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Abstract: Blending processing based on seamlines in image mosaicking is a procedure designed to
obtain a smooth transition between images along seamlines and make seams invisible in the final
mosaic. However, for high-resolution aerial orthoimages in urban areas, factors such as projection
differences, moving objects, and radiometric differences in overlapping areas may result in ghosting
and artifacts or visible shifts in the final mosaic. Such a mosaic is not a true reflection of the earth’s
surface and may have a negative impact on image interpretation. Therefore, this paper presents
a multi-resolution blending method considering changed regions to improve mosaic image quality.
The method utilizes the region change rate (RCR) to distinguish changed regions from unchanged regions
in overlapping areas. The RCR of each region is computed using image segmentation and change
detection methods. Then, a mask image is generated considering changed regions, and Gaussian and
Laplacian pyramids are constructed. Finally, a multi-resolution reconstruction is performed to obtain
the final mosaic. Experimental results from digital aerial orthoimages in urban areas are provided to
verify this method for blending processing based on seamlines in mosaicking. Comparisons with
other methods further demonstrate the potential of the presented method, as shown in a detailed
comparison in three typical cases of the seamline passing by buildings, the seamline passing through
buildings, and the seamline passing through areas with large radiometric differences.

Keywords: mosaic; blending; change detection; segmentation; multi-resolution

1. Introduction

Orthoimage mosaicking is the process of combining multiple orthorectrified images into a single
seamless composite image. It is also a necessary process for covering a large geographic region in
many applications, e.g., environmental monitoring, disaster management, and the construction of
digital cities or smart cities [1,2]. When mosaicking orthoimages, the seam-based method is the most
popular method. Generally, the seam-based method will define seamlines in overlapping regions.
Then, in mosaicking, each pixel in the final result is represented entirely by one orthoimage based
on which side of the seamline it lies on. Finally, a blending processing, also called feathering, based
on seamlines is performed to make the seam invisible in the final mosaic. This paper focuses on the
blending processing in mosaicking, i.e., a procedure to obtain a smooth transition between images
along seamlines.
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In orthoimages, objects above or below the digital terrain model (DTM) used for orthorectification
will be geometrically displaced due to perspective imaging from different view angles. There are often
obvious projection differences in overlapping areas and different facets of an object, e.g., a building,
may appear in different images, especially for high-resolution aerial orthoimages in urban areas.
Those phenomena are more obvious the higher the objects are [1]. When such phenomena occur,
there are obvious misalignments between orthoimages. Moving objects, e.g., cars, are also shown
as obvious misalignments between orthoimages. Thus, in the blending processing, it becomes more
difficult to make the seam invisible in the mosaic. Radiometric differences due to the different viewing
angles or illumination conditions between orthoimages also bring difficulties and may cause visible
shifts in brightness or color.

Generally, in blending processing, mosaic image I is a weighted combination of the input images
I1 and I2 over the overlapping areas. The weighting coefficients vary as a function of the distance
from the seamline. Milgram (1975) defined a linear ramp to pixel values on either side of the seamline
as the weighting function to obtain equal values at the seamline itself [3]. Li et al. (2015) improved
the weighting function, and presented a cosine distance weighted blending method for high spatial
resolution remote sensing images in which the weight calculation algorithm is based on the cosine
distance [4]. Burt and Adelson (1983) presented a pyramid blending approach where images were
decomposed into a set of band-pass filtered component images. Then, different frequency bands were
combined with different weighting coefficients and the component images in each spatial frequency
band are assembled into a corresponding band-pass mosaic. Finally, these band-pass mosaic images
are summed to obtain the desired image mosaic [5,6]. Brown and Lowe (2007) also used the same
pyramid blending approach in [5] for the panoramic image stitching [7]. Shao et al. (2012) improved the
pyramid blending approach in [5] for asymmetrically informative biological images during microscope
image stitching. They optimized the blending coefficients based on the constraint of the information
imbalance between the earlier- and later-acquired images [8]. Uyttendaele et al. (2001) presented
a feathering method, which used averaging and interpolation functions to eliminate ghosting and
reduce intensity differences [9]. Zhu and Qian (2002) presented a hard correction method to remove
a possible seam. It first obtained the mosaic image directly based on seamlines without any blending
processing in overlapping areas. Then, the average difference within a certain extent of the two sides of
the seamline was computed and corrected within a certain extent of the two sides of the seamline [10].
Pérez et al. (2003) proposed a framework for image editing, i.e., object insertion, in the gradient domain.
The object is cut from an image and inserted into a new background image. The insertion is performed
by optimizing over the gradients of the inserted object [11]. Levin et al. (2004) and Zomet et al. (2006)
proposed a gradient-domain image stitching method. The method introduced several formal cost
functions for the evaluation of the stitching quality in the gradient domain and defined the mosaic
image as their optimum in the overlapping areas [12,13]. Jia and Tang (2008) proposed an image
stitching approach by image deformation. The approach propagated the deformation into the target
image smoothly and both structure deformation and colour correction were simultaneously achieved
within the same framework operating in the image gradient domain [14].

Most of these methods deal with natural images and focus on the visual effect. However, these
methods still do not fully meet the requirements for remote sensed images in earth observation.
In earth observation, orthoimages are orthorectifed remote sensed images with precise geocoding
and should reflect the earth’s surface as accurately as possible. The visual effect is of secondary
importance. A mosaic of orthoimages is no exception. Unlike natural images, misalignments in
orthoimages generally appear in regions with objects such as buildings, bridges, and moving cars.
For high-resolution aerial orthoimages in urban areas, such misalignments are usually large and
different facades of objects may appear in different images. If only considering the visual effect,
ghosting and artifacts may be created in the mosaic image that are not only not a true reflection
of earth’s surface but also harmful in image interpretation. Thus, these regions should be treated
differently from other regions to ensure the mosaic image can reflect the earth’s surface as accurately
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as possible. Therefore, in this paper, a multi-resolution blending method considering changed regions
for orthoimage mosaicking is presented. In this method, regions with obvious projection differences
(e.g., buildings) or moving objects (e.g., cars) are considered as changed regions. In the blending
procedure, changed regions and unchanged regions are treated differently: changed regions will be
blended within a limited width or blending will be avoided, and unchanged regions will be blended
in the set blending width to achieve a smooth transition.

2. Methods

A flowchart of the presented method is shown in Figure 1. Image segmentation and change
detection are used to determine changed regions, i.e., regions with obvious projection differences or
moving objects in orthoimages, and then the generation of the mask image is improved to enlarge the
transition zone width in unchanged regions. The Gaussian pyramid construction, Laplacian pyramid
construction, and multi-resolution reconstruction are similar to the pyramid blending method in [5].
By doing so, a smooth transition can be obtained in unchanged regions, while changed regions are
blended in a relatively narrow transition zone and ghosting and artifacts can be avoided.
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2.1. Mask Image Improvement

Mask image improvement is different from mask image generation in the pyramid blending
method in [5]. This paper enlarges the transition zone width by adding a smooth filter to the
mask image. To prevent the mosaic image from affecting image interpretation, changed regions
and unchanged regions are treated differently. Regions with obvious projection differences or moving
objects are considered as changed regions, e.g., buildings, bridges, and moving cars in orthoimages.
When adding a smooth filter on the mask image, values of pixels in changed regions remain unchanged.
Changed regions are determined by the region change rate (RCR), which is the change rate of the
segmented region and is calculated based on the percentage of changed pixels in the segmented
region. The main steps of mask image improvement is as follows: (1) deriving differences in overlaps;
(2) determining changed regions; and (3) generating mask image.

2.1.1. Deriving Differences in Overlaps

In this paper, texture similarity is used to derive differences in overlaps. Overlaps can be
determined by the geocoding information. The texture similarity of pixel (i, j) in the overlap between
adjacent images is calculated as the following equation:

Cost(i, j) = INT(255× (1− ρ)/2.0) (1)
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where ρ is the normalized cross correlation (NCC) for pixel (i, j) in the overlap and it is computed
using a subimage centered around pixel (i, j); and INT is integer rounding operations. Let A, B be
the left image and right image (two arbitrary images captured in different times with overlap) in the
overlap, respectively. The detailed equation of ρ for pixel (i, j) in the overlap is as follows:

ρ =

M
∑

i=1

N
∑

j=1
(A(i, j)− A) · (B(i, j)− B)√

M
∑

i=1

N
∑

j=1
(A(i, j)− A)

2 ·
M
∑

i=1

N
∑

j=1
(B(i, j)− B)2

(2)

where A = 1
M×N

M
∑

i=1

N
∑

j=1
A(i, j), A(i, j) is the value of pixel (i, j) in left image; and B = 1

M×N

M
∑

i=1

N
∑

j=1
B(i, j),

B(i, j) is the value of pixel (i, j) in right image [15]. Because ρ has a range of [−1.0, 1.0], Cost(i, j) has
a range of [0, 255].

2.1.2. Determining Changed Regions

Changed regions are determined by the RCR. To calculate the RCR for segmented regions, changed
pixels in overlapping areas should be obtained first based on change detection. Change detection
is the process of identifying differences in the state of an object or phenomenon by observing it at
different times. In this paper, differences in overlaps are derived by texture similarity described in
Section 2.1.1. The procedure yields a difference distribution for each band. In such a distribution,
pixels exhibiting changes are found in the tails of the distribution whereas pixels exhibiting no changes
tend to be grouped around the mean. A critical element of the image differencing method is deciding
where to place the threshold boundaries between changed and unchanged pixels displayed in the
histogram [16,17].

Then, the changed and unchanged pixels are distinguished by the following equation:

|Cost(i, j)−m| ≥ Tdσ (3)

where m and σ are the mean and standard deviation of the texture similarity image, respectively, and
Td is the given threshold that distinguishes changed and unchanged pixels. Pixels in the overlap that
satisfy Equation (3) are considered changed pixels and other pixels are unchanged pixels.

At this time, the RCR can be computed by combining the segmented regions and the changed
pixels in the overlap. It is the percentage of changed pixels in the segmented region and defined by the
following equation:

RCR =
NumC
Num

(4)

where RCR is the change rate of the current segmented region, NumC is the number of changed pixels
in the segmented region, and Num is the number of pixels in the segmented region.

As to image segmentation, we use the mean shift (MS) algorithm in this paper and overlaps in the
left and right images are segmented separately. MS is an algorithm of nonparametric density gradient
estimation. Its application domains include clustering in computer vision and image processing [18–20].
Let data be a finite set S embedded in the n-dimensional Euclidean space X. Let K be a kernel,
and weight be a weight function. The sample mean with kernel K at x ∈ X is defined as

m(x) =
∑

s∈S
K(s− x)weight(s)s

∑
s∈S

K(s− x)weight(s)
(5)

Let T ⊂ X be a finite set. The evolution of T in the form of iterations T ← m(T)
with m(T) = {m(t); t ∈ T} is called an MS algorithm. For each t ∈ T, there is a sequence
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t, m(t), m(m(t)), . . . , which is called the trajectory of t. The weight weight(s) can either be fixed
throughout the process or re-evaluated after each iteration. It may also be a function of the current T.
The algorithm halts when it reaches a fixed point, i.e., when m(T) converges [19]. Among the various
implementations of MS, the Edge Detection and Image SegmentatiON (EDISON) library in C++ was
used to complete the image segmentation in this paper [21].

After calculating the RCR for each segmented region, a threshold of the RCR, i.e., changed
region threshold TRate, is set to determine whether a region belongs to a changed region. If the
RCR of a region is larger than TRate, it is a changed region; otherwise it is an unchanged region.
The determination of changed regions by TRate is performed in the overlap of the left and right
images independently. Assuming R1 and R2 are the changed regions of the left and right images in
the overlap, respectively, the final changed regions in the overlap, R, are the union regions of R1 and
R2, i.e., R = R1∪ R2.

2.1.3. Generating Mask Image

Mask image M is generated according to the seamline and the determined changed regions in the
overlap. It is used to enlarge the transition zone width when pyramid blending.

First is the construction of the initial mask image. A same-size 8-bit image is created with the
overlap of the left and right images as the initial mask image. In the initial mask image, pixels on the
left side of the seamline are assigned a value of 0 and the other pixels are assigned a value of 255.

Then, a smooth filter is added to the initial mask image. Based on the changed regions R,
smoothing is carried out selectively. Changed regions and unchanged regions are treated differently.
In smoothing, values of pixels in changed regions remain unchanged. Both a Gaussian filter and
a mean smoothing filter can be selected as the smooth filter. The size of the smooth filter can be set by
the user according to the requirements of blending procedure.

2.2. Gaussian Pyramid Construction

Gaussian pyramid is built for left image A, right image B, and mask image M, respectively.
It is a set of low-pass filtered images. Taking the left image A as an example, the Gaussian pyramid
construction is described as follows [5].

The origin left image A is the level 0 image of the Gaussian pyramid. Then, according to
Equation (6), other level images of the Gaussian pyramid can be computed by a low-pass window
mask w from the lower level image iteratively. By doing so, the Gaussian pyramid of the left image A,
i.e., GSA, can be obtained. The image size of the upper level image in the Gaussian pyramid is half of
the closest lower level image. The detailed pyramid computation equation is as follows:

GSl(i, j) =
2

∑
m=−2

2

∑
n=−2

wm,nGSl−1(2i + m, 2j + n) (6)

where 0 < l ≤ N, l is an integer; GSl(i, j) is the value of pixel (i, j) in level l image of the Gaussian
pyramid; N is the number of levels of the Gaussian pyramid, and in this paper, N = 3; w is a low-pass
window mask with a size of 5 by 5; and wm,n is the value of a specific element in the window mask
(−2 ≤ m, n ≤ 2, m, n are integers). The detailed definition of w is as follows:

w =
1

256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1

 (7)
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For right image B and mask image M, their Gaussian pyramid GSB and GSM are built in the same
way as the left image A.

2.3. Laplacian Pyramid Construction

Laplacian pyramid is built for left image A and right image B, respectively. Their Laplacian
pyramids LPA and LPB are built in the same way. Taking the left image A as an example, the Laplacian
pyramid construction is described as follows [5].

According to Equation (8), each Gaussian pyramid level image GSl(i, j) (0 < l ≤ N, l is an integer)
is interpolated to obtain GSl′(i, j). GSl′(i, j) is expanded to 2 times the size of GSl(i, j). GSl′(i, j) is the
same size as GSl−1(i, j).

GSl′(i, j) = EXPAND[GSl ] = 4
2

∑
m=−2

2

∑
n=−2

wm,nGSl(
i + m

2
,

j + n
2

) (8)

In the computation process, the corresponding pixels are computed only when i+m
2 and j+n

2 are
both integers and EXPAND is the interpolation operation. Then, the level l− 1 image of the Laplacian
pyramid can be computed by the following equation (0 < l ≤ N, l is an integer):

LPl−1(i, j) = GSl−1(i, j)− GSl′(i, j) (9)

After each level image of the Laplacian pyramid is computed, the Laplacian pyramid for the left
image A, i.e., LPA, can be obtained.

2.4. Multi-Resolution Reconstruction

A multi-resolution reconstruction is the final step of the presented multi-resolution blending
procedure to obtain the mosaic image. It combines the Laplacian pyramid images of the left and right
images in the overlap using the Gaussian pyramid of the mask image M as the weighting factor to
obtain the stitching Laplacian pyramid image [5]. According to Equation (10), the Laplacian pyramid
images of left image A and right image B, i.e., LPl

A and LPl
B, are combined level by level using the

Gaussian pyramid of the mask image M as the weighting factor to obtain the stitching Laplacian
pyramid image LP.

LPl =
{[

255− GSl
M(i, j)

]
· LPl

A(i, j) + GSl
M(i, j)LPl

B(i, j)
}

/255 (10)

where 0 ≤ l < N and l is an integer. Then, the final mosaic image after multi-resolution blending can
be reconstructed level by level based on the following equation:{

GSRN = LPN

GSRl−1 = LPl−1 + EXPAND(GSRl)
(11)

In Equation (11), 0 < l ≤ N, and l is an integer; the definition of EXPAND is same as in
Equation (8). According to Equation (11), the reconstruction is carried out level by level until GSR0 is
obtained. GSR0 is the final mosaic image after multi-resolution blending.

3. Results

The described algorithm above has been implemented in C++. The EDISON library is used for
image segmentation and the Geospatial Data Abstraction Library (GDAL) is used to read and write
image files. A number of digital aerial orthoimages have been employed to test the proposed algorithm,
and two data sets are presented. In experiments on the two presented data sets, the MS segmentation
parameters (hs, hr, M) are set as (6, 5, 20), where (hs, hr) are the bandwidth parameters and M is the
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least significant feature size. The threshold to distinguish changed and unchanged pixels Td is set to
1.0. The threshold of RCR, TRate, is set to 0.2.

The image size of data set 1 is approximately 2000 by 1800 pixels. The performance of the presented
method is demonstrated in Figures 2 and 3. In Figures 2 and 3, comparisons with the direct mosaic,
the linear ramp weighting method [3], the cosine distance weighted blending method [4], and the
pyramid blending method [5] are also presented. In these experiments, the blending width in the linear
ramp weighting method and the cosine distance weighted blending method is 400 pixels, and there are
200 pixels on each side of the seamline. The size of the smooth filter to generate the mask image in the
presented method is also 400 pixels. The left and right images overlapping seamlines (dotted line) are
shown in Figure 2a,b, respectively. To simplify the problem, the seamline is considered a straight line in
the experiments. Figure 2c shows the obtained changed regions. In Figure 2c, red regions are changed
regions and green regions are unchanged regions. Most of buildings are recognized as changed regions.
Figure 2d shows the generated mask image, where values of pixels in the changed regions remain
unchanged. Figure 2e–i shows the results of the direct mosaic, the linear ramp weighting method,
the cosine distance weighted blending method, the pyramid blending method, and the presented
method, respectively.
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Figure 2. Blending processing for data set 1: (a) the left image overlapping seamline; (b) the right
image overlapping seamline; (c) the obtained changed regions; (d) the generated mask image; (e) the
result of the direct mosaic; (f) the result of the linear ramp weighting method; (g) the result of the
cosine distance weighted blending method; (h) the result of the pyramid blending method; and (i) the
result of the presented method.
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Marked areas 1, 2, and 3 in Figure 2 denote three typical cases of the seamline passing by buildings,
the seamline passing through buildings, and the seamline passing through areas with large radiometric
differences, respectively. Details of these three cases are shown in Figure 3. In Figure 3, marked
areas of the direct mosaic, the linear ramp weighting method, the cosine distance weighted blending
method, the pyramid blending method and the presented method are shown from top to bottom.
The linear ramp weighting method achieves a smooth transition in the given blending width when
the seamline passes through areas with large radiometric differences (Figure 3f). However, ghosting
and artifacts also appear when the seamline passes by buildings (Figure 3d) or through buildings
(Figure 3e). The cosine distance weighted blending method also obtains a smooth transition when
the seamline passes through areas with large radiometric differences (Figure 3i), and ghosting and
artifacts are less than the linear ramp weighting method when the seamline passes by buildings
(Figure 3g) or through buildings (Figure 3h) due to the improved weight function. The pyramid
blending method avoids ghosting and artifacts when the seamline passes by buildings (Figure 3j) or
through buildings (Figure 3k), but the transition is not smooth when the seamline passes through
areas with large radiometric differences (Figure 3l). The presented method avoids the shortcomings of
the linear ramp weighting, the cosine distance weighted blending method and the pyramid blending
methods, and performs well in these three cases (Figure 3m–o).
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Figure 3. Details of the results: (a–c) marked areas 1, 2, and 3 in Figure 2e; (d–f) marked areas 1, 2,
and 3 in Figure 2f; (g–i) marked areas 1, 2, and 3 in Figure 2g; (j–l) marked areas 1, 2, and 3 in Figure 2h;
and (m–o) marked areas 1, 2, and 3 in Figure 2i.

A quantitative comparison was also conducted. The correlation coefficient was utilized to evaluate
the ability to preserve detailed information in the image, with the direct mosaic as a reference. Table 1
shows comparison of the correlation coefficient between the results of the direct mosaic and the
linear ramp weighting, the cosine distance weighted blending method, the pyramid blending, and
the presented methods in each channel for data set 1. The linear ramp weighting method had the
smallest correlation coefficient value in each channel due to ghosting and artifacts. The cosine distance
weighted blending method had larger correlation coefficient value in each channel than the linear
ramp weighting method. The pyramid blending method had the largest correlation coefficient value
in each channel because of its narrow blending width. The presented method obtained correlation
coefficient values close to that of the pyramid blending method. The comparison indicated that the
ability to preserve detailed information of the presented method was better than the linear ramp
weighting method and the cosine distance weighted blending method, and very close to that of the
pyramid blending method. Considering the poor performance of the pyramid blending method when
the seamline passes through areas with large radiometric differences, the presented method obtained
the best outcome.

Table 1. Correlation coefficient comparison for data set 1.

Methods Red Green Blue

the linear ramp weighting method 0.969 0.989 0.968
the cosine distance weighted blending method 0.972 0.992 0.971
the pyramid blending method 0.979 0.999 0.978
the presented method 0.977 0.997 0.976

This paper also presents another data set, i.e., data set 2, to demonstrate the performance of
the presented method. The image size of data set 2 is approximately 2800 by 2300 pixels. Figures 4
and 5 show comparisons of the direct mosaic, the linear ramp weighting method, the cosine distance
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weighted blending method, the pyramid blending method and the presented method. The parameters
of these methods are the same as data set 1. The left and right images overlapping seamlines
(dotted line) are shown in Figure 4a,b, respectively. Figure 4c–g shows the results of the direct mosaic,
the linear ramp weighting method, the cosine distance weighted blending method, the pyramid
blending method, and the presented method, respectively.

Marked areas 1, 2, and 3 in Figure 4 denote three typical cases of the seamline passing through
areas with large radiometric differences, the seamline passing by buildings, and the seamline passing
through buildings, respectively. Details of these three cases are shown in Figure 5. In Figure 5, marked
areas of the direct mosaic, the linear ramp weighting method, the pyramid blending method and the
presented method are shown from top to bottom. The linear ramp weighting method obtains a smooth
transition in the given blending width when the seamline passes through areas with large radiometric
differences (Figure 5d), but there are still ghosting and artifacts (marked areas in Figure 5d) because
there is a moving white car. More obvious ghosting and artifacts appear when the seamline passes by
buildings (Figure 5e), and when the seamline passes through buildings (Figure 5f). The cosine distance
weighted blending method obtains similar result to the linear ramp weighting method (Figure 5g–i).
Of course, ghosting and artifacts created by the cosine distance weighted blending method are less
than the linear ramp weighting method when the seamline passes by buildings (Figure 5h) or through
buildings (Figure 5i). The pyramid blending method successfully avoids ghosting and artifacts in
these three cases (Figure 5j–l), but the transition is not smooth when the seamline passes through areas
with large radiometric differences (Figure 5j). The presented method avoids shortcomings of the other
three methods and performs well in these three cases (Figure 5m–o). Of course, there are also flaws
with the presented method. As shown in Figure 5n, there is still ghosting in the building areas.
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blending method; and (g) the result of the presented method.
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Table 2 shows comparison of correlation coefficient between in each channel for data set 2.
The linear ramp weighting method had the smallest correlation coefficient in each channel. The cosine
distance weighted blending method had larger correlation coefficient value in each channel than the
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linear ramp weighting method. The pyramid blending method had the largest correlation coefficient
value in each channel. The presented method obtained correlation coefficient values close to that of
the pyramid blending method. The comparison also indicated that the ability to preserve detailed
information of the presented method was better than the linear ramp weighting method and the
cosine distance weighted blending method, and very close to that of the pyramid blending method.
Considering the poor performance of the pyramid blending method when the seamline passes through
areas with large radiometric differences, the presented method also obtained the best outcome in
data set 2.

Table 2. Correlation coefficient comparison for data set 2.

Methods Red Green Blue

the linear ramp weighting method 0.975 0.995 0.976
the cosine distance weighted blending method 0.977 0.997 0.978
the pyramid blending method 0.980 0.999 0.980
the presented method 0.979 0.999 0.979

4. Discussion

This paper provided detailed performance of the presented method in blending processing based
on seamlines for orthorimage mosaicking in urban areas. To give an overall assessment of the linear
ramp weighting [3], the cosine distance weighted blending method [4], the pyramid blending [5],
and the presented method, detailed comparisons between these methods in three typical cases of the
seamline passing by buildings, the seamline passing through buildings, and the seamline passing
through areas with large radiometric difference were also presented.

The linear ramp weighting method always obtained a smooth transition in the given blending
width, but if there were projection differences (e.g., the seamline passing by or passing through
buildings) or moving objects (e.g., cars) within the blending width, ghosting and artifacts appeared
because the linear ramp weighting method was a blind blending procedure [3]. This had been validated
by the presented experimental results of the presented two data sets.

The cosine distance weighted blending method obtained similar results to the linear ramp
weighting method. Because it improved the weighting function, the cosine distance weighted blending
method obtained smoother transition than the linear ramp weighting method near the borders of the
transition zone [4]. Thus, ghosting and artifacts generated by the cosine distance weighted blending
method were slighter than the linear ramp weighting method.

The pyramid blending method always avoided ghosting and artifacts, but the transition was not
smooth when the seamline passed through areas with large radiometric differences. This was mainly
because the blending in this method was carried out in a narrow width in fact [5].

The presented method achieved the best outcome considering both the visual effect and the
quantitative statistics. This was due to the selective blending strategy for changed and unchanged
regions. It was implemented in the generation of the mask image. For changed regions, if the seamline
passed by or through them, blending would be avoided or limited in a narrow width, which is similar
to the pyramid blending method. For unchanged regions, if the seamline passed by or through them,
blending would be carried out in the set blending width to achieve a smooth transition, which is
similar to the linear ramp weighting method.

Of course, the presented method also has its shortcomings. A key step of the presented method
is to distinguish changed and unchanged regions. Whether regions of buildings and moving objects
can be accurately determined as changed regions has an important impact on the performance of the
presented method. As shown in Figure 5n, because the color of the building roof is very similar to
that of the road and the boundary of the building roof is unclear, the building roof and the road are
segmented into the same region, so there is still ghosting in the building areas. The determination of
changed regions is dependent on image segmentation and change detection. However, there is still
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no automatic solution to selecting proper segmentation and change detection parameters at present.
In practice, what we have done was to choose certain typical images and test which parameters would
produce suitable results. Then, the selected parameters were applied to other images.

The threshold of RCR, TRate, should be moderate. In our experiments, TRate is set to 0.2.
From our experience, the presented method is slightly sensitive to the value of TRate. Figure 6
shows obtained changed regions with TRate = 0.1 (Figure 6a) and TRate = 0.3 (Figure 6b) for data
set 1 respectively. Figure 7 shows details of changed regions when TRate = 0.1, TRate = 0.2 and
TRate = 0.3 respectively. Figure 8 further shows corresponding detailed results of the presented
method when TRate = 0.1, TRate = 0.2 and TRate = 0.3 respectively. Obviously, compared with
TRate = 0.2, more regions are considered as changed regions when TRate = 0.1 and less regions are
considered as changed regions when TRate = 0.3. When TRate = 0.3, only parts of buildings are
considered as changed regions, so there are still ghosting and artifacts in building areas after blending.
As shown in Figure 8c, ghosting and artifacts are very obvious especially in the marked ellipse areas.
When TRate = 0.1 and TRate = 0.2, blending results (Figure 8a,b) are similar and satisfied. Thus,
relative small value of TRate can achieve better result. Of course, too small value of TRate is also
not suitable because if TRate is smaller, more regions will be considered as changed regions and the
presented method will be more similar to the pyramid blending method [5].
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Different parameters of MS algorithm (hs, hr, M) are also set to analyze the sensitivity of the
presented method. The presented method is not sensitive to the value of M because it yields almost
the same changed regions for different values of M (compare Figure 9a,b and Figure 2c) and if
changed regions are same, the blending results are also identical. However, the presented method is
slightly sensitive to the values of hs and hr. Where for different values of hs, results yielded by the
presented method are slightly different. Though obtained regions are similar with different values of hs

(compare Figure 10a,b and Figure 2c), details of blending results are still slightly different. Figure 11a–c
shows one selected region of blending results when (hs, hr, M) = (3, 5, 20), (hs, hr, M) = (6, 5, 20),
and (hs, hr, M) = (9, 5, 20) respectively. Obviously, there are still some ghosting and artifacts when
(hs, hr, M) = (3, 5, 20) (marked ellipse areas in Figure 11a). Figure 11d–f shows another selected region of
blending results when (hs, hr, M) = (3, 5, 20), (hs, hr, M) = (6, 5, 20), and (hs, hr, M) = (9, 5, 20) respectively.
Obviously, there are also some ghosting and artifacts when (hs, hr, M) = (9, 5, 20) (marked ellipse areas
in Figure 11f). As far as hr is concerned, results are also slightly different for different values. As show
in Figure 12, obtained regions are slightly different with different values of hr. When (hs, hr, M) = (6,
2.5, 20), changed regions are more dispersed, and when (hs, hr, M) = (6, 7.5, 20), changed regions are
more concentrated. Figure 13 further shows selected regions of blending results with (hs, hr, M) = (6,
2.5, 20), (hs, hr, M) = (6, 5, 20), and (hs, hr, M) = (6, 7.5, 20) respectively. Obviously, there are still some
ghosting and artifacts when (hs, hr, M) = (6, 2.5, 20) and (hs, hr, M) = (6, 7.5, 20) (marked ellipse areas
in Figure 13a,c).
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5. Conclusions

Blending processing based on seamlines is an important step for orthoimage mosaicking.
This paper presents a novel method of multi-resolution blending considering changed regions to
improve mosaic image quality. The presented method is an improved pyramid blending method and
the improvement lies mainly in the mask image generation. Unlike the pyramid blending method
in [5], the presented method enlarges the transition zone width by adding a smooth filter to the mask
image. When generating the mask image, changed pixels and unchanged pixels are first distinguished
according to texture similarity, and the overlaps in the left and right images are segmented separately by
MS. Then, the RCR of each segmented region in the overlap can be computed based on the percentage
of changed pixels in the segmented region. After calculating the RCR for each segmented region,
a threshold of the RCR is set to determine if a region belongs to a changed region. Regions with
obvious projection differences or moving objects are considered as changed regions. When adding
a smooth filter on the mask image, values of pixels in changed regions remain unchanged. Thus,
in the blending procedure, if the seamline passes through changed regions, blending will be limited
in a narrow width; if the seamline passes by changed regions, blending will be avoided; and, if the
seamline passes through or by unchanged regions, blending will be carried out in the set blending
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width to achieve a smooth transition. By doing so, the mosaic of orthoimages not only is a true
reflection of earth’s surface but also has a good visual effect. Experimental results and comparison with
other methods indicate the potential of the presented method. Different parameters of MS algorithm
and the threshold of RCR are also set to analyze the sensitivity of the presented method. The presented
method only deals with the case of two images with overlaps. If there are more than two images with
overlaps, it is also easy to use the presented method to do the blending processing. The simplest way
is to do the blending processing sequentially, i.e., only two images are blended each time. Brown and
Lowe (2007) gave a more complex way [7]. Of course, other available image segmentation methods
may achieve better efficiency and have easier parameter selection. Other advanced change detection
methods may distinguish changed and unchanged pixels more effectively. Additionally, the selection
of parameters for image segmentation and change detection automatically and effectively to achieve
accurate changed regions also may improve the blending effect. These issues will also be studied in
the future work.
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