low.

3.2. LAI and AGB Regression Model Analysis

LAI and AGB regression models were individually constructed using five traditional regression
equations (linear, exponential, power, logarithmic, and quadratic polynomial regression) and
two machine learning methods (BPNN and SVM) with VIs. Cumulative EVI2 and cumulative NDVI
were only used for AGB regression. The results of traditional models and two machine learning
methods are listed in Table 4.

For the LAI regression analysis during all the growth stages of SCR, traditional statistical models
did not perform as well as BPNN and SVM. The SVM model constructed the best regression function
in describing this group; the R2

CV was 0.47 and RRMSECV was 10.19 when using NDVI as the input
dataset. The cross-validation coefficient of determination became higher after dividing the growth
period into before heading and after heading groups based on the field campaign data. By dividing
the heading data, the growth phases of SCR can be classified into vegetative growth and reproductive
growth. EVI2 were superior to NDVI among all the regression methods during the before heading
stage. The BPNN model was recommended in LAI estimation. After heading, rice leaves begin to
fall due to etiolation and senescence. The SVM-based regression function could explain most of the
variance of the dependent variable and the RRMSECV was also the lowest, i.e., 7.08.

EVI2, NDVI, cumulative EVI2, and cumulative NDVI were used in the SCR dry AGB estimation.
However, the correlation of EVI2 and NDVI with AGB was not significant across the growth stage.
Cumulative VIs had a satisfactory result with AGB, especially during all stages and the before heading
stage. The best traditional regression method was the quadratic polynomial, with R2

CV values of 0.93
at all stages and 0.92 at the before heading stage, using cumulative NDVI as the independent variable.
BPNN and SVM showed great abilities in AGB regression as well. SVM could get the best result at the
after heading stage.

Based on the above analysis, the best strategy for estimating LAI is to divide the SCR growth
period into before heading and after heading stages. EVI2-BPNN regression was selected for the
before heading LAI estimation, and NDVI-SVM was selected for the after heading LAI estimation.
The cumulative NDVI-based quadratic polynomial fit function was adopted for the prediction of AGB
at all stages (Figure 4a–c).



Remote Sens. 2016, 8, 931 9 of 19

Table 4. Results of regression models at different single-cropped rice (SCR) growth stages.

Growth Stages
LAI AGB

VI Model R2
CV RRMSECV VI Model R2

CV RRMSECV

All stages

EVI2
E 0.358 10.210 cu

EVI2

Q 0.923 18.247
B 0.362 10.193 B 0.918 18.452
S 0.444 9.968 S 0.921 32.613

NDVI
E 0.275 10.798 cu

NDVI

Q 0.929 17.621
B 0.334 10.460 B 0.922 17.964
S 0.467 10.185 S 0.927 32.092

Before heading

EVI2
E 0.831 6.074 cu

EVI2

Q 0.909 25.317
B 0.926 6.152 B 0.901 26.932
S 0.900 6.776 S 0.884 45.126

NDVI
P 0.644 8.960 cu

NDVI

Q 0.922 23.496
B 0.615 9.023 B 0.902 25.187
S 0.629 10.363 S 0.920 40.714

After heading

EVI2
E 0.421 8.036 cu

EVI2

Q 0.481 15.067
B 0.474 8.019 B 0.474 15.998
S 0.416 8.205 S 0.571 14.862

NDVI
E 0.496 7.607 cu

NDVI

Q 0.516 14.632
B 0.610 8.630 B 0.426 13.207
S 0.657 7.076 S 0.573 14.587

E, P, and Q denote exponential, power, and quadratic polynomial fit of the traditional regression methods,
respectively; B, S denote BPNN and SVM regression methods, respectively.
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Figure 4. Relationships between measured rice leaf area index (m2/m2) and dry aboveground
biomass (g/m2) at different rice growth stages with VIs. (a) Before heading LAI estimation using
EVI2-BPNN regression; (b) after heading LAI estimation using NDVI-SVM regression; (c) all-growth
stage AGB estimation using daily cumulative NDVI and based on the quadratic polynomial fit function;
(d) all-growth stage AGB estimation using 10-day composite data and based on the cumulative NDVI
quadratic polynomial fit function. The black dash lines are the 45◦ lines, and the red solid lines are the
linear regression trend lines.
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3.3. Dynamic Mapping Method of Rice Growth Monitoring

Considering the dynamic mapping approach, the HJ-1 CCD images were cloud detected and
a per-pixel VI maximum-value composite generated to form a new 10-day composite data (three data
points per month) from June to November 2012 and 2013. As the daily cumulative NDVI is difficult
to obtained, the accuracy of 10-day composite data based on cumulative NDVI is crucial. All the
time series measured AGB values per sample were fitted with logistic curves. The results are shown
in Figure 5.

According to the time series AGB values per sample and the 10-day composite data derived from
cumulative NDVI, the regression equation was acquired using the quadratic polynomial fit function;
the specific regression models are presented in Figure 6.
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The dynamic maps of SCR growth conditions in Deqing County are presented in Figures 7–10.
The composite VI images represent the highest value of each pixel during the 10 days, and estimated the
SCR growth conditions three times a month for field level practices. The dynamic mapping can realize
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the near real-time observation at a regional scale with satisfactory precision. At different years, there is
an observed variation in modeled LAI values at the corresponding time. For example, in mid-July 2013,
SCR showed a higher LAI value compared with that observed at the same time in 2012 (Figures 7b and
8b), which may be caused by slight differences in the transplanting or sowing dates (compared with
2012). Both years showed a peak LAI value at the start of the reproductive stage, and after the heading
stage the LAI dropped due to etiolation and leaf senescence. In mid-November, many fields were
harvested and LAI values were relatively low (Figure 7m,n and Figure 8m,n). The dry AGB of rice
showed continuous increase during the growth period (Figures 9 and 10). Different colors represent
different ranges of AGB values, and could provide information for field managers and policymakers at
regional scales. The overall system of dynamic mapping is shown in Figure 11. The specific processes
were integrated in the MATLAB program.
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4. Discussion

The LAI remote sensing products now available are usually of coarse spatial resolution and LAI
values have mostly been underestimated due to the mixed-pixel problem [48]. Little research has been
done on the remote sensing of rice AGB at higher spatio-temporal scales and multi-season dynamic
mapping of the entire growth process. Considering the growing importance of biophysical parameters
in shaping local agronomic activities, there is an increasing need for the precise monitoring of rice
crop growth conditions, especially in the eastern plains region of China, where rice fields are relatively
irregular and fragmented. The current study is focused on the near-real-time dynamic mapping
of rice growth using multi-temporal middle- to high-resolution remote sensing time series data for
regional-scale applications. A comprehensive field campaign was carried out to record the growth
parameters of single-cropped rice, including LAI, AGB, and plant density, and was used in model
construction and verification. VIs were derived from HJ-1 CCD images for the purpose of growth
parameters inversion.

Time series NDVI and EVI2 were calculated from HJ-1 CCD images, which corresponded to the
field campaigns within three days. Vegetation indices combined with reflectance bands showed a high
correlation with LAI and AGB (Table 3). VIs have the advantage of obtaining relevant information
rapidly and easily, and perform better than a single spectral band in crop monitoring [24,49,50]. In situ
measured LAI reached a maximum, while in situ measured dry AGB continued to increase, and the
AGB includes more photosynthetically inactive components (e.g., stem, ear) than the leaf area, which is
likely to affect the relationship between VIs and the photosynthetically active components [34]. In this
situation, cumulative VIs were proposed as a better approach for the estimation of AGB.

The regression model chosen for the derivation of SCR growth parameters is another important
issue in model construction. The traditional models (linear, exponential, power, logarithm, and quadratic
polynomial regression) are commonly used in crop LAI and dry AGB estimation in previous studies [25,51].
Partial least squares regression and stepwise multiple regression models have been tested as feasible
tools in information extraction [52], but at the same time introduce a lot of features into the model
that result in difficulties in application. There is increasing interest in data mining technology in
remote sensing, which is considered to be a useful tool to unravel the non-linear relationship between
canopy spectral reflectance and crop growth conditions [11,42]. However, few studies have been
performed on the application of the technology in agriculture. Backpropagation neural networks
(BPNN) and support vector machines (SVM) were applied in model construction in our research.
We found that BPNN and SVM performed better than the traditional models in LAI estimation,
demonstrating that machine learning methods are potentially useful to understand and predict optical
interactions over a wide range of rice canopy LAI. Although the quadratic polynomial regression
showed good performance in AGB estimation, the BPNN and SVM methods can also reach comparably
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high accuracy. This demonstrates that the non-linear methods are efficient in establishing relationships
between remote sensing data and rice biophysical parameters.

Most previous studies laid emphasis on rice growth parameters at a single stage, lacking the
exploration of consistent growth stages [53,54], and, hence, growth monitoring systems were difficult
to find in practice. In order to improve the regression precision, we made use of the specific growth
curve of SCR. After the heading stage, as LAI drops due to etiolation and senescence of the leaves,
the whole growth period was divided into before heading and after heading stages. The accuracy of
LAI estimation was improved with this strategy. EVI2 had better results at the before heading stage
than NDVI. This may be caused by the saturation of NDVI in relatively low-vegetated areas; this result
agrees with that of Shang et al. [51], who also showed that EVI2 was more resistant to saturation at
high biomass range than NDVI.

The cloudy pixels were flagged by a threshold value of 0.25 for the red band of HJ-1 CCD
data. The MVC method can further help in the removal of contaminated pixels [55,56]. New 10-day
composite HJ-1 CCD data were then acquired three times a month for estimating local SCR growth
parameters. In the rice growth monitoring and dynamic mapping system, EVI2-BPNN regression is
selected for before heading LAI estimation; NDVI-SVM is selected for after heading LAI estimation;
cumulative NDVI based on the quadratic polynomial fit function was adopted for the all-stage AGB
prediction. The R2

CV values were 0.93, 0.66, and 0.93, respectively. With this method, rice growth
conditions can be visually captured at the regional scale, which will help users compare the overall
condition of crops through different growth stages within one year or different years in the same
growth stage.

However, it should be noted that the empirical equations built between remote sensing derived
VIs and rice growth parameters were partially determined by field experiment data and remote
sensing image preprocessing. As the rice planting area may change annually, precise extraction
of the crop planting area is crucial for the mapping of growth parameters. There are, therefore,
inevitable uncertainties in estimation accuracy. When extrapolating this dynamic mapping system
to other regions, considering the variations in field experiment methods and remote sensing data
characteristics, necessary verification steps must be taken. According to Koppe et al. and Jin et al.,
TerraSAR-X (Germany) data and RADARSAR-2 (Canada) data have been successfully used in crop
monitoring [54,57]. Synthetic aperture radars (SARs) have some advantages for monitoring crop
growth status as they are not influenced by the presence of clouds or haze. However, SAR images
are usually limited by image processing techniques [25]. The method proposed in this research made
full use of HJ-1 CCD images with high temporal resolution, acquired concurrently with the field
data. Considering that HJ-1 data mostly cover China and some surrounding Asian countries and not
the whole globe, the sensors only have four wavebands (Table 2); future studies should be directed
towards exploring the potential of SAR (Sentinel-1, ENVISAT-ASAR, RADARSAT-1, etc.) and optical
remote sensing data (Gaofen series satellite, FORMOSAT-2, Landsat 8, etc.) for monitoring rice growth
parameters other than LAI and AGB.

5. Conclusions

In this study, we proposed a dynamic mapping method for single-cropped rice growth parameters
at regional, annual, and inter-annual scales. The method was developed based on field campaigns
conducted in two consecutive rice growing seasons (2012 and 2013), each spanning June to November
in Deqing County, Southeast China. Ten-day HJ-1 CCD image composites, giving a total of three
image composites per month, were generated for growth parameters retrieval. The field measurements
included leaf area index (LAI), aboveground biomass (AGB), and plant density, and were strictly
controlled during measurement. The LAI empirical equations were established by dividing the whole
SCR growth period into before heading and after heading stages. EVI2 performed better at the fast
growth stage (before heading) whereas NDVI showed better accuracy at the after heading stage
(relatively slower growth). Two machine learning methods, i.e., backpropagation neural network
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(BPNN) and support vector machine (SVM), were applied in LAI model construction. Cumulative VIs
were proven suitable for the estimation of AGB. Cumulative NDVI based on the quadratic polynomial
fit function was adopted for the all-stage AGB prediction.

This study demonstrated the potential of using HJ-1 CCD images in rice growth monitoring.
Machine learning methods provided a useful exploratory tool for improvement in the relationships
between different combinations of reflectance and crop variables. Much work remains to be done to
scale these growth condition estimation relationships across a variety of canopies, and more sources of
remote sensing data should be included in the system. Only then will the approach gain sufficient
robustness and reliability to be applied at larger scales of agricultural remote sensing.
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