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Abstract: A primary impact of urbanization on the local climate is evident in the phenomenon
recognized as the Urban Heat Island (UHI) effect. This urban thermal anomaly can increase the health
risks of vulnerable populations to heat waves. The surface UHI results from emittance in the longer
wavelengths of the thermal infrared; however, there are also urban anomalies that are detectable
from radiance in the shorter wavelengths (3–5 micron) of the Middle Infrared (MIR). Radiance in the
MIR can penetrate urban haze which frequently obscures urban areas by scattering visible and near
infrared radiation. We analyzed seasonal and spatial variations in MIR for three Central European
cities from 2003 through 2012 using Moderate Resolution Imaging Spectrometer (MODIS) band
23 (~4 micron) to evaluate whether MIR radiance could be used to characterize heat anomalies
associated with urban areas. We examined the seasonality of MIR radiance over urban areas and
nearby croplands and found that the urban MIR anomalies varied due to time of year: cropland MIR
could be larger than urban MIR when there was more exposed soil at planting and harvest times.
Further, we compared monthly mean MIR with the Normalized Difference Vegetation Index (NDVI)
to analyze contrasts between urban and rural areas. We found that the seasonal dynamic range of
the MIR could exceed that of the NDVI. We explored the linkage between meteorological data and
MIR radiance and found a range of responses from strong to weak dependence of MIR radiance on
maximum temperature and accumulated precipitation. Our results extend the understanding of the
anomalous characteristics of urban areas within a rural matrix.

Keywords: Middle Infrared (MIR) images; urban remote sensing; view zenith angle; Bucharest;
Budapest; Warsaw; heat anomaly

1. Introduction

Among the many transformational anthropogenic activities, perhaps the most striking human
impact on the global biosphere is the transformation of Earth’s land surface into urban areas [1].
This land cover conversion affects a wide range of processes, including the surface radiation and
energy budgets, the water, carbon, and nutrient cycles, soil dynamics, vegetation productivity and
phenology, and local and regional biotic diversity [2]. A primary impact of urbanization is on the local
climate at multiple temporal scales. The structure of the urban built environment shows increased
impervious surface area and more aboveground mass with higher thermal storage capacity than rural
environments. Buildings, roofs, parking lots, and roads increase run-off, decrease evapotranspiration,
and store absorbed sunlight and re-radiate it as heat, thereby increasing sensible heat flux. Thus,
urban areas are usually warmer than nearby rural areas, a phenomenon recognized as the Urban
Heat Island (UHI) effect [3,4]. Studies have shown that the environmental impacts of urban areas
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can extend well beyond administrative boundaries [5,6], and urban heat islands can increase the
health risk of vulnerable populations to heat waves [7]. Intensity of the UHI effect depends on many
factors, including building density, height, and arrangement; thermal and reflective properties of
construction, paving, and roofing materials structures; size and arrangement of green spaces within
the city; local and regional wind fields; season and time of year; and recent weather [7,8]. The UHI has
been primarily characterized by near surface air temperature measurements and by remote sensing of
the land surface temperature using thermal infrared sensors [9–15].

What constitutes the extent of an urban area is often not an easy question to answer, particularly
in rapidly developing cities where administrative boundaries may not capture informal settlements or
recent growth. Indeed, estimates of global urban area using remote sensing data range widely from 0.27 to
3.52 milion km2 [15], due to various definitions of the urban area and the sensors and techniques for urban
areas identification [16]. For many decades, researchers have measured differences in air temperatures
at “urban” and “rural” sites to assess the magnitude of the UHI effect in specific cities [4,17]. Many
methods of classification were developed. However, none of them was designed to classify field sites in
recognition of the heat island effect [18]. To address this shortcoming, a new protocol, based on medium
(30–100 m) resolution remote sensing data, has been proposed [18]. The combination of building types
and land cover types creates distinct Local Climate Zones that promise to enable standardization and
facilitate the exchange of urban temperature observations [18]. However, medium-resolution data
have only been available at a resolution of 8–16 days, at best, or several weeks due to cloud cover [19],
in contrast to lower spatial resolution data for which temporal resolution may be daily. In addition to
cloudiness, anthropogenic aerosols from combustion sources complicate remote sensing analyses by
enhancing the scattering of visible and near infrared wavelengths.

The Middle Infrared (MIR) region of the electromagnetic spectrum spans 3–5 µm, longer
wavelengths than the nominal size of PM2.5 (particulate matter at 2.5 µm) [20,21]. The MIR region
remains under-utilized for land monitoring studies due, in part, to a mixture of reflected solar and
emitted terrestrial radiation during the daytime [21]. The mix of reflectance and emittance stabilizes
the contrast signal [20], which means that very low variation in solar irradiance in the MIR occurs [21].
Finally, the differential partitioning of the surface energy budget between sensible and latent heat
flux results in a strong spectral contrast between anthropogenic surface/bare soils and vegetation
areas [20–23]. It makes the middle infrared region potentially useful for urban monitoring [24,25] and
suggests the possibility of using it to explore a broader understanding of the UHI effect. Specifically,
seasonal anomalies in MIR radiance associated with cities embedded in a rural matrix can further
illustrate how the urban areas modify the local radiation environment.

Recent research has shown that MIR radiance is strongly affected by both land surface seasonality
and a View Zenith Angle (VZA) [22]. In a comparative analysis of eight global megacities using
MIR radiance [22], it was found that MIR seasonality was more pronounced at higher latitudes,
that extended periods of precipitation attenuated MIR radiance, and that spectral similarities in the
MIR between exposed soils and urban areas at lower latitudes complicates characterizing urban areas
on the basis of a single MIR band [23]. However, the potential for using multispectral MIR indices has
been demonstrated, albeit only with the airborne MASTER sensor [21]. An open question remains:
How consistent are MIR radiance patterns across land covers and through time?

Here we compared urban areas with their surroundings to explore the consistency of the
relationships across multiple years. We analyzed time series of MIR radiance at about four microns
(band 23 of the Moderate Resolution Imaging Spectrometer (MODIS) on the Aqua satellite) for the
period 2003–2012 focusing on urban and cropland land covers for three large cities in Central-Eastern
Europe—Bucharest, Romania; Budapest, Hungary; and Warsaw, Poland—with an emphasis on
characterizing the contrasts between the land covers. Is an urban anomaly evident in the MIR in
each case?

We sought to characterize the geographic and seasonal patterns of MIR radiance [23,26] by using
a Convex Quadratic (CxQ) model.
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This modeling approach was first developed for land surface phenology studies, where
accumulated growing degree-days, a measure of thermal time, was linked to time series of vegetation
indices [27]. In our recent study [23] we fitted a CxQ model to MIR radiance to explore broad
geographical patterns of urban MIR. We found a strong positive linear relationship (r2 = 0.93) for
megacities in the northern hemisphere, and a strong latitudinal pattern of accumulated MIR radiance
to peak (r2 = 0.84). The results have shown that latitude alone has a strong effect on the seasonal pattern
of MIR radiance. Depending on the latitude and climate, we are expecting higher peak radiance height
at a lower latitude.

Finally, MIR time series were compared with meteorological data to understand better the linkages
between weather and MIR radiance. We found a general but variable attenuation of peak MIR by
precipitation and temperature, but context is important. Given the expectation of increasing heatwave
frequency and severity [28,29], it is relevant to explore how the seasonality of MIR radiance shapes
urban–rural contrasts in climate.

2. Materials and Methods

2.1. Study Area

The three study cities—Warsaw, Budapest, and Bucharest—are located in East-Central Europe
(Figure 1). They are similar in population, but the area of Budapest and Warsaw is each more than
twice the area of Bucharest (Table 1).
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Figure 1. Image of Bucharest (top), Budapest (bottom), Warsaw (right) with samples of land cover
classes: orange—croplands, red—urban, blue—water. Images are the July 2009 middle infrared
radiance at a View Zenith Angle (VZA) class of 0◦–15◦.

Table 1. Population and area of the three study cities.

City
Population (Millions)

Area (km2)
2003 2012

Bucharest 1.90 1.88 238
Budapest 1.71 1.72 525
Warsaw 1.68 1.71 517
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The key similarity between these three capital cities is the shared legacy of centralized planning
in which the state had a near-monopoly on urban development until 1990. As a result, their spatial
characteristics are sufficiently different from those in Western European cities of comparable size [24].
The original type of spatial structure is characterized by a dense and more compact city center with
an abundance of governmental buildings, with the massive size of the socialist pre-fabricated estates
and panel-made residential areas [25]. Now, “post-socialist” cities are mostly from the west side of the
former Iron Curtain, however, they remain similar to each other.

According to the Köppen–Geiger climate classification, Bucharest has a humid subtropical
climate (Cfa), Budapest has an oceanic climate (Cfb), and Warsaw has a warm, humid continental
climate (Dfb) [30].

We selected samples of five land cover classes in and around each city, based on the International
Geosphere–Biosphere Programme (IGBP) land cover scheme from the MODIS land cover product
(MCD12Q1): croplands, forest, mixed croplands-natural vegetation, urban/impervious surface,
and open water. We focused on three strongly contrasting classes: croplands, urban, and open water.

2.2. Data Sets

We used Level 1B calibrated radiance data from band 23 (4.020–4.080 µm) of the AQUA
MODIS sensor at ascending passes during 2003–2012, with a nominal spatial resolution of 1 km,
and near-daily temporal resolution. The MYD021KM product data were downloaded from Level 1 and
Atmosphere Archive and Distribution System (LAADS) website (http://ladsweb.nascom.nasa.gov/)
as post-processed images that included reprojection into the Universal Transverse Mercator (UTM)
coordinate system.

We acquired vegetation product (MYD13A2) of the AQUA MODIS sensor from the LAADS
website. Data are provided every 16 days as a composite of maximum value at 1 km spatial resolution.
We used the Normalized Difference Vegetation Index (NDVI) from April to October (vegetation
season) from 2003 to 2012. The data processing steps were equivalent to those used for MIR data to
facilitate comparisons.

We acquired weather data—average monthly air temperature (◦C), and average
monthly total precipitation (mm)—for each year from the World Weather Website
(http://www.tutiempo.net/en), and from the NOAA National Centers for Environmental Information
(NCEI) (http://www.ncdc.noaa.gov).

2.3. Methods

Data for each city were processed into one of four different time series depending on the viewing
geometry: VZA classes of 0◦–15◦, 15◦–30◦, 30◦–45◦, and 45◦–60◦. For each year, daily images were
sorted by VZA class and stacked and processed into a monthly image based on the maximum MIR
values to attenuate effects of cloud cover. Composites from the winter period (October to March)
were often affected by compositing artifacts such as dark or bright stripes in either horizontal or
vertical orientation.

In each city, we selected quasi-homogeneous areas, each comprising ~9 km2 (usually 3 × 3 pixels,
but water samples’ shapes varied) for each of the three cover classes. To select our test sites, we used
the International Geosphere–Biosphere Programme (IGBP) land cover scheme (Type 1) which provided
the same definition of classes for all the three cities. We used class number 13: (urban and built-up)
for urban class and 12 (croplands) for agriculture class. While the area of cities is not equal, we used
MODIS land cover product (MCD12Q1) with a higher spatial resolution of 500 m to reduce uncertainty.
The samples, each for urban and cropland classes, were averaged, but only a single dark open water
sample was selected in each scene.

We averaged samples by the city, by VZA, by cover class, and by month for each year, as well as
for the decade to characterize the seasonal behavior of MIR radiance. These averaged samples were
used for the comparisons among the three east central European capital cities. The NDVI data were
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processed the same way as MIR. We used the same locations as MIR samples and averaged them in a
similar manner.

We compared MIR radiance in cover classes between cities and the simple difference in MIR
radiance between urban and croplands. We also used the water sample in each city to normalize
the simple difference (urban MIR-cropland MIR)/water MIR). MIR radiance from open water was
relatively stable with a lower dynamic range radiance [31], although changes in the temperature of
the water body will affect MIR radiance slightly. We analyzed MIR radiance by class as a function
of VZA, and we compared the seasonal pattern of MIR radiance with the NDVI. According to the
previous studies [23], results show promise in usage for the discrimination of different vegetation
types, the estimation of total and leaf biomass of forest ecosystems, and—most important in the
light of our study—monitoring intra- and inter-annual changes in vegetation. These results also
show that MIR reflectance has been more useful than the NDVI for areas with very high and dense
biomass because of larger spectral contrast compared to visible and near-infrared wavelengths, and/or
high aerosol loads in the atmosphere [22]. So, MIR was successfully incorporated into vegetation
index VI3 (NIR–MIR/NIR + MIR) where it was used instead of red wavelength, as in the NDVI,
where atmospheric attenuation effects are reduced [31]. Furthermore, the reflected component of
MIR radiation from a vegetation canopy is a function of the liquid water content of the canopy, and
water content within leaves is usually less variable than chlorophyll content [32] which makes MIR
more stable. Additionally, studies comparing the NDVI response and canopy water amount for
forest environments have noted a limited range in NDVI compared with canopy water amount [32].
This reasoning encouraged us to examine the MIR and NDVI response especially in the context of
seasonality and distinguishability of different land cover classes.

We explore the influence of latitude on MIR seasonality through the lens of the convex quadratic
model as follows:

MIRm = α + β × AMMIR − γ × AMMIR2 (1)

where MIRm is the monthly value of MIR radiance, AMMIR is the accumulated monthly MIR radiance,
and α, β, and γ are parameter coefficients. From the fitted coefficients, two metrics can be calculated
to summarize the model:

PeakMIR = α − (β2/4 × γ) (2)

TTPMIR = −β/2 × γ (3)

where PeakMIR is the peak value of MIR in the fitted model, and TTPMIR is the time to peak,
i.e., the accumulated MIR radiance at the point of the peak value of MIR in the fitted model.

This model relates monthly MIR radiance with accumulated monthly MIR radiance. Two shape
metrics of the model—time to peak (in terms of accumulated radiance) and peak height (in terms of
radiance amplitude)—aid comparisons across cover classes and cities.

Finally, we explored the influence of meteorological variables—accumulated monthly
precipitation and maximum monthly air temperature—on MIR seasonality to identify some simple
associations between weather and observed MIR radiance.

3. Results

3.1. Multiannual Analyses

3.1.1. Multiannual Average Comparison and Water Normalization

The first step was to explore the pattern of MIR response by calculating multiannual monthly
values. The seasonal pattern of MIR radiance is similar across the three cities. The unimodal seasonality
peaks in July and is lowest during the winter months, with values for Warsaw that are consistently
lower than Bucharest and Budapest, in between for urban and cropland and sometimes lower than
Warsaw for the open water samples (Figure 2). As the year progresses, the differences between
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the cities increase and peak in mid-summer. Urban trajectories are almost symmetrical in contrast
to croplands, which show a two-phase pattern that includes a pause or slowing of the increase of
MIR radiance in June. The difference between maximum radiance of urban and cropland classes is
about 0.15 W/m2/µm/sr. The dynamic ranges of water samples are more muted but show distinct
seasonality (Figure 2).
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Figure 2. Mean monthly MIR radiance across cities for three classes: urban, cropland, and water.

The simple difference and normalized difference data show similar seasonal patterns, but the
normalization helps to underscore the differences in MIR radiance between urban and cropland covers
(Figure 3). Differences are lowest in Bucharest and highest in Warsaw. In early spring (March) and
autumn (September and October), the differences between Bucharest and Budapest are negligible
but positive in Warsaw, suggesting that snow cover might be attenuating MIR radiance in Poland.
In Budapest, negative values occurred both in April and during autumn. Negative values indicate
higher MIR radiance from cropland than urban cover, which is to be expected from large expanses of
MIR-bright bare soils that occur at planting and again at harvest.
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3.1.2. NDVI Comparison

Vegetation cover is common in urban areas. Green vegetation appears bright in the near infrared
in contrast to its dark appearance in the MIR [20]. The normalized difference vegetation index (NDVI)
is calculated based on the difference between near-infrared and red reflectances normalized by their
sum [33]; thus, the NDVI has higher values when a pixel has a larger fraction of green vegetation cover.
Thus, for urban impervious surfaces and bare soils the NDVI is low. To compare the “greenness” of
the urban–rural groupings and their seasonality relative to the seasonality of MIR radiance, we first
extracted the average April to October NDVI patterns from the urban and cropland sites for each city
(Figure 4).
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Figure 4. Average normalized difference vegetation index (NDVI) for urban (left) and cropland (right)
classes for the three study cities.

Budapest and Warsaw exhibit almost similar values for the whole season (the maximum values
are 0.48 and 0.49, respectively). In Bucharest, the maximum value is equal to 0.37, which is comparable
to the growing seasonal minimum value of other cities. This low NDVI likely results from fewer green
space areas within Bucharest compared to other cities [34,35]. Additionally, the relative change of the
NDVI during the season is limited (0.08, 0.09, 0.12 for Bucharest, Budapest, and Warsaw, respectively).
A different situation was found for cropland areas. Peaks occurred early (May for southerly Bucharest
and June for Budapest and Warsaw) with gradual declines as the season progressed. The seasonal
amplitude was found in Budapest (0.26), then for Bucharest (0.18) and Warsaw (0.16). Both latitudinal
effects on climate and regional crop differences likely explain these differences in timing and amplitude.

Does MIR radiance inversely mirror NDVI seasonality (Figure 5)? The MIR shows a larger
dynamic range between land covers than the NDVI: ~0.30 vs. ~0.15. The changes in the normalized
MIR radiances are rapid relative to the NDVI, particularly in the early growing season: the pace of
divergence between city and cropland are faster in the MIR than the NDVI. An interesting feature
occurs in October in Budapest where MIR radiance of croplands is greater than the city, and the NDVI
of the city is larger than the croplands (Figure 6).
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3.1.3. View Zenith Angle Effects

The MYD021KM product includes the view zenith angle (VZA) for each acquisition. Evaluating
MIR radiance by VZA is important because the MIR signal is low [21,22]. Early in the year, every VZA
class increases in a similar manner but divergence starts in April after the vernal equinox, and peaks in
July after the summer solstice (Figures 7 and 8).
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A higher dynamic range in MIR radiance in all VZA classes occurs in Bucharest than Warsaw.
In Warsaw, the off-nadir sequences (higher VZAs) show the lower dynamic range and smoother
transitions for both urban (Figure 7) and cropland (Figure 8) samples.
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The temporal variation in MIR radiance is more pronounced in the croplands with an evident
bimodality, particularly in Budapest (Figure 8). The influence on MIR response is a result of the bare soil
surface detection, which is pronounced by bimodality during summer season (especially in Budapest).

3.1.4. Accumulated Radiance and the Convex Quadratic (CxQ) Model

As the final step in the analysis of multiyear averages, we fitted a CxQ model of the monthly MIR
radiance as a function of accumulated monthly MIR radiance (Figure 9). The quadratic model reveals
how much the accumulated MIR radiance varies by latitude: greatest in Bucharest at 44.4◦ N and least
in Warsaw at 52.2◦ N (Table 2).
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Table 2. Metrics characterizing the fitted curves of Figure 9: modeled annual peak MIR radiance
(Peak Height: PH) and accumulated monthly MIR radiance at annual peak (Time to Peak: TTP).

Urban Crop Urban-Crop

TTP PH TTP PH TTP PH

Bucharest 5.07 1.29 4.76 1.16 0.31 0.13
Budapest 4.53 1.17 4.37 1.08 0.16 0.09
Warsaw 3.73 1.02 3.41 0.87 0.32 0.15

For all cities in urban class, a very strong (r2 higher than 0.97) parabolic pattern is visible.
The highest accumulated monthly MIR (Table 2) is in Bucharest (5.07 W·m−2) with the peak of
1.29 (W·m−2). The lowest values of TTP and PH are in Warsaw. Within the cropland class; the pattern
has r2 higher than 0.95. While the difference of TTP and PH between Bucharest and Warsaw is
the same apart from the land cover class (TTP: 1.34 and 1.36, PH: 0.27 and 0.29 for urban and
cropland respectively), then the difference between Budapest and Warsaw increased (TTP: 0.80 and
0.97, PH: 0.14 and 0.21). Consequently, the difference between Bucharest and Budapest decreased
(TTP: 0.54 and 0.39, PH: 0.13 and 0.08).

The difference in TTP and PH between urban and crop is the biggest for Warsaw, then for
Bucharest. Budapest expresses the lowest difference.

3.2. Time Series Analyses over Years 2003–2012 from April to October

In the second part of this study, we focused on seasonal MIR behavior over 2003–2012 from April
to October (Figure 10). We investigated time series data of MIR using additional information about
monthly mean temperature and accumulated mean monthly precipitation for each year (Figure 11).
Generally, as seen above, the MIR radiance is greatest in Bucharest and the lowest in Warsaw. However,
in some years, the weather impact was strong enough to change this pattern [28,29]. The MIR radiation,
as explained in the introductory part, is a mix of reflected and emitted radiation. Our contemplation
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about weather impact is connected with the insolation and ground warming. Precipitation cools the
ground and affects the emittance; additionally, cloudiness increases. However, the indirect influence
on reflectance can be a result of a higher groundwater lever (higher moisture—darker color—lower
spectral response) which results in better vegetation health. The more dense the vegetation, the lower
is the MIR radiance. Drier conditions can lead to sparser vegetation, a shortened growing season, and
higher MIR brightness due to more exposed soil. The timing of weather events is also important. For
example, intense precipitation occurring after the maximum MIR radiance, such as in autumn, may
generate a rapid decrease in MIR radiance but have no effect on the composited maximum MIR value.
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3.2.1. Bucharest

In 2007, the annual maximum MIR radiance was highest (Table 3) for both urban (1.53) and
cropland (1.64) classes. There was a notable heat wave in southeastern Europe in 2007, with the
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average monthly maximum temperature reaching 27 ◦C (Table 4). The precipitation in 2007 was
very low (520.9 mm) and even lower the following year (400.3 mm). The lowest max MIR (1.18)
for the urban class was in 2006 (in July). We explain it by the fact that in the images for three VZA
classes—0◦–15◦, 15◦–30◦and 30◦–45◦—the pixels from urban and cropland samples had no values
because of a compositing artifact. So, considering the second lowest max MIR radiance for urban
which happened in years 2004 and 2005 (1.22), we see that these two years were very wet by high
precipitation and the lowest maximum air temperature (lower than mean air temperature from 2003 to
2012). The lowest maximum MIR radiance in cropland occurred in 2005 (0.93) when the accumulated
precipitation was the highest (1013.4 mm). Higher precipitation may increase vegetation cover, thereby
darkening the surface in the MIR.

Table 3. The maximum values of MIR radiance from each year for urban and cropland class for three
cities. Red indicates the highest value and blue indicates the lowest value in the time series.

Max MIR 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 MEAN

Bucharest
Urban 1.32 1.22 1.22 1.18 1.53 1.32 1.30 1.34 1.37 1.44 1.33
Crop 1.29 1.03 0.93 1.08 1.64 1.31 1.10 1.19 1.15 1.43 1.21

Budapest 1.22 1.19 1.11 1.20 1.39 1.10 1.18 1.17 1.30 1.32 1.22
1.23 1.01 1.05 0.99 1.43 1.02 1.10 1.00 1.17 1.23 1.12

Warsaw
1.03 0.92 1.09 1.20 1.09 1.02 0.94 1.21 0.98 1.07 1.05
0.92 0.85 0.91 1.05 0.87 0.87 0.79 0.98 0.81 0.84 0.89

Table 4. Accumulated annual precipitation (mm) and maximum air temperature for each city (◦C). Red
color indicates the maximum value and blue color the minimum value in the annual time series.

Weather 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 MEAN

Bucharest
(mm) 578.6 716.8 1013.4 541.2 520.9 400.3 632.6 728.0 459.2 736.9 632.79
(◦C) 24.9 22.4 22.5 23.4 27.0 25.5 24.3 25.6 24.1 27.5 24.72

Budapest 369.0 616.2 732 597.9 522.8 608.6 488.7 867.1 387.6 400.6 559.05
24.6 21.6 21.4 24.3 23.9 21.8 23.0 23.6 22.7 24.1 23.10

Warsaw
550.9 527.0 490.5 488.1 599.9 552.9 659.2 796.5 608.7 544.1 581.78
20.2 19.1 20.5 23.6 19.2 19.5 20.0 21.9 18.8 20.9 20.37

3.2.2. Budapest

Similar to Bucharest, the highest maximum MIR radiances occurred in 2007 with 1.39 for urban
and 1.43 for cropland (Table 3). During 2007, accumulated precipitation was below the mean
from 2003 to 2012 and the maximum air temperature was higher (Table 4). The 2003 European
heatwave [36] impacted Budapest with the highest maximum air temperature and the lowest
accumulated precipitation (Table 4). However, the MIR radiance from the urban areas equaled
the multiyear average; in contrast, the cropland’s maximum MIR radiance was 10% greater than the
average, lower than 2007.

3.2.3. Warsaw

The extreme heat occurred in Poland in 2006: maximum air temperature was greatest,
and precipitation was least (Table 4). In 2006 the maximum urban MIR radiance was the second
highest, and the cropland MIR radiance was the highest (Table 3). Curiously, it was very wet in Warsaw
and Budapest in 2010 (although the heat and drought in European Russia were extreme [37]); yet,
maximum urban MIR radiance was greatest the same year. The lowest maximum MIR radiance for
urban occurred in 2004 and in 2009 for cropland (Table 3).

Finally, we examined the relationships between the two fitted CxQ model metrics for
2003–2012 years and weather conditions. Figure 12 shows the relationship between TTP and
accumulated precipitation (Figure 12left) and maximum air temperature (Figure 12right). The TTPs
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for urban and cropland exhibit negative correlations with accumulated precipitation, but the strength
of the relationships is strong in Budapest, marginal in Bucharest, and very weak in Warsaw. The TTPs
show strong positive correlations with maximum air temperature in Bucharest, but not in either
Budapest or Warsaw. Peak heights for urban and cropland in Budapest are negatively correlated
with accumulated precipitation (Figure 13left). While there is a strong positive correlation between
maximum air temperature and peak heights for Bucharest, the positive relationships for Budapest and
Warsaw are modest (Figure 13right).
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4. Discussion

The urban heat island effect results not just from emittance in the longer wavelengths of the
thermal infrared, but also from the emittance in the shorter wavelengths of the middle infrared. During
the daytime, there is also a minor contribution from reflected sunlight. The 4 µm wavelengths from
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band 23 of MODIS has the advantage of penetrating urban haze and smoke and, thus, may be able to
provide more consistent views of the urbanizing land surface, particularly in the tropics where the
aerosol optical depth over cities is frequently very high. We do not, however, quantify the influence of
the MIR on sensible heat. Instead, we have illustrated here how MIR time series can reveal the urban
radiation anomaly at wavelengths shorter than TIR and how this effect has a distinct seasonality that
arises from multiple factors.

First, latitudinal variation affects the radiation anomaly in MIR due to the weaker insolation at
higher latitudes. A second and related factor is the climate zone. Warsaw is exposed to air masses
from the Baltic Sea and therefore has a more humid climate than in Budapest. Bucharest is located
in a different climate zone in warmer southeastern Europe. Third, the contrast between urban and
cropland in the MIR is not constant due to changes in the amount and timing of exposed soils due
to crop types and agricultural practices. Urban MIR seasonality is unimodal with peak radiance
shortly after the summer solstice. In contrast, cropland seasonality can be slightly bimodal as the
process of planting exposes MIR-bright soils, and then the surface darkens in the MIR due to crop
growth covering the soil surface, and then brightens again due to the drying of the vegetation prior to
harvest. Fourth, both temperature and precipitation modulate MIR seasonality, but not in a simple way.
Temperature may provide a proxy of insolation and dryness, driving the land surface to a brighter
MIR state. Precipitation may be driving the land surface to a darker MIR state through stimulating
vegetation growth and development. However, the sequence of weather—the mixture of sun and
rain—can force the vegetated land surface in various directions, some MIR brightening, and some
MIR darkening. Thus, the MIR data provide a complement to other remote sensing approaches to the
characterization of urban structure and function.

Using open water to normalize the differences between urban and cropland MIR radiance helped
to emphasize the contrasts. Yet, not all areas have sufficiently large bodies of open water nearby, and
the depth of the lake or reservoir should affect how MIR-dark the surface is and, thus, affect the strength
of the normalization. A shallower or smaller lake may heat more quickly than a large body; thus,
comparisons of normalized differences must be done with caution [24]. However, it appears as a simple
first approximation to facilitate comparisons in the MIR. It is clear that the phenomenology of the MIR is
not a simple inverse of the NDVI, but rather responds to surface conditions and environmental forcing
in a manner that is complementary to vegetation indices [20]. Likewise, the use of the accumulated
radiance through the CxQ model was able to capture differences among the cities and other cover types.

There are limitations to the broader use of the MIR in urban studies. The coarse spatial resolution
(~1 km at nadir) of current orbital sensors with MIR capability makes it difficult to resolve the
spatially heterogeneous land cover patterns that exemplify most cities. Although there are airborne
sensors with finer spatial resolution in the MIR [22], we do not expect a new satellite system in the
foreseeable future with higher MIR resolution. The European Space Agency’s environmental satellite
Sentinel 3—Global Sea/Land Monitoring Mission that launched 16 February 2016—has two bands
centered at 3.74 µm in the Sea and Land Surface Temperature Radiometer (SLSTR) for the measurement
of skin temperature and the detection of active fires. While resolving the MIR seasonality of particular
buildings or blocks may not be possible at 1 km, there might be potential to compare the MIR behaviors
of different elements in the urban fabric using Local Climate Zones [19].

5. Conclusions

We have shown that there exists an urban radiation anomaly in the middle infrared region and
that this anomaly has a strong seasonality which results from multiple factors. There are many studies
about UHI using land surface temperature derived from thermal infrared data, but there are few
studies exploring the benefits and limitations of using MIR for urban science. Cities are complex
and changing entities on the land surface that interact across multiple scales with their environment.
Within these heterogeneous landscapes, there are many factors which contribute to urban radiation
anomalies: type of buildings, density and spatial arrangement, properties of construction and roofing
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materials, urban geometry or green areas’ size. By viewing the urbanizing surface at wavelengths
between the familiar regions of the thermal infrared and the visible to near infrared, we expect new
insights, particularly where air pollution may veil the variegated city much of the year. These results
on the urban–rural contrasts in three cities in central-eastern Europe pave the way to extending this
analysis to burgeoning cities of tropical South Asia.
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Abbreviations

The following abbreviations are used in this manuscript:

AMMIR Accumulated Monthly Middle Infrared Radiance
CxQ Convex Quadratic model
MIR Middle Infrared
MODIS Moderate Resolution Imaging Spectroradiometer
NDVI Normalized Difference Vegetation Index
PH Peak Height
SLSTR Sea and Land Surface Temperature Radiometer
TTP Time to Peak
UTM Universal Transverse Mercator
VZA View Zenith Angle
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