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Abstract: A global, monthly averaged time series of Sun-induced Fluorescence (SiF), spanning
January 2007 to June 2015, was derived from Metop-A Global Ozone Monitoring Experiment 2
(GOME-2) spectral measurements. Far-red SiF was retrieved using the filling-in of deep solar
Fraunhofer lines and atmospheric absorption bands based on the general methodology described by
Joiner et al, AMT, 2013. A Principal Component (PC) analysis of spectra over non-vegetated areas
was performed to describe the effects of atmospheric absorption. Our implementation (SiF KNMI)
is an independent algorithm and differs from the latest implementation of Joiner et al, AMT, 2013
(SiF NASA, v26), because we used desert reference areas for determining PCs (as opposed to cloudy
ocean and some desert) and a wider fit window that covers water vapour and oxygen absorption
bands (as opposed to only Fraunhofer lines). As a consequence, more PCs were needed (35 as opposed
to 12). The two time series (SiF KNMI and SiF NASA, v26) correlate well (overall R of 0.78) except for
tropical rain forests. Sensitivity experiments suggest the strong impact of the water vapour absorption
band on retrieved SiF values. Furthermore, we evaluated the SiF time series with Gross Primary
Productivity (GPP) derived from twelve flux towers in Australia. Correlations for individual towers
range from 0.37 to 0.84. They are particularly high for managed biome types. In the de-seasonalized
Australian SiF time series, the break of the Millennium Drought during local summer of 2010/2011 is
clearly observed.

Keywords: sun-induced fluorescence; GOME-2; gross primary productivity; time series; flux towers;
principal component analysis; OzFlux

1. Introduction

The Gross Primary Production (GPP) of the terrestrial biosphere is a key quantity in the
understanding of the global carbon cycle. GPP is the amount of atmospheric carbon fixed through
the process of photosynthesis by living biomass and represents the largest gross flux of CO2 between
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the atmosphere and the Earth surface [1]. The interactions between climate, GPP and atmospheric
CO2 result in a strong “carbon cycle—climate coupling” [2]. The magnitude of the coupling is a major
source of uncertainty in the understanding of future carbon assimilation by crops (impacting the food
production), carbon storage in forests (representing a large sink for anthropogenic CO2), and climate
forcing by CO2. Estimation of GPP over time at the global scale is therefore of great societal and
scientific interest.

To date, monitoring of GPP has not been possible at scales beyond that of a single agricultural
field or natural ecosystem [3]. At those scales, networks of eddy-covariance towers [4] provide a
platform to measure Net Ecosystem Exchange (NEE) of carbon at high temporal resolution. GPP can
be estimated from these measurements using various statistical techniques, with estimates differing by
up to 10% [5]. Upscaling of eddy-covariance measurements using observation-derived carbon-climate
relations and satellite data has been shown to be one of the best methods to estimate GPP at larger
scales [6].

Numerical modelling to estimate GPP may employ either a land surface model [7] or approaches
that rely on remotely-sensed vegetation indices (VI) combined with mechanistic descriptions of plant
photosynthesis [8–11]. A typical VI is the Normalized Difference Vegetation index (NDVI) [12–14],
which is related to the fraction of Absorbed Photosynthetically Active Radiation (fAPAR) and the
Leaf Area Index (LAI). These products are inputs in light-use-efficiency approaches [15] or even in
a full Farquhar photosynthesis method [16] that drive several carbon cycle models (e.g., C-Fix [17],
and SibCASA [18]). VIs are linked to chlorophyll content and the temporal resolution of spaceborne
composite VI products is typically eight days or more. Consequently, short term environmental
changes affecting plant productivity (e.g., water availability, temperature, nutrient deficiency, diseases)
may not be well accounted for; this can lead to biases in the carbon uptake capacity of vegetation [19,20].
Hence the use of “greenness indicators” tends to return the potential carbon uptake by plants rather
than the actual uptake [21,22]. It is therefore not surprising that the available methods’ global GPP
estimates have a large range (from 100 to 180 PgC/year [6,23]). At smaller scales, such as individual
ecosystems or plant species, the uncertainty in the level of photosynthesis is likely to be larger, because
of differing drought responses, management practices, soil conditions, and nitrogen availability [24].

Photosynthetic activity is tightly related to plant fluorescence by plants in the red and near-infrared
wavelength range (see below). Sun-induced fluorescence (SiF) is the re-emission of solar radiation
absorbed by leaf chlorophyll at longer wavelengths. It has a distinct spectral shape with one peak
at 730–740 nm (far-red fluorescence) and another at 685–690 nm (red fluorescence). This emission
varies smoothly with wavelength [25]. SiF can be measured in the field or by airborne remote sensing
instruments (e.g., [26,27]; see also [28] and references therein). Since approximately 1%–2% of the
absorbed solar energy by vegetation is released as fluorescence (against typically about 19% released
as heat and about 80% used for photosynthesis [29]), capturing the SiF requires sensors with good
signal-to-noise ratios (and fine spectral resolutions, see below). At the same time, SiF may potentially
interfere with retrieval of other atmospheric properties [30,31].

It has recently been shown that a number of satellite spectrometers can be used to retrieve
SiF (particularly the far-red peak). These include the Greenhouse gases Observing SATellite
(GOSAT) [32–35], the Global Ozone Monitoring Experiment 2 (GOME-2) [21,36], the SCanning
Imaging Absorption spectroMeter for Atmospheric CHartographY (SCIAMACHY) [33,37], and the
Orbiting Carbon Observatory 2 (OCO-2) [38]. Future instruments capable of measuring SiF are the
TROPOspheric Monitoring Instrument (TROPOMI) [39] and the dedicated FLuorescence EXplorer
mission (FLEX) [40]. From the current instruments, particularly the GOME-2 instruments profit from a
good spatial coverage and the availability of long historical records: GOME-2 on Metop-A has been
fully operational since 2007 and GOME-2 on Metop-B since 2013. Retrieving reliable SiF signals from
spaceborne remote sensing instruments has been an active field of research in the past decennium.

Early work on satellite remote sensing of vegetation fluorescence investigated the possibility of
using the filling-in of strong Fraunhofer lines and specifically the filling-in of the dark and spectrally
wide O2 A (~760 nm) and O2 B (~687 nm) line absorption bands (e.g., [28,41,42]). The proposed
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methods typically require accurate modelling of atmospheric radiative transfer in the absorption
bands. A subsequent series of studies showed that filling-in of deep solar Fraunhofer lines can also be
used to detect vegetation fluorescence from space [32,33,35,37,43], which in some respects simplifies the
retrieval problem. The first maps of global terrestrial fluorescence using filling-in of Fraunhofer lines
were achieved with the high-spectral-resolution interferometer aboard GOSAT [32,34,35]. GOSAT’s
coarse temporal and spatial resolution, however, requires considerable averaging of the individual
fluorescence retrievals into spatiotemporal composites to produce global maps, which may introduce
sampling or representativeness errors.

It was shown by Joiner et al. [21,33] that the retrieval approaches developed for GOSAT could
also be applied to the imaging spectrometers SCIAMACHY and GOME-2. This improves the spatial
representativeness because these instruments achieve global coverage within a few days. In addition,
the statistical or data-driven retrieval approach developed by Guanter et al. [35] for micro-windows
centred at isolated Fraunhofer lines has been extended by Joiner et al. [21] to much broader spectral
windows covering also the O2 A and water vapour absorption bands. In this method, the modelling
of atmospheric transmittance is approximated using a Principal Component (PC) analysis of a set of
reference spectra. A large sample of observations over fluorescence-free scenes is needed for generating
a representative set of PCs. The selection of these fluorescence-free scenes, the statistical analyses
of atmospheric transmittances and the choice of the fitting window can however strongly impact
the retrieved fluorescence signal (e.g., [21,36]). For example, optimization of PC selection for the
fluorescence retrieval is addressed by Köhler et al. [36].

The physiological relationships between SiF and GPP have been described in the literature
(e.g., [44–52]). SiF is one of many quenching mechanisms that plants use to release excess energy.
The amount of excess energy depends on the efficiency with which absorbed light is used for
photosynthesis, which in turn depends on rate-limiting factors such as the atmospheric CO2

concentration, canopy temperature, and the availability of water and nutrients. In high light conditions,
studies have shown that SiF positively correlates with photosynthesis and relates to both absorbed
PAR and photosynthetic efficiency [52]. In addition, we mention that each of the two SiF peaks is an
expression of two related but individual photosystems.

Despite the complexity of the underlying mechanisms, satellite-retrieved far-red SiF has been
directly compared with GPP from data-driven and global dynamic vegetation models as well as
tower-based flux estimates [34,53,54]. Significantly positive, biome-specific correlations were found
between absolute SIF and absolute GPP values with the highest correlations reported for managed
vegetation systems [53,54]. Note that the satellites are in sun-synchronous orbits, which means that
the local (solar) overpass time is nearly constant and lighting conditions are similar across the globe.

The goal of this paper is twofold. Firstly, we further explore the applicability of the data-driven
retrieval approaches developed for broad spectral windows by Joiner et al. [21] (see also [36]). We set
up our own algorithm for retrieval of far-red SiF from GOME-2A and follow the general method
of Joiner et al. [21], while the details of the implementation differ in a number of aspects. Rather
than performing detailed retrieval simulations, we can now make a comparison between the SiF
time series produced by the two algorithm implementations and provide scientific verification of
the data-driven method. Secondly, we further investigate the relationship between satellite-retrieved
far-red SiF and flux tower GPP. To this end, we produce a SiF time series retrieved from GOME-2A
spanning more than eight years. This time series is then compared with that of GPP derived from flux
tower measurements. Here, we focus on flux tower measurements from Australia (OzFlux). These sites
have the advantage of being representative of relatively large areas due to the relative homogeneity of
ecosystems in Australia.

The paper is structured as follows. Section 2 describes the retrieval setup that we used for
producing the SiF time series from GOME-2A measurements. Section 3 provides a brief description
of the resulting time series. Section 4 then compares retrieved SiF values with GPP derived from
Australian flux tower measurements. An anomaly in the SiF series for Australia in early 2011 is
discussed. Section 5 compares the SiF time series from our implementation (“SiF KNMI”) with the
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latest implementation of Joiner et al. [21] (“SiF NASA (v26)”; http://avdc.gsfc.nasa.gov/)). Section 6
presents sensitivity experiments with real GOME-2A spectra. A final conclusion is provided in
Section 7.

2. SiF Retrieval Method and Setup

As stated, we follow the data-driven retrieval approach developed by Joiner et al. [21] for moderate
spectral resolution instruments such as GOME-2. We performed far-red SiF retrievals for GOME-2
on Metop-A and produced a time series covering the time frame from the start of the mission in
January 2007 to June 2015. We compare our GOME-2A SiF time series with that from version 26
produced by Joiner et al. [21]. A number of differences exist between the two retrieval implementations.
We briefly summarize the methodology with a focus on implementation differences. For the three
main differences, sensitivity studies are performed (see Section 6).

2.1. The GOME-2 Instrument

The GOME-2 spectrometer aboard the Metop-A and Metop-B satellites [55] has a spectral
resolution in the near-infrared channels of ~0.5 nm and a sampling interval of ~0.2 nm. The satellites
are in polar sun-synchronous orbits with local equator crossing times of the ascending node around
9:30 a.m. The instrument is scanning in nadir and its scanning mirror has a variable angular speed such
that footprints have about equal size. GOME-2 aboard Metop-A had a nadir footprint of 80 km× 40 km
until July 2013 at which point the swath width was reduced and footprint sizes became 40 km × 40 km.
Owing to the large footprints. A single pixel often represents a mixture of different surface types.
Global coverage for the wider swath is achieved in almost a day.

2.2. Forward Model

The expression for the top-of-atmosphere reflectance of an atmosphere bounded by an isotropically
reflecting ground surface (e.g., [56]) is extended to include a fluorescence term. Here, we assume that
the upwelling fluorescence radiance field at the surface (IF) is isotropic as well. We further simplify
this expression by assuming that atmospheric scattering in the near-infrared wavelength region is
small (see also Frankenberg et al. [31]). The monochromatic reflectance (R) can then be written as

R(λ; µ, µ0) ≈ As(λ)t(λ; µ)t(λ; µ0) +
π IF(λ)t(λ; µ)

µ0E0(λ)
(1)

where µ and µ0 are the cosines of the viewing zenith angle and solar zenith angle, respectively; As is the
surface reflectance; and E0 is the solar irradiance at the top of the atmosphere. The transmission factors
t(µ) and t(µ0) here include only atmospheric extinction (no diffuse transmission). Any strong spectral
variation of the top-of-atmosphere reflectance is due to these quantities as well as to (the in-filling
of) the solar irradiance. The surface albedo As and fluorescence radiance IF are spectrally smooth.
The transmission factors can be combined and rewritten in terms of the two-way atmospheric slant
absorption optical thickness τ↓↑s , so that Equation (1) becomes

R(λ; µ, µ0) ≈ As(λ)e−τ↓↑s (λ) +
π IF(λ)

µ0E0(λ)
e
− µ−1

µ−1+µ−1
0

τ↓↑s (λ)
(2)

In our retrieval window, which runs from 712 nm to 783 nm, the absorption optical thickness
comprises absorption by water vapour up to about 740 nm and by oxygen between about 760 and 770
nm. The retrieval window used by Joiner et al. [21] for data set version 26 runs from 734 nm to 758 nm,
which excludes the oxygen A band but still contains some water vapour absorption lines. This is the
first major difference between the two retrieval implementations.

Next, the monochromatic reflectance R(λ) in Equation (2) is replaced by the measured reflectance
R(λi) from GOME-2. The spectral structure of the two-way slant absorption optical thickness
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is modelled using PCs from an analysis of measured reflectance spectra over fluorescence-free
regions (see below). Convolution with the instrument’s spectral response function and any other
instrument effects causing spectral structures are implicitly described by the PCs. In the actual
fluorescence retrieval, the surface albedo is described as a fourth-order polynomial in wavelength
(n = 4). The spectral shape of the fluorescence radiance across the retrieval window, which roughly
corresponds to the second peak of the SiF spectrum, is parameterised with a Gaussian function located
(µF) at 737 nm and having a sigma-width (σF) of 34 nm following Zarco-Tejada et al. [57].

Finally, we replace the monochromatic solar irradiance E0(λ) by the high-resolution solar
irradiance reference spectrum from Chance and Kurucz [58] convolved with the GOME-2 instrument
response function and scaled to the actual Earth-Sun distance (denoted as E0(λi)). We use this spectrum
instead of the actually measured irradiance spectrum E0(λi) because of radiometric degradation of
the GOME-2 instrument, which largely cancels out in the calculation of the reflectance but would
show up as a confounding trend in the SiF time series (for example, the SiF in 2013 would have
been underestimated by more than 10% compared to 2007 if the Level-1b irradiance had been used).
The use of E0(λi) instead of E0(λi) is another difference compared with Joiner et al. [21]; in SiF NASA
(v26) a (different) correction for radiometric degradation applied to the measured irradiance is now
implemented [59].

The forward model for the fluorescence retrieval is then completed and written as

R(λi; µ, µ0) ≈
(

n

∑
j=0

ajλ
j
i

)
e−∑m

k=1 bk fk(λi) +
π IF,0e−

1
2 (

λi−µF
σF

)
2

µ0E0(λi)
e
− µ−1

µ−1+µ−1
0

∑m
k=1 bk fk(λi)

(3)

In our baseline retrieval setup, the number (m) of PCs (fk) is 35. Thus, the total number of
fit parameters is 5 + 35 + 1 or 41 (aj + bk + IF,0). Extensive retrieval simulations were performed
by Joiner et al. [21], which indicated that the accuracy and precision of the retrieved fluorescence
peak value for a fit window running from 747 nm to 780 nm hardly changes when increasing the
amount of PC from 25 to 35. In this paper, we will show results from real data experiments further
investigating the effect of the number of PCs, which confirm the conclusion that at least 25 components
are needed. In our real data experiments, we observed, however, a small improvement when using 35
compared to 25 components. Therefore this number has been chosen for the baseline retrieval setup.
In SiF NASA (v26), m was reduced to twelve, because the fit window did not include the oxygen A
band. The number of PCs is the second major difference between the two retrieval implementations.
We remark that selection of the PCs can be further optimized by, for example, setting a lower threshold
on the PC’s explained variance [39] or using more sophisticated statistical criteria [36]. Finally, we
note that by making additional simplifications, the forward model can be linearized to speed up the
calculations [36,39].

2.3. PC Analysis of Atmospheric Absorption Optical Thickness

The assumption is made that the same set of empirical basis functions can be used to describe the
atmospheric absorption optical thickness both over fluorescent target scenes and over non-fluorescent
reference scenes. In the baseline retrieval setup, we construct a set of non-fluorescent reference spectra
from a year of observations over the Saharan desert. The PCs for the two-way slant absorption optical
thickness are determined from this set of reference spectra in the following way.

When there is no fluorescence, the second term in Equation (3) cancels. A number of sub-windows
are selected in which the absorption optical thickness becomes very small (712–713 nm, 748–757 nm
and 775–783 nm) so that the top-of-atmosphere reflectance approaches the surface reflectance. We fit a
second-order polynomial to the measured reflectance in these sub-windows to determine the surface
albedo across the entire retrieval window (the surface reflectivity for non-vegetated surfaces shows
much less spectral variation across the retrieval window, so that a polynomial of second-order can
be used here). The two-way slant absorption optical thickness for a particular ground pixel is then
given by
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τ↓↑s (λ) = −ln

Rre f (λi; µ, µ0)

∑2
j=0 cjλ

j
i

 (4)

Finally, PCs are determined from an analysis of slant absorption optical thicknesses for this set of
non-fluorescent reference scenes. The set of reference spectra is constructed from observations over the
Saharan desert (here: the latitude–longitude box defined by corners 16N, 8W and 30N, 29E). GOME-2A
spectra are included only if they are completely free of vegetation according to the 1 km resolution
USGS Global Land Cover Characterization database (version 2; https://lta.cr.usgs.gov/GLCC) and
if the pixel’s effective cloud fraction in the near-infrared is below 0.4. The effective cloud fraction is
taken from the FRESCO product [60,61] as included in the GOME-2 radiance product. We may make
different choices for the region of vegetation-free reference areas. Initial experiments indicated that the
Saharan desert works well in our retrieval. In Section 6.3 we return to the question of PC reference area.

For SiF retrievals in a particular month, the set of reference spectra is collected from the twelve
months preceding and including this month. For example, SiF retrievals for the month of June 2015 use
PCs determined from reference spectra in the time frame of July 2014 to June 2015. For SiF retrievals in
2007, which is the first year of the GOME-2A time series, reference spectra are taken from that year.

The number of reference spectra is very large (in the order of 30,000 spectra) and calculating the
PCs using the covariance method is problematic. Instead, we calculate PCs sequentially in order of
decreasing explained variance using the Non-linear Iterative Partial Least-Squares algorithm [62,63].

The selection of reference spectra is a third difference with SiF NASA (v26), for which observations
mainly over cloudy ocean, and to some extent also desert and snow covered land are used, but for a
single day only.

2.4. Monthly SiF Maps

SiF is retrieved for GOME-2A pixels that have solar zenith angles below 70◦ and for which the
FRESCO effective cloud fraction is below 0.4. This means that if FRESCO is in snow/ice mode, pixels
are excluded from the retrieval. Fluorescence retrievals are rejected whenever their root-mean-square
residual is larger than 1%. Finally, retrieved SiF values are averaged into 0.5◦ by 0.5◦ latitude–longitude
grid boxes for every month. An overview of the algorithm flow is given in Figure 1. In SiF NASA (v26),
a first bias correction to SiF maps is made based on retrieved SiF values where zero SiF is expected ([59];
see also [37]).
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November. In the more continental climate zones of eastern Europe, Russia and northeastern US, the 

Figure 1. Flow diagram of the GOME-2 SiF retrieval algorithm. One year of fluorescence-free reference
pixels is selected from the GOME-2 Level-1b data as input for the Principal Component (PC) algorithm.
The 35 most significant PCs are used to build a cost function and minimization of the cost function
for each pixel yields 41 fit parameters (one fluorescence parameter, five surface albedo polynomial
coefficients and 35 PC coefficients). The peak fluorescence at 737 nm is then averaged monthly in 0.5◦

by 0.5◦ latitude–longitude grid cells resulting in the final Level-3 product.
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3. Seasonal Global Maps of Far-Red SiF Derived from GOME-2A

Figure 2 shows several monthly mean maps that reveal the expected spatial patterns of vegetation
activity (four months in 2013). For example, in the temperate and subtropical regions of the Northern
Hemisphere, such as the eastern US, western Europe or Southeast China, SiF values start increasing
from March onwards, peak in June and decrease again to their minimum towards November. In the
more continental climate zones of eastern Europe, Russia and northeastern US, the SiF seasonal cycle
is somewhat shorter: SiF values increase from May onward, have a clear peak in June and reach
background levels again in October. In the subarctic climate zones of the northern parts of Eurasia
and North America, the SiF cycle shortens even further. In the lower latitudes, significant SiF values
occur in all months, but there is a latitudinal shift in peak values during the year. In the Southern
Hemisphere, SiF values in southern Australia are high in September, October and November.
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Apart from these large-scale biome patterns, very detailed spatially and temporally heterogeneous
SiF patterns can also be observed from GOME-2A when evaluating over specific regions. Especially in
arid regions with narrow strips of agricultural land such as in North Africa and the Fertile Crescent
(Figure 3) the possibility of satellite monitoring of vegetation activity is demonstrated. The agricultural
land use type shows substantially higher SiF values compared to its arid background with the highest
values in March, April and May. From Fall on, retrieved values over the Fertile Crescent fade to
background levels of the desert. Note that the surface albedo of desert areas is comparable to the
surface albedo of vegetated land.
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Figure 3. Example of the spatial pattern of SiF retrieved over North Africa and the Middle East for April
2013 (lower panel). A true colour image for the same geographical region is shown for comparison
(upper panel). The white colour indicates grid boxes without data points. The regular pattern of
missing data points is caused by a specific sequence of GOME-2 instrument modes around that time.

Finally, we calculated monthly mean SiF values for the PC reference area and for open ocean grid
boxes. In both cases, no significant SiF is expected and these values can serve as an error estimate for
the SiF time series. The overall mean SiF bias and its standard deviation for the PC reference area are
0.03 and 0.06 mW/sr/m2/nm, respectively. The overall mean SiF bias and its standard deviation for
open ocean are 0.17 and 0.05 mW/sr/m2/nm, respectively. Small but systematically negative values
over shallow or murky waters (e.g., lakes, river deltas) are observed, which are perhaps related to the
interaction of visible light with suspended matter in the water.

4. Evaluating Satellite-Retrieved Far-Red SiF with Data on Vegetation Activity

4.1. Comparison with NDVI

To date, no suitable independent measurements of plant fluorescence exist for proper validation
of SiF retrieved from satellite sensors. However, local fluorescence measurement techniques are rapidly
advancing and show their value in studying the ecophysiology of photosynthesis at the leaf level
and in situ ([52] and references therein). During the last decade, SiF has been successfully measured
from tower [26,64–66], aircraft [27,67,68] and satellite platforms [32,34,35,41]. For evaluation purposes,
vegetation indices from satellite measurements (such as the NDVI) can be used as first proxies for
SiF from spaceborne measurements due to their similar spatio-temporal patterns; they can therefore
be used as a qualitative indicator of vegetation activity. Another evaluation method is to compare
the spatial SiF patterns derived from different satellites based on different methodologies [21,34,53].
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We note that the absolute fluorescence values will depend on the assumed spectral shape of the
emissions [21,52] and on other algorithm assumptions.

Figure 4 illustrates the good qualitative agreement between the spatial patterns of NDVI and SiF
over North America for July 2013 suggesting that the results of our retrieval setup indeed indicate the
presence of green vegetation. Over the eastern US, the northwestern US coastal area and the southern
part of Mexico high NDVI values are measured, while over the western US and northern Mexico low
NDVI values are observed in line with the general patterns of SiF values.
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Figure 4. GOME-2A SiF emissions (left); and MODIS NDVI (right) over North America for July 2013.

However, there are also clear differences between the spatial patterns of NDVI and SiF, especially
in areas covered with tundra, taiga and rainforest vegetation. While in September SiF is already
small over the tundra/taiga, NDVI is still high. Rainforest areas show slightly lower SiF radiance
values compared to other areas with similar NDVI values (not shown). SiF values of evergreen forests
also tend to show some minor seasonality, which in turn is hardly observed from NDVI data. It is
expected that SiF measurements provide additional information that is not covered by vegetation
indices due to signal saturation, bidirectional reflectance distribution function (BRDF) effects [69],
and because materials such as soil, wood, and dead biomass also absorb PAR but do not contribute to
photosynthesis [70]. The correlation between NDVI and SiF at the global scale is moderately strong
(R = 0.78, a value similar to correlations given by Guanter et al. [53]), but large NDVI values can be
observed at low SiF levels. In the next paragraph, we therefore compare SiF with GPP values derived
from flux towers.

4.2. Comparing Far-Red SiF with GPP Derived from Australian Flux Tower Observations

Here, we compare SiF retrieved from GOME-2A based on the presented methodology and
parameter settings with GPP derived from the regional Australian flux tower network (OzFlux—www.
ozflux.org.au) [71,72]. A full description of the network can be found in Beringer et al. [72]. We used
12 Australian flux towers (Table 1) available for the period January 2007 to June 2015. The tower
sites cover different biomes in northern and southern Australia, from agriculture to woodlands
and from pastures to savannah [73,74]. The spatial footprint of flux tower observations is much
smaller than the spatial sampling of a satellite instrument such as GOME-2, and this limits the spatial
representativeness. However, by selecting flux towers in areas with homogenous land cover, the
vegetation type in the flux tower’s footprint will agree better with the dominant vegetation type in
the satellite pixel. Since large homogeneous biomes are more common in Australia, we focus our
comparison on Australian flux towers.

www.ozflux.org.au
www.ozflux.org.au
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Table 1. Overview of the Australian flux tower sites from the OzFlux network (www.ozflux.org.au)
used in this study. The first seven are the northern sites, and the last five are the southern sites.

Site Name Latitude (S)/Longitude (E) Vegetation

Sturt Plains 17◦9′2′ ′, 133◦21′1′ ′ Grassland
Daly Uncleared 14◦09′33′ ′, 131◦23′17′ ′ Woodland savannah
Adelaide River 13◦4′37′ ′, 131◦7′4′ ′ Woodland savannah

Daly Pasture 14◦03′48′ ′, 131◦19′05′ ′ Tropical pasture
Dry River 15◦15′32′ ′, 132◦22′14′ ′ Woodland savannah
Fogg Dam 12◦32′42′ ′, 131◦18′26′ ′ Flooded wetland

Howard Springs 12◦29′42′ ′, 131◦09′00′ ′ Open-forest savannah
Riggs 36◦39′00′ ′, 145◦34′34′ ′ Dryland agriculture (pasture)

Wallaby 37◦25′34′ ′, 145◦11′14′ ′ Eucalyptus forest
Whroo 36◦40′23′ ′, 145◦01′34′ ′ Box woodland

Wombat 37◦25′20′ ′, 144◦05′40′ ′ Secondary forest
Yanco Jaxa 34◦59′16′ ′, 146◦17′27′ ′ Dryland agriculture (pasture)

At the flux tower sites, meteorological parameters, carbon, water and energy fluxes were measured
and GPP was derived. For each flux tower we selected the 0.5◦ by 0.5◦ grid cell with centre coordinates
closest to the tower site. We then averaged the tower-derived GPP at the overpass time of GOME-2
(time window of 2 h centred at 9:30 local time) to monthly values. In this way, we only take GPP into
account for the same lighting conditions in which SiF is retrieved (e.g., instantaneous GPP). For each
tower site, the derived time series of GPP and the corresponding SiF series, either from the KNMI or
the NASA (v26) product, are shown in Figure 5. Subsequently, we have conducted a simple linear
regression of monthly GPP data on monthly satellite-retrieved SiF values (Table 2). In Figure 6 we
show two scatterplots for a flux site with a high and a low correlation between SiF and GPP with
slopes, intercepts, and correlation values given in Table 2.
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zero and one.  

  

Figure 5. Observed Sun-induced Fluorescence (SiF) time series for January 2007 to June 2015 from the
KNMI (black line) and NASA (v26) (red line), and Gross Primary Productivity (GPP) derived from
Australian flux towers (blue line). For comparison, the SiF and GPP data sets are scaled to be between
zero and one.
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Table 2. Comparison of Sun-induced Fluorescence (SiF) time series from KNMI and NASA (v26) with
Gross Primary Productivity (GPP) derived from Australian flux tower sites for the period January
2007 to June 2015. For each site the slope, intercept and correlation between the time series are given:
the linear relation reads as GPP = intercept + slope × SiF.

GOME-2 SIF KNMI vs. Flux Tower GPP GOME-2 SIF NASA (v26) vs. Flux Tower GPP

Slope Intercept R Slope Intercept R

Sturt Plains 11.5 −3.0 0.739 13.4 −2.0 0.776
Daly Uncleared 7.9 2.5 0.699 8.6 3.4 0.637
Adelaide River 17.5 −1.7 0.835 12.6 3.0 0.691

Daly Pasture 20.0 −6.0 0.831 24.0 −4.4 0.871
Dry River 5.4 4.0 0.622 8.4 3.4 0.821
Fogg Dam 12.1 −0.2 0.763 7.0 3.6 0.554

Howard Springs 12.2 5.1 0.554 15.0 6.4 0.646
Riggs 8.2 −1.0 0.627 11.8 −1.0 0.781

Wallaby 3.7 4.0 0.265 7.6 3.0 0.366
Whroo 2.5 5.0 0.371 2.2 5.8 0.299

Wombat 4.4 8.6 0.397 6.8 8.7 0.433
Yanco Jaxa 4.4 0.0 0.570 6.5 0.3 0.800

All 6.8 2.8 0.456 9.7 2.9 0.510
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Despite large differences in spatial scales, SiF is related to the flux tower GPP data with R-values 
up to 0.84–0.87, although some tower sites show small correlations (Table 2). The SiF KNMI-GPP 
slopes and correlations are generally larger for agricultural biomes as opposed to more natural 
biomes such as savannah and woodland. Earlier reported observations confirm the higher correlation 
between SiF and GPP estimated at towers located near agricultural sites [53]. The slopes of the GPP-
SiF relation for grass type biomes are very similar for European grasslands and US cropland [53] 
except for tropical grasslands. Interestingly, biomes with lower SiF-GPP slopes have also lower 
correlation and in general this happens at higher LAI values, which should be investigated further. 
Analysing differences in the SiF-GPP relationships for different biomes requires advanced canopy 
and SiF modelling using radiative transfer models such as SCOPE [44,75]. By applying models, scale-
related issues can be identified and separated from biophysical factors.  

Overall, both KNMI and NASA (v26) SiF products perform similarly, sometimes with either 
higher or lower correlations for each product. Slopes of the SiF-GPP regression are smaller for the 
KNMI product as compared with NASA (v26). This may be due to the fact that in general the KNMI 
SiF is higher as compared with the NASA (v26) product (see Figure 8). The vegetation onsets (Spring) 
and offsets (Fall) from the SiF time series broadly follow the GPP cycle.  
  

Figure 6. Sample scatterplots for the Adelaide ((left) high correlation between GPP and SiF); and
Wallaby ((right) low correlation) sites.

Despite large differences in spatial scales, SiF is related to the flux tower GPP data with R-values
up to 0.84–0.87, although some tower sites show small correlations (Table 2). The SiF KNMI-GPP
slopes and correlations are generally larger for agricultural biomes as opposed to more natural biomes
such as savannah and woodland. Earlier reported observations confirm the higher correlation between
SiF and GPP estimated at towers located near agricultural sites [53]. The slopes of the GPP-SiF relation
for grass type biomes are very similar for European grasslands and US cropland [53] except for tropical
grasslands. Interestingly, biomes with lower SiF-GPP slopes have also lower correlation and in general
this happens at higher LAI values, which should be investigated further. Analysing differences in
the SiF-GPP relationships for different biomes requires advanced canopy and SiF modelling using
radiative transfer models such as SCOPE [44,75]. By applying models, scale-related issues can be
identified and separated from biophysical factors.

Overall, both KNMI and NASA (v26) SiF products perform similarly, sometimes with either
higher or lower correlations for each product. Slopes of the SiF-GPP regression are smaller for the
KNMI product as compared with NASA (v26). This may be due to the fact that in general the KNMI
SiF is higher as compared with the NASA (v26) product (see Figure 8). The vegetation onsets (Spring)
and offsets (Fall) from the SiF time series broadly follow the GPP cycle.
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4.3. GOME-2A Retrieved SiF Time Series Analysis over Australian Flux Tower Sites: A Case Study

The GOME-2A retrieved SiF (January 2007 to June 2015) over Australia covers a period with
interesting climatological contrasts. The 2007–2010 time range is part of the Australian decade-long
“Millennium Drought”, the most severe drought period since instrumental records began in the
1990s [76]. This drought ended in the Australian summer of 2010/2011 due to the strong 2010–2012
La Niña phenomenon [77]. La Niña is typically associated with increased rainfall in northern and
eastern Australia (both years experienced rainfall well above the long-term average of 465 mm–703 mm
in 2010 and 708 mm in 2011). During La Niña, winter and spring daytime temperatures are below
average across southern Australia, but are above average in the northern parts, while summer daytime
temperatures are below average across most of Australia [77].

The relatively large timespan and spatial coverage of the GOME-2A or any other satellite-retrieved
SiF series, increases the ability to study anomalies and trends in vegetation dynamics over areas with
limited surface data. In addition, GPP data derived from flux tower measurements may suffer from
data gaps as not all the sites provide continuous data records (see for example Figure 5). SiF data may
be used as a proxy for GPP (as shown in Section 4.1, Table 2 and Figure 5) to examine trends in the
carbon cycle.

Across all the Australian flux tower sites in this study, a strong positive anomaly in the
de-seasonalized SiF time series (computed by subtracting from each monthly value the eight-year
average for that specific month and dividing by that value to obtain percentages) was observed in
2010/2011 (blue area in Figure 7). In contrast, strong negative anomalies were observed at the start
and especially at the end of the de-seasonalized time series (red areas in Figure 7). This resulted in
an increase (+2.7% to +17.2% year−1; on average 10.3% year−1) of de-seasonalized SiF from January
2007 to April 2011. This increase is higher over southern sites (Riggs, Wallaby, Whroo, Wombat, Yanco
Jaxa: +15.7% to +17.2% year−1) compared to the northern ones (Sturt Plains, Daly Uncleared, Adelaide
River, Daly Pasture, Dry River, Fogg Dam, Howard Springs: +2.7% to +7.5% year−1). For the period
May 2011 to June 2015 a decrease is observed (+0.7% to −10.3% year−1; on average −6.0% year−1).
This decrease is stronger over the southern sites (−5.9% to −10.3% year−1) as compared with the
northern sites (+0.7% to −9.5% year−1). We attribute the increasing SiF values until 2010/2011 and the
decreasing SiF values afterwards to the meteorological extremes occurring during that period: drought
at the start of the time series indicated by the negative anomalies, the severe rainfall in 2010 and 2011
connected to La Niña indicated by the positive anomalies, and again the drier period at the end of the
time series [77–80]. The small differences in responses (in magnitude, not sign) between northern and
southern sites can perhaps be explained by the somewhat different impact of La Niña on precipitation
and temperature in both parts of Australia [77].

This short time series analysis illustrates the strong potential of SiF data to monitor vegetation
activity in relation with meteorological anomalies [81,82]. Future research should further investigate
the (complex) relation between satellite-retrieved solar-induced fluorescence and derived parameters,
such as the fluorescence yield, and photosynthetic activity.



Remote Sens. 2016, 8, 895 14 of 24
Remote Sens. 2016, 8, 895  14 of 23 

 

 
Figure 7. Observed Sun-induced Fluorescence (SiF) for the period January 2007 to June 2015 over 
Australian flux tower sites. SiF data are de-seasonalized. Positive anomalies are given in blue, 
negative anomalies in red. For some locations two sites with different biomes fall into the same 
GOME-2A SiF gridcell (Riggs + Whroo; Fogg Dam + Howard; Daly Uncleared + Pasture). 

5. Comparison with SiF Retrieved from GOME-2A by Joiner et al. (2013) 

We now compare our global SiF time series with SiF NASA (v26). In Section 2 we discussed our 
retrieval setup and indicated where it differed from the implementation in SiF NASA (v26), the most 
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Only grid boxes that are over land and for which the monthly average in each time series is 
calculated from at least three successful SiF retrievals are taken into account. The correlation between 
the two datasets is 0.78 and the RMS difference is 0.35 mW/sr/m2/nm. Slightly different effective cloud 
fractions are used to filter the retrievals that go into the global SiF maps (0.4 in our implementation vs. 
0.3 in SiF NASA, v26), but this has a negligible effect on the comparison. We find that filtering with 
cloud fractions other than 0.4 hardly changes the correlation. This is in agreement with Köhler et al. 
[36], who show that filtering with higher cloud fractions decreases SiF values but leaves temporal 
patterns mostly unaffected.  

Figure 7. Observed Sun-induced Fluorescence (SiF) for the period January 2007 to June 2015 over
Australian flux tower sites. SiF data are de-seasonalized. Positive anomalies are given in blue, negative
anomalies in red. For some locations two sites with different biomes fall into the same GOME-2A SiF
gridcell (Riggs + Whroo; Fogg Dam + Howard; Daly Uncleared + Pasture).

5. Comparison with SiF Retrieved from GOME-2A by Joiner et al. (2013)

We now compare our global SiF time series with SiF NASA (v26). In Section 2 we discussed
our retrieval setup and indicated where it differed from the implementation in SiF NASA (v26), the
most current NASA version at this time. The main differences are the selection of the reference scenes
for determination of the PCs (desert areas, yearly vs. mainly cloudy ocean, daily), the fit window
(712–783 nm vs. 734–758 nm) and the number of PCs (35 vs. 12). Both time series are spatiotemporal
composites of retrieved SiF values averaged per month and in 0.5◦ by 0.5◦ grid boxes. Figure 8 shows
a scatter plot of the two SiF data sets where a single point represents a monthly grid box average from
the global time series between January 2007 and June 2015.

Only grid boxes that are over land and for which the monthly average in each time series is
calculated from at least three successful SiF retrievals are taken into account. The correlation between
the two datasets is 0.78 and the RMS difference is 0.35 mW/sr/m2/nm. Slightly different effective cloud
fractions are used to filter the retrievals that go into the global SiF maps (0.4 in our implementation vs.
0.3 in SiF NASA, v26), but this has a negligible effect on the comparison. We find that filtering with
cloud fractions other than 0.4 hardly changes the correlation. This is in agreement with Köhler et al. [36],
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who show that filtering with higher cloud fractions decreases SiF values but leaves temporal patterns
mostly unaffected.Remote Sens. 2016, 8, 895  15 of 23 
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SiF NASA (v26). Each data point represents a monthly 0.5◦ by 0.5◦ grid box average between January
2007 and June 2015. Only grid boxes over land are taken into account.

A global map of correlations is depicted in Figure 9. The number of data points per grid
box is high because of the long time series (up to 102 months per grid box). Firstly, we see that
correlations of SiF retrieved over the ocean are quite small but slightly positive and do not exhibit
any spatial patterns. This may be due to noise having similar effects on the retrieval solution for the
two implementations (the fit windows partly overlap). The absence of spatial patterns in correlations
over the oceans argues in favour of this explanation. Similarly, we see small but slightly positive
correlations over land free of vegetation (e.g., the Saharan desert). Secondly, correlations between the
two time series are in general substantial over vegetated areas. However, there is a clear dependency
on the vegetation type. In particular, we see that correlations for tropical rainforests drop to the same
background levels observed for non-vegetated areas (see, for example, the rainforests in Central and
South America, West and Central Africa, and Indonesia). We have checked and excluded the possibility
of a confounding effect of a reduced number of valid monthly SiF averages because of increased cloud
contamination for these areas. Either the two retrieval implementations respond differently to SiF
over tropical rainforests or the natural variability of SiF for these regions is too small (compared to the
noise error) to reveal a correlation in the first place.
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6. Sensitivity Analyses for the Retrieval of GOME-2A SiF Using PCs

In this section, we discuss a number of experiments investigating the three most important
retrieval sensitivities. Rather than performing closed-loop retrieval simulations, we do retrieval
experiments with real GOME-2A spectra. We investigate the effect of the number of PCs, the fit
window, and the PC reference area on retrieval and use the four months of January, April, July and
October 2013 as test months for reasons of computational time.

6.1. Number of PCs

In addition to the baseline retrieval, which uses 35 PCs, we performed retrievals for the four test
months using 15, 25 or 45 PCs while keeping all other settings the same. The results are summarised in
Table 3 and presented in terms of differences with respect to the baseline of 35 PCs. The comparison
includes only grid boxes over land.

Table 3. Various statistical parameters describing the difference between retrieved SiF values for the
months of January, April, July and October 2013 when using 15, 25 or 45 PCs as compared to 35 PCs
(baseline). Only grid boxes over land are taken into account. Parameters are the root-mean-square
difference (RMS), the mean difference and the standard deviation (STD) of the difference, the correlation
coefficient (R), the slope and intercept of the regression line, and finally the total number of valid
monthly grid box pairs (N) from which differences are calculated. The difference is defined as
SiF(test) − SiF(baseline) and the regression line as SiF(baseline) = intercept + slope × SiF(test).
All correlations are highly significant. The unit of SiF values is mW/sr/m2/nm, as before.

Number of PCs Month RMS Mean STD R Slope Intercept N

15

January 0.85 −0.11 0.85 0.67 0.39 0.44 28,844
April 0.80 0.54 0.59 0.83 0.39 0.00 37,706
July 1.52 1.00 1.14 0.85 0.29 0.16 44,326

October 0.74 0.32 0.67 0.79 0.40 0.13 40,786
All 1.06 0.49 0.94 0.74 0.32 0.19 151,662

25

January 0.20 0.09 0.18 0.99 0.82 0.04 28,844
April 0.25 0.19 0.16 0.97 0.76 −0.06 37,706
July 0.90 0.69 0.58 0.94 0.48 0.00 44,328

October 0.51 0.34 0.39 0.95 0.58 −0.01 40,786
All 0.57 0.36 0.45 0.92 0.56 0.03 151,664

45

January 0.15 −0.06 0.13 0.99 1.13 −0.01 28,844
April 0.18 0.09 0.15 0.97 0.78 0.01 37,706
July 0.17 0.11 0.13 0.99 0.84 0.01 44,328

October 0.22 0.12 0.18 0.98 0.77 0.01 40,786
All 0.18 0.07 0.17 0.97 0.86 0.01 151,664

In a qualitative sense, we find that global maps when using only 15 PCs show patches with
negative values as well as large patches with highly positive values. The patches with negative SiF
values more or less disappear when using 25 PCs or more and SiF patterns correspond much better to
actual vegetation patterns. SiF values tend to be lowest for the baseline retrieval with 35 PCs (also when
compared to the retrieval with 45 PCs).

A sufficient number of PCs is needed to capture the spectral variability of atmospheric
transmission. When this number has been reached, one would in principle not expect the retrieval
outcome to change much when more PCs are added. The correlation between SiF values for 25 and
35 PCs is about as high as between SiF values for 45 and 35 PCs: this correlation is well above 0.9.
However, we see that differences between SiF values for 25 and 35 PCs, in terms of RMS, absolute
value of the mean difference and the standard deviation, are higher. The mean difference between
SiF values for 45 and 35 PCs has reduced to 0.07 mW/sr/m2/nm and it seems justified to not further
increase the number of PCs from 35 to 45 as the two conditions already resemble each other and we do
not want to use more PCs than needed.
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When more PCs are used there is the potential danger of overfitting or noise fitting. This would
show up in the retrieval results as retrieved SiF values becoming noisier. The comparison with flux
tower GPP is important here. Comparing retrieved SiF values for the months of January, April, July
and October 2013 for the different PC numbers (15, 25, 35, or 45) with flux tower-derived GPP values,
we find that the correlation between GPP and SiF increases with five percentage points when using
25 PCs instead of 15 PCs, with 28 percentage points when using 35 PCs instead of 15 PCs but with
only 20 percentage points when using 45 PCs instead of 15 PCs. Thus, there is a slight decrease of the
correlation when going from 35 to 45 PCs. These results indicate that adding more PCs increases the
ability to better retrieve SiF, but that there is indeed an optimum amount at which adding more PCs
will deteriorate the retrieval (see also [21]).

6.2. Spectral Window

In a second experiment, we test the effect of the spectral window. We now run the retrieval for
the four months using spectral windows 734–758 nm, 712–758 nm and 734–783 nm in addition to
the baseline window running from 712 to 783 nm. All other settings are the same as in the baseline
retrieval. The four windows differ among each other with respect to the atmospheric absorption bands
they cover. The 734–758-nm window contains mainly Fraunhofer lines, the 712–758-nm window covers
a water vapour absorption band and the 734–783-nm window covers the oxygen A band. Table 4
summarizes the results and reports differences in retrieved SiF values with respect to the baseline fit
window of 712–783 nm.

Table 4. Similar to Table 3 but for tests with different fit windows. Spectral windows 734–758 nm,
712–758 nm or 734–783 nm are compared to 712–783 nm (baseline). The windows contain Fraunhofer
lines (FH), water vapour and/or oxygen absorption, as indicated in the table. All correlations are
highly significant.

Spectral Window Month RMS Mean STD R Slope Intercept N

734–758 nm (FH)

January 1.16 −0.11 1.15 0.45 0.23 0.53 28,805
April 0.41 −0.08 0.40 0.74 0.51 0.21 37,677
July 0.43 −0.09 0.42 0.72 0.67 0.27 44,297

October 1.58 −0.19 1.57 0.22 0.07 0.41 40,592
All 1.01 −0.12 1.00 0.42 0.21 0.43 151,371

712–758 nm
(H2O, FH)

January 0.41 0.02 0.41 0.91 0.67 0.20 28,813
April 0.57 0.25 0.51 0.85 0.43 0.09 37,700
July 0.46 0.21 0.41 0.93 0.59 0.15 44,325

October 0.33 0.04 0.33 0.95 0.62 0.13 40,761
All 0.45 0.14 0.43 0.90 0.58 0.13 151,599

734–783 nm
(FH, O2 A)

January 0.46 −0.28 0.37 0.88 1.48 0.10 28,844
April 0.21 −0.03 0.21 0.86 1.06 0.01 37,706
July 0.40 −0.30 0.26 0.90 1.34 0.18 44,328

October 0.28 −0.14 0.24 0.90 1.25 0.07 40,786
All 0.34 −0.19 0.29 0.87 1.31 0.09 151,664

Overall, SiF maps are most noisy for the shortest fit window, which is understandable as there
are simply less spectral points and because there is no filling-in of atmospheric absorption bands
that can provide information. Differences typically get smaller and correlations get better when the
spectral window resembles the baseline window more. Mean differences are most meaningful here:
Importantly, we see that when the H2O band is mostly excluded SiF values generally decrease and
when the O2 A band is excluded SiF values typically increase. We remark that the shorter fit window
containing only Fraunhofer lines is used in SiF NASA (v26), but that the retrieval setup also differs in
a number of other aspects from the experiment reported here.
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6.3. PC Reference Area

Finally, we have investigated the effect of the reference area from which spectra are selected
for construction of the PCs. For the four test months in 2013, we have also used cloudy ocean and
areas covered with snow or ice as reference areas. For selection of cloudy ocean pixels, we follow the
approach by Joiner et al. [21] and select pixels over ocean with a minimum cloud fraction of 0.9 but
also with a minimum cloud pressure of 850 hPa to avoid shielding of lower parts of an atmospheric
column by high clouds. Pixels are taken from two large predefined latitude–longitude boxes over
the North and the South Atlantic Ocean. Pixels over snow- or ice-covered areas are selected from a
predefined latitude–longitude box over Greenland and the Canadian Arctic Archipelago.

The retrieval using PCs determined from spectra over snow/ice reference areas performs worst
(Table 5). Global SiF maps show very large patches of negative SiF values, particularly in a large
band around the equator. SiF maps using cloudy ocean or desert as PC reference areas, however, are
largely consistent with each other: the overall correlation R is as high as 0.86. As mentioned before,
the baseline retrieval shows slightly positive SiF values over the oceans, which indeed reduce when
cloudy ocean is used as reference area. However, these positive values do not completely disappear,
i.e. a positive bias is present for the cloudy ocean reference case as well. There is a tendency for SiF
values using the cloudy ocean reference to be larger than those using the desert reference.

Table 5. Similar to Table 3 but for tests with different reference spectra. Reference spectra for the
PC analysis from cloudy ocean or snow/ice-covered areas are compared to desert areas (baseline).
All correlations are highly significant.

Reference Area Month RMS Mean STD R Slope Intercept N

Cloudy ocean

January 0.33 −0.19 0.27 0.91 1.07 0.15 28,844
April 0.37 0.24 0.28 0.95 0.61 −0.01 37,706
July 0.58 0.41 0.41 0.93 0.58 0.03 44,328

October 0.27 0.11 0.25 0.89 0.82 −0.01 40,786
All 0.42 0.17 0.38 0.86 0.65 0.07 151,664

Snow/ice

January 1.06 −0.68 0.82 0.06 0.08 0.65 28,844
April 0.79 −0.42 0.67 0.09 0.06 0.35 37,706
July 0.84 −0.46 0.71 0.55 0.36 0.58 44,328

October 0.55 −0.21 0.51 0.52 0.49 0.32 40,786
All 0.81 −0.42 0.69 0.35 0.29 0.49 151,664

6.4. Conclusion of the Sensitivity Experiments

Taking the results from the three experiments together, we can now better understand the
comparison with our SiF values versus NASA (v26) set as discussed in the previous section. In the
implementation of SiF NASA (v26), the O2 A band is excluded, less PCs are used, and cloudy
ocean spectra are selected to determine PCs for atmospheric transmission. Tested in isolation in the
experiments discussed here, these three differences would all increase retrieved SiF values. However,
the water vapour absorption band is also excluded in SiF NASA (v26) and this change would mean a
decrease of retrieved SiF values as compared with our implementation. In the direct comparison of the
SiF KNMI and SiF NASA (v26) data sets where all effects are combined, we see that SiF NASA values
are smaller that SiF KNMI values (smaller slope in Figure 8). This suggests that the water vapour
band has a strong impact on the retrieval. Further research may indicate whether this explains the low
correlations over tropical rainforests.

7. General Conclusions

In this paper, we describe the satellite-based retrieval of a sun-induced far-red vegetation
fluorescence derived from GOME-2A spectra. We followed the general retrieval approach described
in Joiner et al. [21] and implemented our own retrieval setup that differs in a number of important
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aspects from version 26 of the NASA data set. In particular, we have used desert only as reference
areas for determining the PCs to describe atmospheric absorption optical thickness. Furthermore,
reference spectra were collected from a year of data. We used a much wider fit window (712–783 nm)
that also covers water vapour absorption up to about 740 nm and absorption in the oxygen A band.
Finally, we needed a larger number of PCs because atmospheric transmission shows more spectral
variation across our fit window.

The two time series correlate well with an overall R of 0.78. However, we also observe that over
tropical rain forests correlations drop to background levels. Subsequent sensitivity experiments
investigating the effect of the number of PCs, the fit window, and the reference area for PC
determination, suggest the strong effect on the retrieval outcome of whether or not the water vapour
absorption band is included in the fit window. Future research may indicate whether this or insufficient
natural variability (compared to noise levels) explains the drop in correlations for tropical rain forests.

Furthermore, we have compared the SiF time series with Gross Primary Productivity derived
from flux tower measurements in Australia. The correlation between SiF and site GPP ranged from 0.37
to 0.84. Managed biome types typically have higher correlations than natural types. Finally, by using
the de-seasonalized SiF time series for Australia, the break of the Millennium Drought during the local
summer 2010/2011 could be detected. Vegetation activity increased from January 2007 to April 2011
due to the transition from droughts to increased rainfall in the summer 2010/2011. Decreases in SiF
were seen after April 2011 and may be due to less rainfall and higher temperatures towards 2015.
Analysing SiF time series illustrates the strong potential of SiF data to monitor vegetation activity in
relation with meteorological anomalies.
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