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Abstract: Remote sensing (RS) has played an important role in extensive agricultural monitoring
and management for several decades. However, the current spatial resolution of satellite imagery
does not have enough definition to generalize its use in highly-fragmented agricultural landscapes,
which represents a significant percentage of the world’s total cultivated surface. To characterize
and analyze this type of landscape, multispectral (MS) images with high and very high spatial
resolutions are required. Multi-source image fusion algorithms are normally used to improve the
spatial resolution of images with a medium spatial resolution. In particular, pansharpening (PS)
methods allow one to produce high-resolution MS images through a coherent integration of spatial
details from a panchromatic (PAN) image with spectral information from an MS. The spectral
and spatial quality of source images must be preserved to be useful in RS tasks. Different PS
strategies provide different trade-offs between the spectral and the spatial quality of the fused images.
Considering that agricultural landscape images contain many levels of significant structures and
edges, the PS algorithms based on filtering processes must be scale-aware and able to remove
different levels of detail in any input images. In this work, a new PS methodology based on a rolling
guidance filter (RGF) is proposed. The main contribution of this new methodology is to produce
artifact-free pansharpened images, improving the MS edges with a scale-aware approach. Three
images have been used, and more than 150 experiments were carried out. An objective comparison
with widely-used methodologies shows the capability of the proposed method as a powerful tool to
obtain pansharpened images preserving the spatial and spectral information.

Keywords: pansharpening (PS); edge-preserving; bilateral filter; guided filter; rolling guidance
filter (RGF)

1. Introduction

Remote sensing (RS) is a widely-used tool to support decision making in agricultural censuses,
land use assessments and crop monitoring. Most RS methods for crop mapping rely on low spatial
resolution images, achieving good results when addressing large and homogeneous areas, but they are
limited for crop identification and characterization at the farm level [1,2].
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According to Lowder et al. [3], about 75% of the world’s 570 million farms are family concerns of
less than 2 ha. This implies a highly fragmented agricultural landscape with a high spatial heterogeneity
produced by the diversity in sizes, shapes and crops of the different agricultural plots. Under this
scenario, agricultural studies using remote sensing techniques are conditioned upon the spatial
resolution of the images; thus higher resolutions allow a more accurate analyses of the agricultural
fields in most cases [4].

To address this requirement, continuous improvements in Earth observation technologies from
space have resulted in a wide range of commercial satellites that offer a new generation of images
that can simultaneously acquire both panchromatic (PAN) and multispectral (MS) imagery. The most
popular optical satellites and their spatial resolutions are detailed in Table 1.

Table 1. Commercial optical satellites that offer images with high and very high spatial resolutions.

Satellite Spatial Resolution (m)

Panchromatic (PAN) Multispectral (MS)

Spot–6/7 1.50 6.00
QuickBird–2 0.65 2.60
Pleiades–1/2 0.50 2.00

WorldView–1/2 0.46 1.84
GeoEye–1 0.46 1.84
GeoEye–2 0.34 1.36

WorldView–3 0.31 1.24

Considering that in RS, PAN and MS images are acquired simultaneously over the same area,
for each satellite, the information recorded is complementary for each satellite. To make the most
of this complementarity, data fusion techniques provide the formal framework necessary to exploit
the synergy that may exist between the different information sources or sensors, reducing redundant
data and, at the same time, highlighting the most important information. Specifically, the objective of
pansharpening (PS) is to fuse a low-resolution MS image with a high-resolution PAN image, to create
a high-resolution MS image, subject to preserve both the spatial and spectral quality of the source
images to be useful in RS tasks (e.g., feature extraction, segmentation, classification).

Even when an increase in the spatial resolution simplifies problems such as mixing pixels,
other problems emerge due to the greater spatial variability for each spectral class present in the image;
furthermore, the limited number of spectral bands of high and very high spatial resolution images
produces a low separability between land covers [5]. This put a higher demand on the quality of
pansharpened images and, therefore, on the PS technique itself [6].

Many PS algorithms are available today [7–12]; most of them follow two approaches [8,9]:
component substitution (CS) and multi-resolution analysis (MRA). The former includes widely-used
PS algorithms, such as: intensity-hue-saturation (IHS) [13], principal component analysis (PCA) [14],
Grand-Schmidt (GS) [15] and Brovey transform (BT) [16]. Most of these techniques provide superior
visual high-resolution multispectral images, but ignore the need for a high-quality synthesis of spectral
information [9]. The MRA is based on the multi-resolution decomposition of the PAN image, with the
aim of extracting its spatial details, which are injected into the MS image. Most of these approaches use
the discrete wavelet transform (DWT), both in its pyramidal and redundant versions [5]. Even though
these methods increase the spatial resolution of the MS images to the spatial resolution levels of PAN
images, maintaining their spectral characteristics, they tend to accentuate the problem of injecting
false details into the fused images even more [17]. Another strategy of the MRA approach is the use of
the modulation transfer function (MTF) [18]. The novelty of the method relies on the fact that filters
matching the MTFs of the different channels of the imaging instruments are used to extract the spectral
(low pass) and spatial (high pass) information from the merged image. However, Massip et al. [19]
concluded that the differences in sampling rates, pixel size, integration time and spectral sensitivity,
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between the MS and PAN sensors yield a difference in MTF. This difference must be taken into account
when synthesizing MS images at the PAN high-spatial resolution. For a recent and more in-deep
revision of some popular and state-of-the-art fusion methods at different levels, especially at the pixel
level, see [20].

To reduce the problem of false details (artifacts), a PS algorithm, called WATFRAC, using fractal
dimension maps as gain weighting, reified through the wavelet à trous transforms (WAT) method,
was proposed by Lillo-Saavedra et al. [5]. The results showed that the images pansharpened using
WATFRAC, as well as their classifications were of greater quality than images merged through the
standard WAT method. However, the high computational cost of calculating the fractal dimension
maps is a significant limitation when applying this methodology over large images.

Kaplan and Erer [21] recently proposed to decompose the PAN image using an edge-preserving
method, which will decrease the amount of redundant high-frequency injection. The missing
high-frequency information of the MS image is obtained by the decomposition of the PAN image using
a bilateral filter [22]. The bilateral filter is a non-linear technique whose objective is to preserve the
high-contrast edges and remove low-contrast or gradual changes. Kaplan and Erer [21] compared the
results obtained by their algorithm, based on bilateral filtering, with the PS algorithm based on WAT.
The results and conclusions showed that the PS method based on the multi-scale bilateral filter had
better performance. In Hu and Li [23], a multi-sensor image fusion based on the multi-scale directional
bilateral filter was proposed. The methodology combines the characteristic of the preserving edge
of the bilateral filter with the ability to capture directional information from the non-subsampled
directional filter bank, which is used to merge multi-sensor images. Using visible and infrared
images, together with medical images, the authors demonstrated the superiority of their method
compared with conventional methods (DWT, stationary wavelet transform and dual-tree complex
wavelet transform) in terms of visual inspection and objective measures. Although bilateral filters
consider some essential aspects in solving many image processing problems [22] (e.g., invariant
feature construction, object classification, segmentation), their main drawback is not taking the scale
into account (it is not a scale-aware process). This becomes important when the goal is to analyze
landscapes, such as agricultural areas, as the objects in the image contain structures of various scales.
Small structures, usually referred to as details, represent content classified as texture, small objects and
noise, while large-scale information generally encompasses boundaries, slow spatial color transition
and flat regions.

Considering the advantages of a guided filter (GF) demonstrated in He et al. [24], a new PS
algorithm based on GF has recently been proposed in Liu and Liang [25]. The main contribution of
this work is that it can use the PAN and MS images as input and guidance images, respectively, and
the missing spatial information of the MS image can be obtained through the differences between the
PAN and filtered images. Like bilateral filters, this algorithm is not considered an effective scale-aware
filter, preventing the removal of different levels of detail in the input image.

The rolling guidance filter (RGF) [26] is a new framework of the scale-aware filter that can remove
different levels of detail in natural images with the complete control of detail smoothing. The method
is simple to implement, easy to understand, fully extensible to accommodate various data operations
and quick to produce results, which is why it is a good alternative to be used for PS.

The agricultural landscape contains many levels of significant structures and edges [4], as well as
high spatial heterogeneity within the agricultural plot; on the other hand, the plot boundaries are also
relatively stable, while the cropping pattern is spatially highly variable [27]. This situation justifies
the suitability of RGF to be used as a tool for developing a PS algorithm that considers the effective
scale-aware issue, allowing different levels of detail in source images to be removed effectively and at
a low computational cost.

In this work, a new PS methodology using an MRA approach and based on RGF is proposed.
The main contribution of this new methodology is to produce artifact-free high spatial resolution
pansharpened images, improving the MS edges by becoming aware of the scale (scale-aware) in images
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with a predominantly agricultural landscape. The performance of this method was compared with the
WATFRAC, BT, GS, IHS and MTF-GLP (MTF using generalized Laplacian pyramid) [28] algorithms
and evaluated using a set of spectral, spatial and overall quality indices [7,8]. The set of quality indices
was summarized and compared using the Borda count (BC) method [29,30].

2. Background

The proposed PS methodology is based on RGF using an MRA approach. In this sense, a brief PS
based on the MRA approach and RGF background is addressed in this section.

2.1. Pansharpening Based on the Multi-Resolution Approach

For the PS based on the MRA approach, most algorithms use the generalized Laplacian pyramid,
the discrete wavelet transform and the contourlet transform, among others [31]. The basic idea is to
extract the spatial detail information from the PAN image, not present in the low-resolution MS image,
to inject it into the latter. The spatial detail of the PAN is obtained by the difference between the PAN
and its low-pass version [8,25]. A general PS model based on the MRA is formalized in Equation (1):

PSk = M̃Sk + gk × (PAN − PAN′) (1)

where k indicates the k-th band, M̃S corresponds to the MS image interpolated on the PAN scale, PAN′

to the low-pass version of PAN achieved by an iterative decomposition scheme and gk the injection
gain for the k-th band.

The injection gain is a modulation of the spatial details through an element-by-element
multiplication from the PAN to be integrated with the MS image to obtain the pansharpened image.
There is a plethora of injection gain definitions [5,8,11,32,33].

In general, it is possible to define a PAN-sized matrix with all elements equal to one, injecting the
total spatial detail. Other choices are the details being weighted by the ratio between the up-sampled
MS (M̃S) image and that of the low-pass filtered PAN, in order to reproduce the local intensity contrast
of the PAN image in the pansharpened image. However, in this case, there is a unique low-pass filtered
PAN for all bands [8]. Another approximation to define the gk (where k indicates the k-th band) was
proposed by Otazu et al. [34] and developed for the wavelet-based method, called the additive wavelet
luminance proportional (AWLP), formalized in Equation (2).

gk =
M̃Sk

1
#Bands ∑#Bands

i=1 M̃Si
(2)

where #Bands denotes the number of bands in the MS image. In the work by Lillo-Saavedra et al. [5],
a gk, based on a fractal dimension map approach, was proposed. The aim of this proposal was to
reduce the artifacts present in the pansharpened images. However, the high computational cost to
calculate the fractal dimension maps is a drawback when used in large images. In order to reduce this
computational cost, it is possible to use an approximation based on the entropy map (S) of the average
of MSk and PANK, fulfilling the same purpose [35] (Equation (3)).

gk =
S(MSk) + S(PANk)

2
(3)

where each element of the gk matrix contains the indexed entropy value (0–1), calculated in a
9×9 neighborhood around the corresponding pixel in the input image and PANk, where PANk is
the histogram-matched PAN respect to MSk.
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2.2. Rolling Guidance Filter

A new framework, called RGF, was proposed in Zhang et al. [26] to filter images based on a rolling
guidance. Compared to other edge preserving filters, RGF is implemented iteratively, which provides
a fast convergence property. It is simple and fast, as well as easy to understand. RGF can preserve
large-scale structures automatically.

The structure scale is defined as the smallest Gaussian standard deviation (σs), such that when
this σs is applied to an image, corresponding structures disappear. Equations (4) and (5) formalize
this process:

Lσs = gσs ⊗ I (4)

gσs =
1√

2πσs
e−

x2+y2
2σs (5)

where Lσs is the resulting image, without the corresponding structures at scale σs, I represents the
input image, gσs the Gaussian filter (kernel) and⊗ denotes the convolution operator. Thus, considering
σs as the scale parameter, when the structure in the image is smaller than

√
σs, it will be completely

removed in Lσs .
Although the Gaussian filter sizes allow the scale of the structure to be determined, it is not

possible to use scale-aware filtering directly because the Gaussian filter blurs the entire edge. In this
sense, Zhang et al. [26] proposed an RGF, made up of two steps: (i) small structure removal and
(ii) edge recovery.

To remove small structures, a weighted average Gaussian filter approach was used by the authors
(Equations (6) and (7)).

G(p) =
1

Kp
∑

q∈N(p)
e
− ‖p−q‖2

2σ2
s I(q) (6)

Kp = ∑
q∈N(p)

e
− ‖p−q‖2

2σ2
s (7)

where Kp is a normalization factor and N(p) is the set of neighboring pixels of p.
An iterative process is necessary to recover the edges. This process is mathematically expressed in

Equation (8), in which an image J is updated iteratively, and Jt+1 is the result of t-th iteration. Initially, J1

is the output of Equation (6), and the next iteration is obtained through joint bilateral filtering.

Jt+1(p) =
1

Kp
∑

q∈N(p)
(Gσs(‖p− q‖)− Gσr (‖Jt(p)− Jt(q)‖))I(q) (8)

Kp = ∑
q∈N(p)

Gσs(‖p− q‖)− Gσr (‖Jt(p)− Jt(q)‖) (9)

Gσs(‖p− q‖) = e
− ‖p−q‖2

2σ2
s (10)

Gσr (‖Jt(p)− Jt(q)‖) = e
− ‖Jt(p)−Jt(q)‖2

2σ2
r (11)

In Equation (9), Gσs (Equation (10)) and Gσr (Equation (11)) are the spatial and range
(intensity values) kernels for weight control, respectively. Gσs reduces the influence of distant pixels,
and Gσr reduces the effect of the pixels q when the intensity value differs from the actual pixel p [21].
An application of RGF on an MS image is shown in Figure 1. Figure 1a shows the original MS image.
The result of applying RGF (Figure 1b) is a texture smoothing, but it allows the contour restoration of
the large-scale image information. The edges of the gray scale version of the images, obtained using
the Canny filter, are shown in Figure 1c,d.
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(a) (b)

(c) (d)

Figure 1. Comparison between original and rolling guidance filter (RGF) filtered images and their
edges. (a) Original multispectral (MS) image; (b) MS filtered image using RGF (t = 4, σs = 3 and
σr = 0.2); (c) MS edges obtained from their gray scale version using the Canny filter; and (d) Edges of
the filtered MS using RGF, obtained from the gray scale version using the Canny filter.

3. Proposed Pansharpening Method Based on the Rolling Guidance Filter

The proposed PS methodology is based on the application of RGF using the MRA approach.
It is called the pansharpening rolling guidance filter method (PSRGF); and has four main steps:
(i) pre-processing of the images; (ii) small structures are removed from the MS image (low frequency);
(iii) edge recovery from the PAN image (high frequency); and (iv) low and high frequency data
integration to create a high-resolution multispectral image (pansharpened image). The workflow of
the methodology proposed in this work is illustrated in Figure 2.
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Figure 2. Workflow of the pansharpening (PS) proposed method based on the rolling guidance filter
(PSRGF). MSk and PANk are the k-th band of the MS and histogram-matched PAN images and PANt+1

the last update of the RGF iteration process.

(i) Pre-processing of the images: The MS and PAN (source images) were perfectly co-registered
and the MS image resized to the PAN image size. In particular, in this work, the Lanczos3
algorithm [36] was used, obtaining a M̃S, that corresponds to the MS image interpolated at the
PAN scale. Moreover, a histogram-matched PAN image was produced using Equation (12):

PANk =
σMSk

σPAN
(PAN − µPAN) + µMSk (12)

where µ and σ denote the mean and standard deviation of an image, respectively.
(ii) Small structure removal: To completely remove structures with a scale of less than σs from the k-th

band of the MS image, a weighted average Gaussian filter approach, formalized in Equation (13),
was used.

M̃S
′
k(p) =

1

KM̃Sk
p

∑
q∈N(p)

e
− ‖p−q‖2

2σ2
s M̃Sk(q) (13)

where M̃S
′
k(p) is the low frequency content for the k-th band of the MS image and corresponds to

the first iteration of the bilateral filter (t = 1), N(p) is the set of neighboring pixels of p and KM̃Sk
p

is a normalization of M̃S
′
k(p) and defined in Equation (14):

KM̃Sk
p = ∑

q∈N(p)
e
− ‖p−q‖2

2σ2
s (14)

(iii) PAN edge recovery: Equation (15) was applied to recover the edges of the PANk image, using the
result of the RGF process at the t-th iteration:

PANt+1
k (p) =

1

KPANk
p

∑
q∈N(p)

(PANσs
k (‖p− q‖)− PANσr

k (‖PANt
k(p)− PANt

k(q)‖))PANk(q) (15)
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To obtain just the high frequency (edges) from the PANk image, which will be injected into
the MS image, the difference between the PANk and PANt+1

k image was calculated, using the
Equation (16):

∆PANk(p) = PANk(p)− PANt+1
k (p) (16)

(iv) Pansharpening image: The PS image was obtained using the MRA approach, formalized in
Equation (17):

PSk(p) = M̃S
′
k(p) + gk(p)× ∆PANk(p) (17)

To provide an objective and consistent evaluation of all algorithms involved in this work, a set of
seven different spatial, spectral and overall quality indices was used. The name, equation, ideal
value and the authors of each of the indices are shown in Table 2. Considering the diverse nature of
the indices used to determine the quality of the pansharpened images, a single quality ranking has
been defined based on the consensus of the values of the seven indices in order to facilitate its later
analyses. In this regard, the Borda count (BC) [29] method was selected for its simplicity and popularity.
The BC count is a single-winner choice method in which voters rank options or candidates in order
of preference and is often described as a consensus-based ranking system rather than a majority one.
For a comprehensive description of BC, please refer to Zhang et al. [30].

Table 2. Quality indices for the evaluation pansharpened images. k denotes the k-th band, σx,y the
co-variance, σ2

x the variance, µx the mean value, z and v are hypercomplex representations of the image.

Index Equation Ideal Value Reference

Qk
σMSk ,PSk
σMSk σPSk

× 2µMSk×µPSk
(µMSk)2+(µPSk)2 ×

2σMSk σPSk
σ2

MSk
+σ2

PSk

1 [37]

SAMk cos−1 〈MSk ,PSk〉
‖MSk‖‖PSk‖

0◦ [38]

ERGAS 100 h
l

√
1
N ∑#Bands

i=1 ( RMSE(MSi ,PSi)2

(MSi)2 ) 0 [39]

SERGAS 100 h
l

√
1
N ∑#Bands

i=1 ( RMSE(PANi ,PSi)
2

(PANi)2)
0 [11]

CC 1
#Bands ∑#Bands

i=1 corri(MSi, PSi) 1 [39]

Q2n σz,v
σzσv
× 2z×v

(z2+v2 )× 2σzσv
σ2

z +σ2
v

1 [40]

SSIMk
(2µMSk µPANk+C1)(2σMAk PSk+C2)

(µ2
MSk

+µ2
PANk

+C1)(σ2
MSk

+σ2
PANk

+C2)
1 [41]

4. Results and Discussion

Three versions of the PS method based on the RGF were defined from Equation (17). The difference
between them lies in the definition of the gain gk. The first one integrates 100% of the edge information
(FG) obtained from the application of the RGF process to PAN. The second and third methods integrate
weighted information, using the luminance proportional (LP) and the average value of the entropy
(E) of the MS and PAN, respectively, as gk. The names and gain injection equations of the proposed
methods are shown in Table 3. The proposed methods were compared with five widely-used algorithms
in the literature: WATFRAC [5], BT [16], IHS [13], GS [15] and MTF–GLP [28].
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Table 3. Injection gain (gk) through an element-by-element multiplication of the spatial details from
the PAN to be integrated with the MS image to obtain the PS image and the three names of the
corresponding PS algorithms.

Injection Gain (gk) gk Equation PS Method

Full Gain (FG) 1 PSRGFFG

Luminance Proportional (LP) M̃Sk
1

#Bands ∑#Bands
i=1 M̃Si

PSRGFLP

Entropy (E) S(MSk)+S(PANk)
2 PSRGFE

4.1. Testing Dataset

For the application and evaluation of the proposed algorithms and their later comparison with
the most used methods, three images were used in which there are predominantly highly fragmented
agricultural-type covers. The first image corresponds to a scene captured by the QuickBird–2 (QB)
sensor on 16 January 2012 over the Los Andes city, in the region of Valparaiso, Chile (32◦51′S:70◦34′W),
identified in this work as QB Agricultural. The other two images correspond to a scene captured by
the Worldview–2 (WV) sensor on 10 January 2012 over the city of Peumo, in the region of O’Higgins,
Chile; the first of them identified in this work as WV Agricultural 1 (34◦19′S:71◦17′W) and the second
one as WV Agricultural 2 (34◦23′S:71◦13′W). The three images use the EPSG:32719–WGS 84/UTM
Zone 19S coordinate reference system. In Figure 3, it is possible to observe their geographical location.
In Figure 3a–c, a predominance of highly-fragmented agricultural-type covers can be seen, with
different types of crops and orchards.

4.2. Quality Assessment

The three test images were pansharpened using the methodology proposed in Section 3 and
considering the gk defined in Table 3 (PSRGFFG, PSRGFLP and PSRGFE).

There are three main parameters in the methodology proposed (PSRGF), those determined by
the RGF process, which are: the scale of the structures to be eliminated (σs), the level of influence of
the neighboring pixels in respect to the pixel analyzed (σr) and the number of iterations (t). Of the
tests carried out in this work and the three parameters, σs is the one with the greatest influence on the
quality of the pansharpened images.

With the objective of analyzing and visualizing the influence of this parameter on the
quality of the pansharpened images, experiments were carried out on a wide range of σs values
(σs = [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30, 40, 50, 60]), obtaining a total of 45 pansharpened images for each
of the images tested (QB Agricultural, WV Agricultural 1, WV Agricultural 2). The value of σr was
determined using Equation (18) [26]:

σr =
max!(PAN)−min!(PAN)

max!(PAN)
(18)

where max! and min! represent the maximum and minimum value of an image. Furthermore, in this
work, a number of iterations t = 4 were used.

Considering the large number of results obtained from the three test images, the three PS methods
proposed, the fifteen values of σs evaluated and the seven quality indices used, it is difficult to show
the totality of the results in this work. Therefore, it was decided to show only the behavior of two
widely-used indices (Q2n and ERGAS), which clearly show how the quality of pansharpened images
vary with the variation of σs.

In Figures 4 and 5, it is possible to see the behavior of the Q2n and ERGAS indices, in view
of the σs variations, for the three test images. For both indices, a loss is observed in the quality
of the pansharpened images as the value of σs increases. This result agrees with that reported in
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Zhang et al. [26], given that the greatest values of σs eliminate a large number of structures, both from
the MS and PAN images, thus deteriorating the spatial quality of the pansharpened images.

On evaluating the behavior of the Q2n index, the best result is obtained for the PSRGFE method
when the values of σs ≤ 10 are considered for the QB Agricultural image, σs ≤ 6 for the WV
Agricultural 1 image and σs ≤ 4 for the WV Agricultural 2 image. For the case of the ERGAS index,
the best behavior was also obtained for the PSRGFE image; however, the values of σs differed from
the previous cases; thus, for the QB Agricultural image, all of the values of σs used delivered the
best evaluation of ERGAS by the PSRGFE method. Finally, both for the WV Agricultural 1 and the
WV Agricultural 2 images, the best evaluation of ERGAS for the PSRGFE method were obtained,
considering values of σs ≤ 10.

(a)

(b)

(c)

W W W

‘W

‘W ‘W ‘W

70º34’W 70º34’W 70º33’W

71º18’W 71º17’W 71º17’W

71º13’W 71º13’W 71º12’W 71º12’W

Figure 3. Source images: (a) QuickBird–2 (QB) Agricultural, located at 32◦51′S:70◦34′W; (b) Worldview–2
(WV) Agricultural 1, located at 34◦19′S:71◦17′W; and (c) WV Agricultural 2, located at 34◦23′S:71◦13′W.
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Figure 4. Q2n index behavior: (a) PSRGFFG; (b) PSRGFLP and (c) PSRGFE methods for different
σs values.
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Figure 5. ERGAS index behavior: (a) PSRGFFG; (b) PSRGFLP and (c) PSRGFE methods for different
σs values.

With the objective of determining the value of σs with which the best pansharpened images for
each one of the three methods proposed are obtained, an overall and objective evaluation was carried
out on the values obtained for the seven quality indices. For this, a consensus voting process was used,
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using the BC methodology. In Figure 6a–c, it is possible to see that for the three proposed methods,
the value of σs = 1 is the one that receives the greatest vote, and therefore, it is the one that provides
pansharpened images of the greatest quality.
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Figure 6. Comparison of the quality indexes set of pansharpened images obtained by: (a) PSRGFFG;
(b) PSRGFLP and (c) PSRGFE for different values of σs, using Borda count (BC).
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A comparative evaluation was carried out on the quality of the pansharpened images obtained
using the proposed methods, as well as the PS methods selected in this study (WATFRAC, BT, GS, IHS,
MTF–GLP, PSRGFFG(σs = 1), PSRGFLP(σs = 1) and PSRGFE(σs = 1)). Just as in for the evaluation of
the best value of σs, a consensus voting process was carried out, using the BC methodology in which
the seven quality indices used for the evaluation were considered. The result of this evaluation is
summarized in Figure 7, in which it can be seen that for the three test images used, the greatest votes
were obtained for the PSRGFFG, PSRGFLP and PSRGFE methods, having used a value of σs = 1 in
all three cases. Of the three methods, PSRGFE was that which obtained the highest vote for the three
test images.
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Figure 7. Comparison of the quality indexes set of pansharpened images obtained by WATFRAC,
Brovey transform (BT), Grand–Schmidt (GS), intensity-hue-saturation (IHS), modulation transfer
function (MTF–GLP), PSRGFFG(σs = 1), PSRGFLP(σs = 1) and PSRGFE(σs = 1), using BC.

4.3. Visual Assessment of the Pansharpened Images

As well as carrying out a quantitative evaluation of the pansharpened images, a visual analysis of
the QB Agricultural test image (Figure 8a) was carried out. With the objective of facilitating the visual
analyses, the area of analysis was reduced to a particular area represented in Figure 8a (yellow box).
Furthermore, BC was used with the objective of ordering the pansharpened images through the
different methods, in agreement with their quality. In this case, only the PSRGFE(σs = 1) method was
included, as it is the one that provides the best quality from among the proposed methods. The order
according to the consensus vote obtained is shown in Figure 8b. Considering this order, the area
of analysis for the QB Agricultural MS and PAN is shown in Figure 9a, b, respectively. The area
of analysis for the pansharpened images using the PSRGFE(σs = 1), WATFRAC, BT, GS, IHS and
MTF–GLP methods is shown in Figure 9c–h, respectively.
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Figure 8. (a) QB Agricultural false color composition (NIR-red-green), and the specific analysis site
(yellow box); (b) ranking of the methods, using BC, sorted by votes.

The BT, GS, IHS y MTF–GLP methods (Figure 9e–h) inject artifacts both within the agricultural
plot and at the edges. The latter is evident on the vertical edges of the plots, where as a result of
the shadows brought about by the position of the sun at the time of taking the image (E–W), false
edges on the road appear. These false edges come from the shadow registered in the PAN image,
which are injected, without adapting the scale into the pansharpened image. For the case of the image
obtained by the WATFRAC method, which was proposed as a method to reduce the artifacts in the
pansharpened images [5], these false edges do not appear; however, there is a very drastic reduction in
the variability of the pansharpened image, losing spatial resolution.

Finally, the result obtained with the PSRGFE(σs = 1) method (Figure 9c) improves the definition
of the boundaries of the agricultural plots, without injecting a high variability within the plot and
avoiding the injection of false edges like that revealed in Figure 9e–h. The capacity of the proposed
method for eliminating artifacts lies in the filtering (RGF), which allows a complete control of the
smoothing procedure (scale-aware) by means of the σs parameter, which can preserve large-scale
structures from the MS image and the small structure removal and edge recovery from the PAN image.

(a) (b)

Figure 9. Cont.
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(c) (d)

(e) (f)

(g) (h)

Figure 9. Specific analysis site of QB Agricultural. (a) MS image; (b) PAN image; (c) PSRGFE

pansharpened image; (d) WATFRAC pansharpened image; (e) BT pansharpened image; (f) GS
pansharpened image; (g) IHS pansharpened image; (h) MTF–GLP pansharpened image.

4.4. Discussion

The results obtained demonstrate the good performance of the PSRGF method over the
fragmented agricultural landscape. The BC results (Figure 6) suggest that regardless of how fragmented
the analyzed landscape is, the performance of PSRGF is similar (i.e., the same number of votes).
This is in accordance with the results reported by Zhang et al. [26] on the capability of the RGF to
remove different levels of detail in natural images with the complete control of detail smoothing.
The main advantage of the PSRGF is based on this capability, allowing artifact-free high spatial
resolution pansharpened images to be produced, improving the MS edges in images with a fragmented
agricultural landscape.
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The main drawback of the proposed PS methodology based on RGF is the lack of an objective
criterion for selecting a suitable value of σs depending on the user requirements. Specific studies are
necessary to resolve this issue. In particular, the fitness function definition that meets the eligibility
criterion set out by the users is the most challenging task.

5. Conclusions

This work has demonstrated the potential of the RGF filtering method to develop a PS strategy
for specific applications in highly-fragmented agricultural landscapes (PSRGF); in particular, three PS
methods were proposed (PSRGFFG, PSRGFLP and PSRGFE). These methods were compared with
five PS methods, widely used in the literature (WATFRAC, BT, GS, IHS, MTF–GLP), by means of the
evaluation of seven quality indices, which were summarized through a weighted voting strategy (BC).
The best result was obtained using the proposed PSRGFE (σs = 1) algorithm.

Furthermore, a visual evaluation was carried out on one of the three images tested. The main
result of this evaluation was that the methods based on PSRGF allow the complete control of the spatial
information of the source images that will be fused, thus avoiding the injection of artifacts into the
pansharpened images.

The characteristics of the PSRGF method allow pansharpened images to be generated with a sharp
definition of the boundaries of the agricultural plots without injecting artifacts or false details, enabling
accurate agricultural analysis tasks to be performed.
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