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Abstract: Detailed and precise information of land-use and land-cover (LULC) in rural area is
essential for land-use planning, environment and energy management. The confusion in mapping
residential and industrial areas brings problems in energy management, environmental management
and sustainable land use development. However, they remain ambiguous in the former rural LULC
mapping, and this insufficient supervision leads to inefficient land exploitation and a great waste of
land resources. Hence, the extent and area of residential and industrial cover need to be revealed
urgently. However, spectral and textural information is not sufficient for classification heterogeneity
due to the similarity between different LULC types. Meanwhile, the contextual information about
the relationship between a LULC feature and its surroundings still has potential in classification
application. This paper attempts to discriminate settlement and industry area using landscape
metrics. A feasible classification scheme integrating landscape metrics, chessboard segmentation
and object-based image analysis (OBIA) is proposed. First LULC map is generated from GeoEye-1
image, which delineated distribution of different land-cover materials using traditional OBIA method
with spectrum and texture information. Then, a chessboard segmentation of the whole LULC
map is conducted to create landscape units in a uniform spatial area. Landscape characteristics
in each square of chessboard are adopted in the classification algorithm subsequently. To analyze
landscape unit scale effect, a variety of chessboard scales are tested, with overall accuracy ranging
from 75% to 88%, and Kappa coefficient from 0.51 to 0.76. Optimal chessboard scale is obtained
through accuracy assessment comparison. This classification scheme is then compared to two other
approaches: a top-down hierarchical classification network using only spectral, textural and shape
properties, and lacunarity based hierarchical classification. The distinction approach proposed is
overwhelming by achieving the highest value in overall accuracy, Kappa coefficient and McNemar
test. The results show that landscape properties from chessboard segment squares could provide
valuable information in classification.

Keywords: land-use and land-cover (LULC); object-based image analysis (OBIA); landscape metrics;
support vector machine (SVM); very high resolution (VHR); rural settlement

1. Introduction

Remote sensing data have provided valuable and abundant sources of information for terrestrial
land-use and land-cover (LULC) interpretation and change detection for decades [1,2]. Since the
application of a series of very high resolution (VHR) Imagery range from IKONOS, QuickBird,
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WorldView and Geoeye, these metric or sub-metric resolution sensor data have become the main data
source in LULC information extraction [3,4], change monitoring [5,6], land-use planning [7] and so
on. Most of these studies focus on urban are, suburban area or the urban–rural interface, while few of
them pay attention to rural area or agricultural land [8].

Detailed information regarding the land-use type, spatial area and distribution of buildings
within rural regions is in urgent need for effective land resource management, energy supply
management, environmental management and policy making. Residential and industrial building type
remain ambiguous in current rural LULC maps. This circumstance impedes the process of precisely
mapping rural areas for sustainable land-use development. Insufficient supervision on settlement and
industry land leads to a tremendous waste of land resources and inefficient land exploitation within
agricultural land.

Compared to urban land-cover types, rural land-cover categories have specific characteristics.
Rural regions contain a larger number of vegetation cover or non-built cover than cities. In rural land,
artificial surfaces such as rooftops, settlements, agricultural facilities, roads, etc., are sparse and have
smaller occupied area.

Due to the fine spatial resolution, it becomes possible to identify the minimum feature such
as a single rooftop in remotely sensed VHR imagery. Thus, VHR images could provide timely and
tangible information for automatically subdividing rural settlement and industrial land-use types.
Object-based image analysis (OBIA) fills the gap between pixels and real-world land cover objects [9],
which is similar to human perception [10], and was proven to have produced a significantly higher
accuracy than traditional pixel-based classification approaches employed in VHR images.

The processing units in OBIA method are not pixels but objects after segmentation, therefore
a number of object features characterizing the spatial and textural information can be exploited to facilitate
mapping accuracy [9]. Previous studies have demonstrated that textural features [11,12], gray-level
co-occurrence matrix (GLCM) [13], local indicators of spatial association (LISA) [14] information and
local spatial statistics [11] can be considered as features in OBIA classification procedures.

Furthermore, spatial and textural properties extracted from the image objects in object-based
image analysis was proven to have made valuable contributions in discrimination or distinction
heterogeneity among land-use categories that are difficult to distinguish, e.g., different land-use
types with similar land-cover, or same land-use types with distinct spatial distribution pattern.
For settlement or residential building discrimination purpose, Niebergall [15] presented a hierarchical
network embedding GLCM to distinguish between different settlement structures as well as land-cover
classes. Owen’s research [3] demonstrates that land-cover surface texture and geomorphic properties
are significantly different between squatter settlements in suburban areas and well-established
settlements in urban areas. Some researchers invented new index for distinguishing building types,
particularly in rural areas. Kuffer [16] used unplanned settlement index (USI), which integrated
morphological features to distinguish between planned and unplanned areas from VHR data.
Vegetation sample-based vegetation index, chessboard segmentation and average contrast of objects
were used for extraction of plantation [17].

This spectral and textural information mentioned above was derived from the object itself,
and the contextual information about the relationship between the object and its surroundings or
circumstances still has potential in classification application. Han [14,18] proposed a multi-scale
approach incorporating textural and contextual information in hierarchical network of image objects
to analyze of forest ecosystems of a complex nature.

Moreover, by using contextual information, some researchers used spatial statistics methods to
improve discrimination techniques, such as local indicators of spatial association (LISA) measures,
effective mesh size [19] and lacunarity. Lacunarity was used to identify informal settlements from
a high resolution binary imagery [20]. Ma [21] successfully discriminated residential and industrial
buildings by integrating lacunarity algorithm, object-based segmentation and a decision tree classifier.
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Different land-use behaviors will form different land-use units, which have different landscape
pattern characteristics [22]. In addition to spatial statistical methods for describing the landscape
pattern, there are other means such as landscape metrics. Landscape metrics were designed to
quantify the pattern of the landscape within the designated landscape spatial unit [23]. In other
words, landscape metrics contain the information of relationship between different land-use features.
Therefore, landscape metrics have the potential to be integrated into the object-based classification.
Facilitated by recent advances in computer processing and geographic information (GIS) technologies,
a variety of landscape metrics have been developed for calculate landscape pattern [24], including
metrics describe area, edge, shape, aggregation and diversity in path level, class level and landscape
level [23]. Although these metrics were not designed for the classification phase of image processing,
some studies have suggested and succeeded in using landscape metrics for image classification [19,25].

This paper applied landscape metrics to discriminate settlement and industry landscape
units. After land-cover map is derived from VHR image, a chessboard segmentation was used
to generate uniform landscape spatial units. Landscape metrics that characterize area proportion,
shape, edge, aggregation and diversity properties were collected and adopted in classification
algorithm. Three different classification schemes are compared: the method proposed, hierarchical
classification using only spectral and textural properties, and hierarchical classification integrating
lacunarity algorithm.

2. Study Area and Data

2.1. Study Area

In this study, we selected a typical rural region in the Yangtze River Delta. The study site includes
three villages located in Chongfu Town and Shimeng Town, Tongxiang County, Zhejiang Province
(120◦24′45′ ′E, 30◦34′00′ ′W, Figure 1). The region has a subtropical climate with a clear monsoonal
character and four distinct seasons. The annual average temperature and total annual precipitation
are approximately 16.5 ◦C and 1246.7 mm, respectively [26]. Due to the excellent climate and soil
conditions, various crops are suitable to grow in study area. This place was the traditional main
grain producing area of China for millennia. Nevertheless, massive scale industrialization and
rapid development have taken place since the 1990s. This study site also includes Economic and
Technological Development Zones (ETDZs) of Shimeng Town, which have over 60 companies and
beyond 5000 employees [26]. Therefore, this area represents a typical landscape of township economic
prosperity and development in a rural region of Eastern China.
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This area includes natural or semi-natural land cover materials (e.g., water, trees/shrubs, bare
soil, and crops) and various anthropogenic material features (e.g., asphalt, concrete roads/parking lots
and different roof top materials, Figure 2). A category schema was developed that detailed land-cover
heterogeneity throughout the rural area. The land-cover classes identified were: asphalt, concrete
(including rooftops, grain-sunning ground, roads and parking lots), clay rooftops (including dark or
red color rooftops both from settlement and industry buildings), metal rooftops (mainly blue rooftops
of warehouse and factory), farmland, trees and shrubs, bare soil, and water.
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Figure 2. Example of artificial cover types: (a) Clay rooftops and grain-sunning ground of settlement;
(b) Clay rooftops of industry; (c) Metal rooftops of factory; (d) Metal rooftops of settlement; and
(e) Concrete rooftops and roads in factory.

2.2. Data and Preprocessing

This study used a GeoEye-1 image acquired on 12 May 2010 with multispectral bands (MSI) in
spatial resolution of 2 m and a panchromatic band (PAN) in high spatial resolution of 0.5 m.

The image was radiometric corrected by the data provider (GeoEye Imagery Collection Systems Inc.,
Dulles, VA, USA), and was orthorectified into the Universal Transverse Mercator (UTM) projection
system. For the cloud-free atmospheric condition in whole image, there was no need for
atmospheric correction in preprocessing step. Gram–Schmidt pan-sharpening method (ENVI, ITT
Visual Information Systems, Version 5.1) was used to fuse the multispectral and panchromatic
bands. To cover the study area, a rectangle subset of the image was used in segmentation and
classification steps, subsequently. Due to its fine spatial resolution, the image data are still sizeable
(5500 rows × 6500 columns). Except the original bands, Normalized Difference Vegetation Index
(NDVI) was used in the analysis.

In addition to the above raster data, ancillary data were collected in this study. Land-use maps
from the National Detailed Land-use Inventory in 2011 were employed in image processing step
and accuracy assessment. These land-use maps were derived by visual interpretation on sub-metric
resolution aerial photograph and been corrected by ground survey.

3. Methodology

The classification approach we proposed is twofold. Land-cover information was derived in
Stage 1, and settlements and industry area was distinguished in Stage 2. In order to verify whether the
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proposed method can effectively improve the classification accuracy, this study also used other two
classification methods based on the result from Stage 1:

1 Top-down hierarchical classification network using only spectral, textural and shape properties; and
2 Hierarchical classification integrating lacunarity properties.

The whole network of classification is illustrated in Figure 3. Classification Stage 1 and Stage 2 are
described in Sections 3.1 and 3.2, respectively. Two comparison methods are outlined in Sections 3.3
and 3.4, followed by accuracy assessment in Section 3.5.
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3.1. Stage 1: Mapping Land-Use and Land-Cover (LULC) Using OBIA

In order to ensure the simplicity of the entire distinction process, a single-scale non-hierarchical
classification approach was adopted in eCognition® (v9.0, Trimble Germany GmbH, Munich, Germany)
in this stage. First, a segmentation algorithm was operated and a set of objects (segments) was
generated, which was semantic meaningful. Many papers used multiresolution segmentation
embedded in eCognition software package [27–29]. Multiresolution segmentation is also known
as Fractal Net Evolution Approach (FNEA), which is based on region growing methods and based on
some certain homogeneity criteria: scale parameter, shape and compactness [30,31].

Usually, optimum segmentation parameters were obtained by subjective manual trial-and-error
test. To make our framework operational and portable, an objective method named Estimation of Scale
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Parameter, i.e., ESP2 tool [32], was used to identify the statistically most suitable scale parameter for
segmentation algorithm. ESP tool iteratively generates image-objects at multiple scale levels in fixed
step size and calculates the local variance (LV) in each scale. The rates of change of LV (ROC-LV) were
plotted against the corresponding scale in Figure 4. Based on the plot diagram, the peaks of the curve
indicated appropriate scale parameter for segmentation [33–35]. The scale of 110 appeared promising
as the first break in ROC-LV curve after continuous and abrupt decay. Dotted vertical lines indicated
optimal scale parameters in Figure 4. As a result, we set segmentation scale as 110.
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A visual assessment showed that the ESP2 tool identified the suitable scale parameter accurately
to delineate meaningful objects, especially rooftops and concrete materials.

The shape and color parameters were weighted equally as 0.5, whereas the compactness was
prioritized instead of smoothness and set as 0.8 because we focus on extracting buildings, especially
the rooftops of settlements and industrial area which are more compact spatially.

After creating these objects, support vector machine (SVM) classifier was employed to identify the
LULC types [36,37]. An automatic methodology called SEparability and THresholds (SEaTH) [38] tool
was adopted in feature selection step to seek significant features of optimal class separation [15,39].
SEaTH calculates the separability in Jeffries–Matusita distance and the corresponding thresholds of
object classes for any number of given features on training examples. Eventually, mean values of
brightness and all image bands, Normalized Difference Vegetation Index (NDVI), standard deviation,
and GLCM (homogeneity, contrast, dissimilarity, entropy, angular second moment, mean, standard
deviation and correlation) are selected as optimal feature subset and used in SVM classifier. All these
features are normalized before classification applied. An SVM radial basis function (RBF) kernel was
applied using the optimal parameters obtained from 5-fold cross-validation in LIBSVM [40].

One thing to note here is that asphalt and water were not treated as automatic classification
categories. Instead, we used land-use map from the National Detailed Land-Use Inventory to assign
these types directly. For asphalt category, this material is not universal, and there are only two
lanes throughout the study area. Thus, it represents only 1% of the total number of objects after
segmentation. Meanwhile, water cover surface is often covered by tree canopy, or aquatic plant,
resulting in classification confusion with other land-cover types. Similar to asphalt, water surface only
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contains the linear feature of canal and few ponds in the study site. It is not only time-consuming,
but could also cause harmful effect on other terrain categories’ accuracy, for example classify them as
asphalt and water cover.

3.2. Stage 2: Landscape Metrics and Chessboard Segmentation

After the Stage 1, the LULC map is derived from Geoeye imagery. However, the area of residential
and industrial cover is still unrevealed. In Stage 2, contextual information from inside different
land-use units was applied to discriminate settlement and industrial area.

The composition, structure and pattern characteristic of different land-cover objects within
a land-use unit, compose valuable information reflecting land use behavior. This information can be
described and quantified by landscape metrics.

Defining land-use units is crucial for further landscape patterns analysis. Therefore, a chessboard
segmentation was applied to the LULC map derived in Stage 1 to create land-use units, i.e., chessboard
square, for further calculating landscape metrics. Chessboard segmentation is a simple segmentation
algorithm. It cuts the image into equal square objects of a given size. Block squares (or fishnet squares,
or chessboard squares) are commonly used to describe the landscape characteristics of the urban
growth [41] and agricultural landscape patterns [42]. Chessboard segmentation can keep the spatial
units in a uniform size. In this form, landscape features become comparable among spatial units, i.e.,
separable or categorizable. It is obvious that chessboard segmentation is a scale-dependent approach.
In this paper, we tested different chessboard scales ranging from 40 m to 100 m, with 20 m step-size.

Landscape metrics that characterize area, shape, edge, aggregation and diversity properties were
collected as feature space for classification. Percentage of Landscape (PLAND) of each LULC types,
Number of Patches (NP), Total Edge (TE), Landscape Shape Index (LSI) and Shannon’s Diversity Index
(SHDI) were calculated for each unit and used as features in SVM classifier (Table 1). The RBF kernel
was applied again and still using the optimal parameters. Those chessboard squares were classified
into three categories: settlement unit, industry unit and other unit. Twenty classification examples for
each category are manually selected. Eventually, artificial land-cover types that intersect in settlement
unit or industry unit were reclassified into settlement or industry area respectively.

3.3. Top-Down Hierarchical Classification

In order to compare the accuracy of classification, this study also used two other methods to
distinguish between these two built-up types. Based on the land-cover map derived from Stage 1,
a top-down approach was applied under the results of the first level of classification. Concrete, clay
rooftops and metal rooftops were separated into settlement and industry subclasses. Three artificial
land-cover types were subdivided into six categories, e.g., settlement clay rooftops and industry clay
rooftops. It is noteworthy that there was no new segmentation process in this classification stage, using
only the segments generated from Stage 1. Twenty classification examples were equally selected and
then the SVM was used to further distinguish settlements and industrial area. More features were
added into the classifier. Rooftops and harden ground material in settlements are smaller in objects’
geometry, and also are different in shape. Therefore, geometry metrics containing area, length, width,
length/width, asymmetry, border index, compactness, density, roundness, shape index of extend and
shape attributes were add into features for classification.
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Table 1. Description of object features selected in classification network.

Classification Stage Object Features Description

Mapping land-use and
land-cover in Stage 1

Mean brightness
Mean layer 1 to 4 Mean values of brightness and all image bands

Stdev layer 1 to 4 Standard deviation for each object in all bands

NDVI Mean values for each object in Normalized Difference Vegetation Index

GLCM_homogeneity, GLCM_contrast, GLCM_dissimilarity,
GLCM_entropy, GLCM_Ang.2nd moment, GLCM_mean,
GLCM_standard deviation, GLCM_correlation

Eight grey-level co-occurrence matrix (GLCM) texture measures
calculated for each object, from each image layer values

Top-down hierarchical
classification

Except object features in Stage 1, add: Area, length, width,
length/width, asymmetry, border index, compactness, density,
roundness, shape index

Extent and shape attributes of each object

Lacunarity based
hierarchical classification

Except object features in Stage 1, add lacunarity images
window size: 35
3 × 3, 5 × 5, 7 × 7, 9 × 9

Lacunarity analyze result from binary image with moving-window size
of 35 pixel, and gliding-box size of 3 × 3, 5 × 5, 7 × 7, 9 × 9

Landscape metrics and
chessboard segmentation method

PLAND_asphalt, PLAND_concrete, PLAND_farmland,
PLAND_clay rooftops, PLAND_metal rooftops, PLAND_trees
and shrubs, PLAND_bare soil, PLAND_water, NP, TE, LSI, SHDI

Percentage of Landscape (PLAND) of each LULC type in each square
and Number of Patches (NP), Total Edge (TE), Landscape Shape Index
(LSI) and Shannon’s Diversity Index (SHDI) in landscape metrics
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3.4. Lacunarity Based Hierarchical Classification

In addition to the landscape metrics, there are spatial statistics methods to analyze landscape
spatial pattern, e.g., the lacunarity. Lacunarity is a measure of “gappiness” or “hole-iness” of
a geometric structure and has been used to describe the distribution of the gap sizes in a fractal
sequence [43]. Lacunarity algorithm was demonstrated in discriminating land-use types or building
types in some urban area [20,21]. In this paper, a lacunarity properties based hierarchical classification
was compared with the other two methods. Lacunarity analysis can be based both on binary and
grayscale images [44]. Here, we generated build-up areas/non-build-up areas binary images on Stage
1 classification result, and assigned values of 1 or 0, respectively. Lacunarity analysis is carried out in
an extension implemented in ArcGIS software [45]. The lacunarity Λ(r) at scale r can be defined as:

Λ (r) = ∑ S2 ×Q (S, r)

[∑ S×Q (S, r)]2
(1)

where S represents occupied sites, and Q (S, r) represents the probability of distribution of occupied
sites S, which can be obtained by dividing n (S, r) by the total number of boxes.

Lacunarity is a function of window size and gliding box, so it is important to identify the optimal
size by lacunarity-window size plot. This value can be determined when the image appears as
self-autocorrelation. Under these circumstances, three consecutive points on the lacunarity curve are
linear, and the coefficient of determination (r2) approaches 1 [43].

The relationship between window-size and lacunarity was analyzed based on 200 m× 200 m
examples. Figure 5 illustrated how the lacunarity plots vary with increasing window scale in both
settlement and industry area.

Rural settlement area appears as smaller and more scattered patchy built-up areas with larger
percent of gaps in analyzed examples than industrial area; meanwhile, gaps in rural settlement area
seem more irregular in distribution. Consequently, settlement areas present higher lacunarity than
industry areas. As window size increases, the lacunarity values decreased dramatically. For comparison,
two types of land-use lacunarity normalized curves were analyzed. In general, land-use features
appeared to self-autocorrelate at around 35 window size, implying the quasi-linear decrease in the
normalized lacunarity plot. As a result, optimal window size was set as 35. With gliding-box sizes of
3 × 3, 5 × 5, 7 × 7, and 9 × 9, four lacunarity features were calculated for subsequent classification.
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Figure 5. Ln(lacunarity) plotted against ln(window size), and industrial and residential samples
are analyzed (samples are 200 m× 200 m). I and R represent industrial and residential, respectively.
The x- and y-axes represent the moving window size and lacunarity value, respectively, all in logarithmic
scale. This means the width of moving window square in pixels and lacunarity values were
logarithmically transformed. If the decline in log-log lacunarity curve is linear (or quasi-linear) over
a range of spatial scale, then the image exhibits self-similar or fractal properties over that range of scales.

3.5. Accuracy Assessment

Accuracy statistics, including producer’s accuracy (PA), user’s accuracy (UA), overall accuracy
(OA), and kappa coefficient were calculated based on the error matrix [46]. An error matrix that
expresses the number of sample segments assigned to a particular LULC category relative to the
actual category is created. The producer’s accuracy is a measure of omission error, indicating the
probability of an actual category being correctly classified, whereas the user’s accuracy is a measure of
commission error, indicating the probability that a segment classified on the image actually represents
that actual category. Overall accuracy is the percentage of correctly classified samples. Kappa analysis
is a widely-used and powerful multivariate technique for accuracy assessment. The estimate of kappa
is the so-called Kappa coefficient. Kappa coefficient is a measure of overall statistical agreement of
a confusion matrix. Therefore, it provides a more rigorous assessment of classification accuracy [47].

In Stage 1, a real land-use and land-cover map was generated through visual interpretation.
In visual interpretation step, we used National Detailed Land-Use Inventory Maps in 2011 as reference
data (Figure S1). Then, the error matrix was calculated after randomly selected segments were
compared with the real land-use and land-cover vector data. In Stage 2, a ground investigation was
conducted to confirm that the selected segments are industrial or residential area.

In total, 956 randomly selected segments were used for construction of the error matrix for
Stage 1. Among these segments, the man-made objects, i.e., concrete and rooftops, which were
classified correctly, were collected to generate error matrix to enable the scale analysis in Stage 2 and
the comparison between three different classification approaches. Totally, 467 artificial class objects
were collected and no less than 220 objects for settlement and industry types each. A fully rigorous
and exhaustive approach named McNemar test was adopted for expressing the statistical significance
on different classification results [48]. Z values were calculated on every paired result combinations.
A z value matrix clearly identified those classification pairs that are significantly different and those



Remote Sens. 2016, 8, 845 11 of 19

that are not. With four scales of chessboard and two other hierarchy classification approaches, there
are a total of 15 z values in the matrix.

4. Results

4.1. Stage 1 Result and Accuracy Assessment

After visual examination on the output maps (Figure 6), land-use and land-cover categories were
extracted successfully. The confusion matrix with kappa analysis is shown in Table 2. We found highest
Kappa value in clay rooftops of 0.99, and PA of clay rooftops exceeded other LULC accuracies with
99.61%. Both PA and UA of metal rooftops were beyond 90%, with 0.93 Kappa value. For concrete
type, PA were 86.82% and UA were 80.58% (Kappa = 0.85). As a result, built-up areas were classified
successfully with all PA and UA over 80% and over 0.85 in Kappa per class. We noticed that some
bare soil cover in reference were misclassified as concrete, and vice versa, leading to a decrease in
both PA of bare soil and UA of concrete. Some trees and shrubs segments were misclassified as clay
rooftops too. PA of bare soil and UA of concrete were the two lowest in all classification accuracy
results, at 73.81% and 80.58%, respectively, and bare soil and trees and shrubs showed the lowest in
Kappa coefficients, 0.71 and 0.81, respectively. The reason is that the spectral characteristics of the
bare soil and concrete were similar [49]. Some trees and shrubs segments were misclassified as clay
rooftops because of shadow effect located around buildings [50].
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Table 2. Error matrix for the object-based image analysis (OBIA) classification result in Stage 1.
PA: producer’s accuracy; UA: user’s accuracy; OA: overall accuracy.

Reference Class

Concrete Metal
Rooftops

Clay
Rooftops Farmland Trees and

Shrubs Bare Soil Sum

Predicted
class

concrete 112 2 1 1 4 19 139
metal rooftops 2 99 0 0 1 0 102
clay rooftops 4 4 256 3 26 3 296

farmland 0 1 0 109 1 8 119
trees and shrubs 0 0 0 10 183 3 196

bare soil 11 0 0 0 0 93 104

Sum 129 106 257 123 215 126
PA 86.82% 93.40% 99.61% 88.62% 85.12% 73.81%
UA 80.58% 97.06% 86.49% 91.60% 93.37% 89.42%

Kappa Per Class 85% 93% 99% 87% 81% 71%
OA 89.12%

Overall Kappa 87%

4.2. Landscape Unit Scale Analysis

To analyze scale effect of landscape unit, Table 3 showed the classification accuracies for 40 m,
60 m, 80 m, and 100 m chessboard scales. A histogram of classification accuracies for both types
of settlement and industry in all these different scales is provided in Figure 7. This figure presents
producer’s accuracy (PA), user’s accuracy (UA), overall accuracies (OA) and kappa coefficient to
enable direct assessment of the differences between classification results from individual scale.

With the increasing of scale, both PA of industry and UA of settlement increased continuously,
ranging from 68.75% to 93.33% and 71.37% to 91.21%, respectively. In contrast, PA of settlement and
UA of industry started to decline after scale 80 m, and overall accuracy and Kappa coefficient followed
the same law. Scale 80 m had the highest value in OA and overall Kappa, 88.22% and 0.76, respectively.
In general, scale 80 m is a suitable scale to distinguish these two types of land-use in study area. A final
classification result of scale 80 m was presented in Figure 8.

Table 3. A summary of classification accuracies for different chessboard scales.

Scale 40 m
Reference Class

Scale 60 m
Reference Class

Settlement Industry Sum Settlement Industry Sum

Predicted
class

Settlement 187 75 262 Settlement 196 50 246
Industry 40 165 205 industry 31 190 221

Sum 227 240 Sum 227 240
PA 82.38% 68.75% PA 86.34% 79.17%
UA 71.37% 80.49% UA 79.67% 85.97%
OA 75.37% OA 82.66%

Kappa 51% Kappa 65%

Scale 80 m
Reference Class

Scale 100 m
Reference Class

Settlement Industry Sum Settlement Industry Sum

Predicted
class

settlement 205 33 238 settlement 166 16 182
industry 22 207 229 industry 61 224 285

Sum 227 240 Sum 227 240
PA 90.31% 86.25% PA 73.13% 93.33%
UA 86.13% 90.39% UA 91.21% 78.60%
OA 88.22% OA 83.51%

Kappa 76% Kappa 67%
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Figure 8. Final classification map for the whole study area (a) at scale 80 m, and some subset example
presented the mix situation that there are no clear boundaries between industry and settlement area,
and the approach proposed discriminated this two area successfully (b,c).

4.3. Accuracy Comparison of Three Methods

Classification accuracy results of the other two comparison classification frameworks are shown
in Table 4, Results merely using the top-down hierarchical network and lacunarity based hierarchical
classification were not satisfactory. Overall accuracy of top-down hierarchical network was 74.73%
and overall Kappa value was less than 0.50. Statistics in PA, UA and OA showed the lacunarity
based approach produced slightly better classification results than top-down hierarchical network
(OA = 75.37%, Kappa = 0.51). Comparing Table 3 with Table 4, it is evident that the approach using
landscape metrics by an optimal chessboard scale outperformed the other methods by achieving
overall accuracy over 88%.
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Table 4. A summary of results from comparison classification frameworks.

Hierarchy Network
Reference Class Lacunarity

Approach
Reference Class

Settlement Industry Sum Settlement Industry Sum

Predicted
class

settlement 163 54 217 settlement 164 52 216
industry 64 186 250 industry 63 188 251

Sum 227 240 Sum 227 240
PA 71.81% 77.50% PA 72.25% 78.33%
UA 75.12% 74.40% UA 75.93% 74.90%
OA 74.73% OA 75.37%

Kappa 49% Kappa 51%

The McNemar test z values matrix of every classification approach are presented in Table 5,
Paired McNemar analysis suggested that using landscape metrics could improve classification accuracy
dramatically with appropriate chessboard scales, and the advantage of using lacunarity algorithm
was still not significant. The highest value, 5.88, indicated statistically significant different between
scale 40 m and 80 m. The value of 5.46 showed significant different between scale 80 m and top-down
hierarchical network. There was slight difference between scale 40 m and lacunarity based approach,
also observed with similar OA and overall kappa in Tables 3 and 4.

Table 5. McNemar test matrix showing the statistical significance between classification approaches.

Scales Hierarchy
Network

Lacunarity
40 m 60 m 80 m 100 m

Scales

40 m
60 m 3.47 **
80 m 5.88 ** 3.06 **

100 m 3.1 ** 0.37 2.37 *
Hierarchy Network 0.23 3.03 ** 5.46 ** 3.36 **

Lacunarity 0.08 2.81 ** 5.35 ** 3.21 ** 0.65

Where z values ≥2.57 (**) are statistically significant at the 99% confidence; Z values ≥1.96 (*) are statistically
significant at the 95% confidence.

5. Discussion

5.1. Landscape Unit and Landscape Metrics

Landscape patterns in land-use spatial units can reflect various human land-use behaviors. In this
study, the concept of rural residential dwelling unit or housing unit is introduced. A typical rural
settlement unit often contains the following features: a house with outbuildings, grain-sunning ground,
garden or farmland around the main building. Accordingly, an industry unit contains a larger area of
artificial material, i.e., rooftops and concrete, and smaller area of natural surface such as lawn.

The landscape characteristics of rural settlement units show clear differences from those of
industry units. The settlement units have diverse land-cover types, while the industry units are
generally dominated by artificial material. Consequently, rural settlement units and industry units
show significant differences in patch size, patch number, patch edge, fragmentation and diversity.
These distinct patterns captured by landscape analysis provide valuable information to improve the
discrimination of settlement and industry units in rural region.

Few previous studies focused on the landscape characteristics for classification procedure,
although some landscape metrics such as ratio of effective mesh size was proposed and reported to
improve the accuracy of object-based classification in a hierarchy approach [19]. However, landscape
metrics were not inherent designed for the classification step in image processing, and they are typically
used for investigating detailed LULC types in the classification results [23]. In this paper, chessboard
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segmentation was adopted to generate a set of landscape spatial units, then the landscape metrics was
calculated in each spatial units.

This study confirms that landscape properties presented at the chessboard segment squares can
provide valuable information in classification. Spectral and textures are the inherent characteristics of
the object, and they are not sufficient for classification or discrimination of heterogeneity in complex
scenario. Therefore, the contextual information about the relationship between the object and its
surrounding features or circumstances is essential. By investigating landscape patterns in residential
and industrial units, significant difference was found in proportion of LULC types, patches number,
edges and diversity between these two land-use units. Thus, landscape metrics in various segmentation
scales were used and can be beneficial for classification. The comparative analysis demonstrates that
landscape and chessboard methods outperformed the hierarchical network and lacunarity algorithm
in this study.

5.2. Landscape Unit Scale Effect

Chessboard segmentation is a scale-dependent method, and the spatial scale variation affect the
accuracy of classification. By using an inapposite scale such as 40 m, a similar unsatisfying result was
obtained compared to the other two hierarchy methods (OA = 75.37% in Table 3, OA = 74.73% and
75.37% in Table 4). Beyond the optimal scale 80 m, both overall accuracy and Kappa value started
to decrease. Although the OA was still over 80% in an oversize scale, there was no evidence that
a larger scale would benefit separation of the industrial and settlement areas. The larger the scale,
the more error occurred for the classification of industry area, and substantial confusion is produced
between these two types. Meanwhile, the scale 80 m makes practical sense. The building blocks in
industry areas approximately occupy 80 × 80 m squares. Thus, the average area of buildings should
be calculated as reference before landscape unit scale analysis.

It is crucial to generate a set of spatial units for calculating landscape metrics, because these metrics
are designed for characterizing LULC distribution in a certain spatial scale. We chose chessboard
segmentation since each segment has a same spatial area. Furthermore, the boundaries of segments
from chessboard segmentation does not coincide with the corresponding elements in the landscape,
and a patch or a LULC class type may extend beyond the boundary of a segment unit, causing
so-called scale problem and boundary problem [51,52]. To address the scale problem, we analyzed
the classification accuracy with respect to different chessboard scales ranging from 40 to 100 m, and
identified the optimal scale for classification scheme. Unfortunately, the boundary problem caused by
fragmentation in patches, classes and landscape is not investigated, as the main purpose of this study
is to develope a simple solution for discrimination of settlements and industrial area in rural areas to
fulfill the urgent need for the detailed information in rural or agricultural lands.

5.3. Lacunarity Algorithm and Limitation

This study found that there is no significant improvement by only using lacunarity-based
hierarchical classification approach for discrimination of dispersed settlements and industrial area in
rural region. This is because the lacunarity method only measures the distribution of gap size among
land-cover features, which is suitable to distinguish features in state of aggregation, such as broadleaf
forest and coniferous forest in tropical forest canopies [43], or aggregated urban structure [20]. On the
contrary, the lacunarity algorithm is not appropriate to extract the dispersed industrial spot in rural
area, as there is no obvious aggregated pattern in settlement and industrial buildings, neither clear
boundaries exist between these two types of LULC. Table 6 summarizes the pros and cons of the
classification methods tested in this paper.
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Table 6. A summary of the pros and cons of the classification methods tested.

Classification Methods Advantages Limitations

Landscape metrics
and chessboard
segmentation method

Taking the differences in landscape
properties between LULC types into
consideration, successfully
discriminated land-use types

Time consuming, still room
for improvement

Top-down hierarchical
classification Easy to deploy

Causes confusion, spectral and
textural information is not enough
for classification heterogeneity
due to the similarity between
different LULC types.

Lacunarity based
hierarchical classification

Suitable for discrimination of forest
types and urban structure in
aggregated form

Inappropriate in extraction of
dispersed and disorderly target

5.4. Classification Framework Portability

The simplicity and objectivity of a method is a premise of the feasibility, portability and
universality of this method. Various land-cover features have different spatial scales in remotely sensed
images, and many articles tend to adopt multi-scale concept and hierarchical classification [32–35].
However, these classification frameworks often lead to a trial-and-error problem, as a result of
the visual assessment of the segmentation suitability [32]. This paper demonstrated a simple and
feasible classification procedure in Stage 1 by combining ESP, SEaTH, and LIBSVM tools [53,54], and
optimum parameters were obtained by objective statistics. Owing to the universal characteristics, the
classification schema in Stage 1 can be also transplant to other classification applications.

The classification framework in Stage 2 highly depends on the spatial scale, so a single parameter
is not sufficient when generalized to other datasets or other study sites. However, a specific relationship
between the scale parameters and the spatial distribution characteristics of buildings is found in this
study. This is in agreement with the study in lacunarity [21], in which the optimum window size was
related to the mean building block sizes. However, this relationship still needs to be further validated
using independent dataset, and a standard and objective process need to be introduced to determine
scale parameter.

5.5. Potential Applications

Previously, some studies were located in slum districts or shantytowns in urban and suburban
areas [3,16,20]. Only few studies focused on discrimination of land-use types of rural area or agriculture
land. Some articles differentiate LULC types or building types by integrating VHR and normalized
Digital Surface Model (nDSM) derived from radar data [21]. However, radar data may meet challenge
in coverage of rural area, as the height of factory and settlement buildings are similar, between 3
and 4 floors in typical rural areas of the Yangtze River Delta. Thus, it is necessary to develop some
approaches for subdivision of LULC using only VHR multispectral data. Our method is developed
based on the orbital VHR data with temporally consistent observation, making it possible to analyze
the rural LULC changes.

6. Conclusions

In order to obtain precise information of land-use and discriminate settlements and industrial area
in rural areas, this paper demonstrates a classification scheme integrating OBIA, landscape metrics
and chessboard segmentation. A LULC map containing land-cover material information was first
generated from GeoEye-1 image using traditional OBIA method. Next, a chessboard segmentation and
landscape analysis were conducted to capture the contextual information between the object and its
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surroundings in each unit. The landscape characteristics were further integrated in SVM classification
algorithm, and settlements and industry area were successfully distinguished.

Two commonly used approaches, i.e., the top-down hierarchical classification network using
spectral, textural and shape properties, and lacunarity based hierarchical classification were also
tested in our study. The comparative analysis demonstrates that our method performed better and
produced more accurate results than the two other approaches, with the highest overall accuracy, Kappa
coefficient and McNemar test. Thus, the landscape properties can contribute to the discrimination of
settlement and industry area in complex scenarios.

Furthermore, the scale dependence of our method was also tested by analyzing the classification
accuracy at various scales, i.e., 40 m, 60 m, 80 m, and 100 m. The overall accuracy ranged from 75% to
88%, and Kappa coefficient ranged from 0.51 to 0.76, both peaking at scale 80 m. The optimal scale
parameter was found to be related to the size of the building blocks in industry area.

Supplementary Materials: The following are available online at www.mdpi.com/2072-4292/8/10/845/s1,
Figure S1. Example (a,b) are Geoeye images overlaid by reference data, example (c,d) are land-use and land-cover
maps from Stage 1. Example (a,c) provide a comparison from a same location, accordingly (b,d) are also from the
same location. The Geoeye images (a,b) are overlaid by Land-Use Inventory Maps, which are blue vector data
with land-use attributes. Visual interpretation was conducted by using Geoeye imagery and this vector data as
reference. The real land-use and land-cover map was generated in visual interpretation workspace.

Acknowledgments: This research was supported by International Science & Technology Cooperation Program of
China (2012DFA20930). We also thank the anonymous reviewers for their constructive comments.

Author Contributions: Xinyu Zheng designed the study and wrote the manuscript; Muye Gan and Jing Zhang
supervised the study and reviewed the manuscript; Yang Wang, Ke Wang, Zhangquan Shen and Ling Zhang
contributed to the discussions; and Longmei Teng contributed to the discussions and revise writing. All authors
read and approved the final manuscript.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Hansen, M.C.; DeFries, R.S.; Townshend, J.R.; Sohlberg, R. Global land cover classification at 1 km spatial
resolution using a classification tree approach. Int. J. Remote Sens. 2000, 21, 1331–1364. [CrossRef]

2. Jensen, J.R. Digital Change Detection. In Introductory Digital Image Processing: A Remote Sensing Perspective,
3rd ed.; University of South Carolina: Columbus, OH, USA, 1986; pp. 337–339.

3. Owen, K.K.; Wong, D.W. Exploring structural differences between rural and urban informal settlements
from imagery: The basureros of Cobán. Geocarto Int. 2013, 28, 562–581. [CrossRef]

4. Tuia, D.; Ratle, F.; Pacifici, F.; Kanevski, M.F.; Emery, W.J. Active learning methods for remote sensing
image classification. IEEE Trans. Geosci. Remote Sens. 2009, 47, 2218–2232. [CrossRef]

5. Hussain, M.; Chen, D.; Cheng, A.; Wei, H.; Stanley, D. Change detection from remotely sensed images:
From pixel-based to object-based approaches. ISPRS J. Photogramm. 2013, 80, 91–106. [CrossRef]

6. Nagendra, H.; Lucas, R.; Honrado, J.P.; Jongman, R.H.G.; Tarantino, C.; Adamo, M.; Mairota, P.
Remote sensing for conservation monitoring: Assessing protected areas, habitat extent, habitat condition,
species diversity, and threats. Ecol. Indic. 2013, 33, 45–59. [CrossRef]

7. Kuffer, M.; Barrosb, J. Urban morphology of unplanned settlements: The use of spatial metrics in VHR
remotely sensed images. Procedia Environ. Sci. 2011, 7, 152–157. [CrossRef]

8. Li, X.; Chen, W.; Cheng, X.; Wang, L. A comparison of machine learning algorithms for mapping of complex
surface-mined and agricultural landscapes using ZiYuan-3 stereo satellite imagery. Remote Sens. 2016, 8, 514.
[CrossRef]

9. Blaschke, T. Object based image analysis for remote sensing. ISPRS J. Photogramm. Remote Sen. 2010, 65, 2–16.
[CrossRef]

10. Nussbaum, S.; Menz, G. Satellite Imagery and Methods of Remote Sensing. In Object-Based Image Analysis
and Treaty Verification: New Approaches in Remote Sensing-Applied to Nuclear Facilities in Iran; Springer Science
& Business Media: Berlin, Germany, 2008; pp. 17–27.

www.mdpi.com/2072-4292/8/10/845/s1
http://dx.doi.org/10.1080/014311600210209
http://dx.doi.org/10.1080/10106049.2012.734533
http://dx.doi.org/10.1109/TGRS.2008.2010404
http://dx.doi.org/10.1016/j.isprsjprs.2013.03.006
http://dx.doi.org/10.1016/j.ecolind.2012.09.014
http://dx.doi.org/10.1016/j.proenv.2011.07.027
http://dx.doi.org/10.3390/rs8060514
http://dx.doi.org/10.1016/j.isprsjprs.2009.06.004


Remote Sens. 2016, 8, 845 18 of 19

11. Su, W.; Li, J.; Chen, Y.; Liu, Z.; Zhang, J.; Low, T.M.; Suppiah, I.; Hashim, S.A.M. Textural and local spatial
statistics for the object-oriented classification of urban areas using high resolution imagery. Int. J. Remote Sens.
2008, 29, 3105–3117. [CrossRef]

12. Pacifici, F.; Chini, M.; Emery, W.J. A neural network approach using multi-scale textural metrics from very
high-resolution panchromatic imagery for urban land-use classification. Remote Sens. Environ. 2009, 113,
1276–1292. [CrossRef]

13. Zhang, R.; Zhu, D. Study of land cover classification based on knowledge rules using high-resolution remote
sensing images. Expert Syst. Appl. 2011, 38, 3647–3652. [CrossRef]

14. Han, N.; Du, H.; Zhou, G.; Sun, X.; Ge, H.; Xu, X. Object-based classification using SPOT-5 imagery for Moso
bamboo forest mapping. Int. J. Remote Sens. 2014, 35, 1126–1142. [CrossRef]

15. Niebergall, S.; Loew, A.; Mauser, W. Integrative assessment of informal settlements using VHR remote
sensing data—The Delhi case study. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2008, 1, 193–205. [CrossRef]

16. Kuffer, M.; Barros, J.; Sliuzas, R.V. The development of a morphological unplanned settlement index using
very-high-resolution (VHR) imagery. Comput. Environ. Urban Syst. 2014, 48, 138–152. [CrossRef]

17. Chen, G.; Liang, S.; Chen, J. The extraction of plantation with texture feature in high resolution remote
sensing image. In Proceedings of the 3rd International Workshop on Earth Observation and Remote Sensing
Applications, Changsha, China, 11–14 June 2014; pp. 384–387.

18. Han, N.; Du, H.; Zhou, G.; Xu, X.; Ge, H.; Liu, L.; Gao, G.; Sun, S. Exploring the synergistic use of multi-scale
image object metrics for land-use/land-cover mapping using an object-based approach. Int. J. Remote Sens.
2015, 36, 3544–3562. [CrossRef]

19. Han, N.; Wang, K.; Yu, L.; Zhang, X. Integration of texture and landscape features into object-based
classification for delineating Torreya using IKONOS imagery. Int. J. Remote Sens. 2012, 33, 2003–2033. [CrossRef]

20. Kit, O.; Lüdeke, M.; Reckien, D. Texture-based identification of urban slums in Hyderabad, India using
remote sensing data. Appl. Geogr. 2012, 32, 660–667. [CrossRef]

21. Ma, L. Discrimination of residential and industrial buildings using LiDAR data and an effective
spatial-neighbor algorithm in a typical urban industrial park. Eur. J. Remote Sens. 2015, 48, 1–15. [CrossRef]

22. Fan, C.; Myint, S. A comparison of spatial autocorrelation indices and landscape metrics in measuring urban
landscape fragmentation. Landsc. Urban Plan 2014, 121, 117–128. [CrossRef]

23. McGarigal, K.; Cushman, S.A.; Neel, M.C.; Ene, E. FRAGSTATS: Spatial Pattern Analysis Program for
Categorical Maps. Available online: http://www.umass.edu/landeco/research/fragstats/fragstats.html
(accessed on 10 May 2016).

24. Turner, M.G.; Gardner, R.H.; O’Neill, R.V. Landscape Ecology in Theory and Practice; Springer: New York, NY,
USA, 2015; pp. 479–494.

25. Jaeger, J.A.G. Landscape division, splitting index, and effective mesh size: New measures of landscape
fragmentation. Landsc. Ecol. 2000, 15, 115–130. [CrossRef]

26. Statistics Bureau of Tongxiang. Tongxiang Statistical Year Books; China Statistical Press: Beijing, China, 2012.
27. Blaschke, T.; Hay, G.J.; Kelly, M.; Lang, S.; Hofmann, P.; Addink, E.; Feitosa, R.Q.; van der Meer, F.;

van der Werff, H.; van Coillie, F.; et al. Geographic object-based image analysis—Towards a new paradigm.
ISPRS J. Photogramm. 2014, 87, 180–191. [CrossRef] [PubMed]

28. Yu, Q.; Gong, P.; Clinton, N.; Biging, G.; Kelly, M.; Schirokauer, D. Object-based detailed vegetation
classification with airborne high spatial resolution remote sensing imagery. Photogramm. Eng. Remote Sens.
2006, 72, 799–811. [CrossRef]

29. Bhaskaran, S.; Paramananda, S.; Ramnarayan, M. Per-pixel and object-oriented classification methods for
mapping urban features using IKONOS satellite data. Appl. Geogr. 2010, 30, 650–665. [CrossRef]

30. Baatz, M.; Schäpe, A. Multiresolution segmentation: An optimization approach for high quality multi-scale
image segmentation. Angew. Geogr. Inf. Verarb. 2000, 58, 12–23.

31. Benz, U.C.; Hofmann, P.; Willhauck, G.; Lingenfelder, I.; Heynen, M. Multi-resolution, object-oriented fuzzy
analysis of remote sensing data for GIS-ready information. ISPRS J. Photogramm. Remote Sen. 2004, 58,
239–258. [CrossRef]
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33. Drăguţ, L.; Tiede, D.; Levick, S.R. ESP: A tool to estimate scale parameter for multiresolution image
segmentation of remotely sensed data. Int. J. Geogr. Inf. Sci. 2010, 24, 859–871. [CrossRef]

http://dx.doi.org/10.1080/01431160701469016
http://dx.doi.org/10.1016/j.rse.2009.02.014
http://dx.doi.org/10.1016/j.eswa.2010.09.019
http://dx.doi.org/10.1080/01431161.2013.875634
http://dx.doi.org/10.1109/JSTARS.2008.2007513
http://dx.doi.org/10.1016/j.compenvurbsys.2014.07.012
http://dx.doi.org/10.1080/01431161.2015.1065357
http://dx.doi.org/10.1080/01431161.2011.605084
http://dx.doi.org/10.1016/j.apgeog.2011.07.016
http://dx.doi.org/10.5721/EuJRS20154801
http://dx.doi.org/10.1016/j.landurbplan.2013.10.002
http://www.umass.edu/landeco/research/fragstats/fragstats.html
http://dx.doi.org/10.1023/A:1008129329289
http://dx.doi.org/10.1016/j.isprsjprs.2013.09.014
http://www.ncbi.nlm.nih.gov/pubmed/24623958
http://dx.doi.org/10.14358/PERS.72.7.799
http://dx.doi.org/10.1016/j.apgeog.2010.01.009
http://dx.doi.org/10.1016/j.isprsjprs.2003.10.002
http://dx.doi.org/10.1016/j.isprsjprs.2013.11.018
http://www.ncbi.nlm.nih.gov/pubmed/24748723
http://dx.doi.org/10.1080/13658810903174803


Remote Sens. 2016, 8, 845 19 of 19

34. Hellesen, T.; Matikainen, L. An Object-based approach for mapping shrub and tree cover on grassland
habitats by use of LiDAR and CIR orthoimages. Remote Sens. 2013, 5, 558–583. [CrossRef]
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