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Abstract: A quantitative comparative study was performed to assess the relative applicability of
Total Suspended Solids (TSS) models published in the last decade for the Moderate Resolution
Imaging Spectroradiometer (MODIS) and Landsat-based sensors. The quantitative comparison was
performed using a suite of statistical tests and HydroLight simulated data for waters ranging from
clear open ocean case-1 to turbid coastal case-2 waters. The quantitative comparison shows that
there are clearly some high performing TSS models that can potentially be applied in mapping TSS
concentration for regions of uncertain water type. The highest performing TSS models tested were
robust enough to retrieve TSS from different water types with Mean Absolute Relative Errors (MARE)
of 69.96%–481.82% for HydroLight simulated data. The models were also compared in regional
waters of northern Western Australia where the highest performing TSS models yielded a MARE in
the range of 43.11%–102.59%. The range of Smallest Relative Error (SRE) and Largest Relative Error
(LRE) between the highest and the lowest performing TSS models spanned three orders of magnitude,
suggesting users must be cautious in selecting appropriate models for unknown water types.
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1. Introduction

The health of coastal waters not only determines the health of marine habitats in the region but
also signifies the health of the nearby human inhabitants with nearly 60% of the earth’s population
settled in the coastal zones of our oceans and seas, and over 90% of the world’s fish caught for
consumption being sourced from coastal waters [1]. The health of water systems is typically
determined from a key indicator, the water clarity (turbidity) which is influenced by the amount
of dissolved matter and total suspended solids (TSS) comprising organic matter such as algae and
other micro-organisms and inorganic particulate matter from minerals [2]. Monitoring TSS along
with other water quality parameters is crucial for coastal ecology because TSS can directly affect the
turbidity and color of water [3] and turbidity determines the amount of light availability at depth for
primary production [4–6].

Monitoring the temporal and spatial distribution of TSS in the coastal environment can be a
huge undertaking and nearly impossible in terms of financial and time resources if performed using
traditional in situ water sampling methods [7] unless coupled with satellite-based remote sensing. Since
the early space-borne sensors of the 1970s there has been, and continues to be, a great improvement in
the spectral, spatial and temporal resolutions [8]. For example, the Landsat-based series of sensors has
evolved over the years from three (red, green and blue) spectral bands with spatial resolutions of 185 m
and a revisit time of 18 days to the newest Landsat-8 with 11 spectral bands (433–12,500 nm) with
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spatial resolutions of 30 m (and 15 m panchromatic) and a revisit time of 16 days. The shortcoming of
the long revisit time for Landsat can be filled by the readily available MODIS-Aqua and Terra sensors
which have shorter revisit times of one day, and with 36 spectral bands (405–14,385 nm) and spatial
resolutions from 250 m to 1000 m.

Since the launch of the early remote sensing satellites in the early 1970s many studies have been
conducted in remotely mapping TSS, driven in part by the capability of satellite remote sensing to
cover large spatial domains in near real time [7]. Considering the past decade, remote sensing
studies of the spatial and temporal mapping of TSS have utilized moderate resolution sensors
including Landsat [9–15], MERIS [6,16–20], MODIS [17,21–27], and high resolution sensors including
SPOT [28], IKONOS [29], and THEOS [30]. Further, the TSS mapping studies encompassed waters with
diverse optical and physical properties, from inland lakes and river systems [21,25,31–33] to coastal
waters [34–38] and from different geographical locations including America [3,32,39], Africa [26,40],
Asia [16,34,41], Australia [42,43], and Europe [17,23,27,37].

The majority of the models developed in retrieving TSS by remote sensing methods are typically
locally tuned to a regional water or waters with similar optical properties. Regional tuning of a
TSS model is necessary because of the potentially large variation in the inherent optical properties
(IOPs) of the water constituents. The theoretical basis of ocean color remote sensing has shown that
sensor-measured reflectance of the water is related to the IOPs of the water—absorption and scattering
coefficients. IOPs vary with the types and amounts of the water’s constituents, such as sediments,
phytoplankton, detrital matter and CDOM [44] which may be different for different sediment types and
phytoplankton types in different regions. In addition, factors such as water depth, viewing geometry,
and atmospheric conditions all add to the complexity of the relationship between the measurement of
reflectance of the water surface and the IOPs and concentrations of constituents [45].

TSS models are generally classified into three categories, (1) an empirical model where TSS is
modelled directly using a statistical analysis to relate the apparent optical properties (AOPs); (2) an
analytic model that relates the IOPs and AOPs of water through radiative transfer theory to derive
TSS; and (3) a semi-analytic model that is partly based on the empirical analysis and grounded
on the radiative transfer theory [7]. Individual TSS model designs have their own limitations and
advantages. An empirical model is often sought for its simplicity and explanatory power because
unique properties of local waters are tuned to each model, but it may lack general applicability.
An analytic model is potentially applicable to other water bodies because it is not dependent on the in
situ water constituents, but it requires accurate knowledge of water column properties which is often
difficult to acquire. The semi-analytic model has both the limitations and advantages associated with
the first two models, and it is generally preferred because it has higher explanatory power and is more
convenient than the analytic model [7,8].

In the last decade, various TSS models have been developed [35,37,38,46,47] and applied to their
respective regions with a wide range of success with reported retrieval errors ranging from lows of
~18% to highs of ~61%. Considering each model is developed and tuned for a specific region, water
type and its associated IOPs, the application or transferability of the models to other regions is limited,
and the likely accuracy of the results unknown. Even when an existing TSS model is applied to waters
in similar regions it is often first re-calibrated before being applied. The availability of many TSS
algorithms for different regions and sensors warrants one to ask if we can use someone else’s algorithm
to estimate TSS in regions where we do not have any in situ observations? For the cross applicability of
TSS models between different regions the design of a TSS algorithm has to either be based on analytic
methods and grounded on theoretical functions of radiative transfer theory, or the waters must be
assumed to have similar optical and physical properties. However, considering the vast number of
TSS models that have been developed across different geographical regions with different optical and
physical properties we can seek to establish the robustness in the applicability of these existing TSS
algorithms for different regions.
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A recent study by Brewin, et al. [44] developed an objective methodology where comparison
of different bio-optical algorithms are quantitatively and qualitatively considered for use in climate
studies. Following the methods of Brewin, et al. [44] and their quantitative methodology to rank the
algorithms, in this study we objectively compare the performance of TSS algorithms for MODIS and
Landsat sensors developed during the last decade using HydroLight simulated data for different water
and sediment types. If shown to be robust, these algorithms would provide marine remote sensing
scientists and coastal managers some level of confidence in their ability to assess the quality of water
with minimal resource for coastal monitoring of optically unexplored waters. Specifically, this study
aims to quantitatively assess the applicability of established TSS algorithms to different water types
and quantify the variability in retrieving TSS when using off the shelf TSS algorithms for MODIS and
Landsat sensors.

2. Materials and Methods

2.1. Dataset

2.1.1. HydroLight Simulation

A set of ocean reflectance spectra were derived using the radiative transfer numerical model
HydroLight 4.2 (Sequoia Scientific, Inc., Bellevue, WA 98005, United States of America) in the four
component case-2 waters mode. Using a forward model HydroLight solves radiance distributions and
derives reflectance and radiance for water bodies with specific inherent optical properties (SIOPs) for
given sky and water state conditions [48]. Sub-surface remote sensing reflectance’s (rrs) were computed
for infinitely deep water using a range of SIOPs, sea-state, and sky conditions. The spectral range for
rrs from HydroLight was simulated for wavelengths (λ) in the range of 400 nm–800 nm at a nominal
bandwidth of 4 nm.

For all the HydroLight simulations the sea state was chosen to have a wind speed of 5 m·s−1 and
the sky radiance computed using the Harrison and Coombes (1988) normalized radiance model for
a clear sky. The diffuse and direct sky irradiances were computed using the Gregg and Carder
(1990) irradiance model for a solar zenith angle of 30◦ [49]. The four components, pure water,
chlorophyll (CHL), colored dissolved organic matter (CDOM), and mineral (TSS) were modelled
in varying concentrations, presented in Table 1, to be representative of open ocean to turbid coastal
waters. For the TSS component, five different sediment types were used, namely (1) brown earth;
(2) calcareous sand; (3) yellow clay; (4) red clay; and (5) Bukata from the default database of HydroLight.
The phase functions for the components were modelled as Rayleigh like phase function for pure water,
Fournier-Forand phase function with bb(λ)/b(λ) of 0.01 for CHL, and Petzold “average particle” phase
function for TSS for all the aforementioned HydroLight simulations. In addition to the aforementioned
parameters for HydroLight simulations, we further carried out additional simulations using the
parameters outlined above but with solar zenith angles of 15◦, 30◦, 45◦, and 60◦ and bb(λ)/b(λ) ratios
of 0.001, 0.01, 0.018, 0.05, and 0.1 for calcareous sand to study the robustness of TSS models to changes
in solar angles and the backscattering ratios.

The IOP models used in this HydroLight simulation are described by Equations (1) and (2).
The total absorption coefficient (a(λ)) is the sum of absorption coefficients of pure water (aw(λ)),
CHL (aϕ(λ)), CDOM (acdom(λ)) and TSS (ap(λ)):

a(λ) = aw(λ) + aϕ(λ) + acdom(λ) + ap(λ) (1)

The total scattering coefficient (b) is the sum of scattering coefficients of pure water (bw(λ)),
CHL (bϕ(λ)), and TSS (bp(λ)):

b(λ) = bw(λ) + bϕ(λ) + bp(λ) (2)
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The total backscattering coefficient is expressed as the sum of backscattering coefficients for pure
sea water (bbw(λ)), particulates (bbp(λ)), and phytoplankton pigments (bbϕ(λ)).

bb(λ) = bbw(λ) + bbp(λ) + bbϕ(λ) (3)

The SIOP models allow the scaling of the IOP of each component with concentration (X):

ai(λ) = ai
∗(λ)× Xi (4)

bi(λ) = bi
∗(λ)× Xi (5)

where i is the component and ai*(λ) and bi*(λ) are component specific absorption and
scattering coefficients.

Table 1. Concentration of colored dissolved organic matter (CDOM), chlorophyll (CHL), and total
suspended solids (TSS) used in HydroLight modelling. The pure water component in all the
HydroLight runs remains unchanged.

CHL (mg/m3) CDOM (m−1) TSS (mg/L)

0.01, 3.0, 20.0 0.001, 1.0, 10.0

0.01–1.00 at 0.01 interval
1.00–10.00 at 0.1 interval
10.00–50.00 at 1.0 interval

50.00–100.00 at 2.0 interval
100.00–250.00 at 5.0 interval

250.00–500.00 at 10.0 interval
500.00–2000.00 at 50.0 interval

2000.00–7000.00 at 250.0 interval

The SIOP of each component was either obtained from HydroLight’s default dataset or modeled
using established models. For the specific absorption and scattering coefficients: the absorption
coefficient for pure water was obtained from Pope and Fry (1997) [50] and mass-scattering coefficient
from Smith and Baker (1981) [51], the CHL mass-specific absorption coefficient (aϕ*(λ)) from
Prieur-Sathyendranath (1981) [52] and the CHL mass-specific scattering coefficient modeled using
Equation (6), the CDOM mass-specific absorption was modeled using Equation (7) and CDOM
was considered to be a non-scattering component, and the mineral mass-specific absorption and
scattering coefficients were obtained from HydroLight’s default dataset for brown earth, calcareous
sand, yellow clay, red clay, and Bukata. Figure 1a,b shows the mass-specific absorption and scattering
coefficients of the five different minerals used in the HydroLight modelling of water reflectance.
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Figure 1. Mineral mass-specific absorption (a) and scattering coefficients (b).
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bϕ∗(λ) = 0.407CHL0.795
(

600
λ

)
(6)

acdom
∗(λ) = 0.1exp(−0.014× (λ− 440)) (7)

2.1.2. Extrapolation of Simulated Dataset

The IOP data output by HydroLight do not extend beyond 800 nm, however some of the TSS
algorithms for MODIS and Landsat utilize bands beyond the 800 nm reflectance data generated by
the HydroLight simulations. To include algorithms which utilize bands in the NIR region of the
electromagnetic spectrum, we extrapolated the rrs(λ) data from HydroLight to 1300 nm using Equation
(1) of the quasi-analytical model of Lee, et al. [53] at a nominal wavelength of 1.0 nm:

rrs(λ) = g0

(
bb(λ)

a(λ) + bb(λ)

)
+ g1

(
bb(λ)

a(λ) + bb(λ)

)2

(8)

where g0 and g1 are assigned either g0 = 0.0949 and g1 = 0.0794 for oceanic case-1 water [54], g0 = 0.084
and g1 = 0.17 for coastal water, or averaged values of g0 = 0.0895 and g1 = 0.1247 for coastal and case-1
waters [53]. The selection of values for g0 and g1 were based on the condition that the selected values
provided the minimum Mean Absolute Relative Error (MARE) as defined in Equation (C1) in the
Appendix C between HydroLight and Equation (8) rrs (λ) spectra.

To model the rrs (λ) spectra to 1300 nm using Equation (8), we used the following IOPs—the
total absorption coefficient was computed using Equation (1) while the total backscattering
coefficient was computed using Equation (2). Equations (4) and (5) were used to compute
individual component-specific absorption and scattering coefficients using the respective component
concentration and the phase function used in the HydroLight simulations as mentioned in Section 2.1.1.
The total backscattering coefficient in Equation (8) was computed from the respective backscattering
components in Equation (3) which in turn were computed using respective scattering components
from Equation (2) and scattering phase functions and backscattering ratios discussed in Section 2.1.1.
The mineral specific absorption and backscattering coefficients were spline extrapolated to 1300 nm to
compute the mineral-specific absorption and backscattering coefficients required in Equations (4) and
(5). The rrs (λ) spectra generated using HydroLight and modelled using Equation (8) had MARE of
1.6% to 13.73%. The higher relative error was toward the blue end of the spectral region.

2.1.3. Grouping of Datasets

Using the extrapolation methods discussed in Section 2.1.2, in total 2.2 × 104 rrs(λ) spectra were
generated for the spectral range of 350 nm to 1300 nm at the nominal wavelength of 1.0 nm for the
parameters discussed in Section 2.1.1. The water, from the point of view of remote sensing, can be
classified into case-1 and case-2 water types: case-1 waters are optically dominated by phytoplankton
(CHL) while case-2 waters are more optically complex with varying concentrations of CHL, CDOM
and TSS that are region specific [28,45]. With respect to modelling the water types, it is not feasible
to model each water type that is optically similar to the optical properties of the water where each
individual TSS model was developed. The TSS models that are robust enough in one region can often
fail when applied to other regions because each TSS model is typically tuned to a specific region where
the waters are optically unique. Thus, due to the problem of accurately modelling the waters to suit
any specific TSS model, and acknowledging the fact that we cannot simulate all the conditions and
compositions of ocean constituents for different regions, we resorted to five different classes (shown
in Table 2) to represent varying cases of water where concentrations of one ocean constituent might
dominate the others or there are different degrees of contributions from each constituent. CLASS I
from the water classification in Table 2 represents high CHL and low CDOM concentration which
in a physical world would be associated with high phytoplankton blooms in eutrophic lakes where
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concentration of CHL dominates other optically active substances [55]. CLASS II with high CDOM
and low CHL represents water where CDOM dominates other optically active substances, which is
the case in lakes where CHL is generally low, for example as in the case in lakes in boreal regions and
waters off the coast in the Baltic Sea [55]. CLASS III and IV represent the extreme cases where both
CDOM and CHL are either high or low, which can be associated with high phytoplankton blooms in
coastal waters for CLASS III and open ocean water with low CHL for CLASS IV. CLASS V represents
a general case of coastal waters where CHL and CDOM are moderate. For all the classes of water
discussed above, the TSS is varied in its concentration independent of different water cases considered.

Table 2. Five different water classes.

CLASS CDOM (m−1) CHL (mg/m3)

I 0.01 20.0
II 10.0 0.1
III 10.0 20.0
IV 0.01 0.1
V 1.0 5.0

2.1.4. HydroLight-Derived Reflectance to Sensor Equivalent Reflectance

The TSS retrieval algorithms developed by various researchers use different types of reflectance
measurements to relate to TSS concentrations. The most common choice among all the TSS algorithms
considered here is the remote sensing reflectance (Rrs(λ)), which is defined by Equation (9).

Rrs(λ) =
Lw(0+, λ)

Ed(0+, λ)
(9)

where Lw (0+, λ) is the water leaving radiance and Ed (0+, λ) is the downwelling irradiance evaluated
above the water surface. The HydroLight generated rrs(λ) was converted to Rrs(λ) following [53] as
defined by Equation (10).

Rrs(λ) =
0.52rrs(λ)

1− 1.7rrs(λ)
(10)

After converting rrs(λ) to Rrs(λ), depending on the sensor and the bands used by particular TSS
algorithms, we convolved Rrs(λ) from Equation (10) to each sensor’s respective band reflectance using
the spectral response function of the sensor in their respective bands using Equation (11).

Rk
rs =

∫
∆k

Rrs(λ) s(λ)dλ∫
∆k

s(λ) dλ
(11)

where Rk
rs is the band averaged Rrs for each band, k, with band width ∆k and spectral response

function s(λ) of the sensor.
The next common reflectance type used in TSS algorithms is a normalized water-leaving

reflectance which is related to Rrs(λ) as follows:

ρw(λ)|N = πRrs(λ) (12)

There are also algorithms which employ normalized water leaving radiance which is calculated
using Equation (13).

Lw(λ)|N =
ρw(λ)× Fo(λ)

π
(13)

where Fo(λ) is the extraterrestrial solar irradiance band averaged to each sensor’s band using their
respective band spectral response functions.
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2.2. TSS Models

This section lists the available TSS algorithms from 2000–2015 that are empirical and semi-analytic
in their design for MODIS and Landsat-based sensors. We made an effort to select all the
available TSS algorithms for the sensors considered in this study using a search database ‘Scopus’
(https://www.scopus.com/), but we acknowledge that some of the literature for TSS algorithms,
which were not present in the database, might have been missed. However, within the limitation of our
search capability we made an effort to use other science databases and discovered 42 MODIS empirical
models and 7 semi-analytical models, 22 Landsat empirical models and 5 semi-analytical models.
The summaries of each TSS algorithm are provided in Table A1. Semi-analytical models described in
this section encompass all the semi-analytical models from MODIS (MOD-A) and Landsat (LAN-A).
Models are considered semi-analytic because they are derived based on a physical form [56] or one or
more parameters in the TSS algorithms are either parameterized using site-specific or global in-water
bio-optical properties [38]. Semi-analytic algorithms for the two sensors considered here consist of
algorithms that are based on radiative transfer modelling to relate the dependence of geo-physical
properties of the water, TSS in our case, to the reflectance via IOPs of the water.

Empirical models consist of TSS algorithms that are directly related with in situ AOPs of water
and the TSS using linear or non-linear regression methods. For the two optical sensors considered here
the empirical algorithms from MODIS (MOD-E) and Landsat (LAN-E) will be collectively known as
empirical algorithms unless otherwise stated explicitly. The form of the equations used in the empirical
methods ranged from simple linear [17,26,57,58], exponential [9,21,34,59], power [10,46,60] and other
polynomial relationships [61–63] using single, multiple or combinations of different bands in band
ratio or self-formulated indexes. To differentiate the algorithms within each sensor, algorithms will be
labeled with a respective number following each sensor’s name, MOD-A1 and MOD-E1 will represent
MODIS semi-analytic algorithm 1 and MODIS empirical algorithm 1 respectively; likewise, a similar
naming convention is followed for TSS algorithms for Landsat-based sensors.

2.3. Statistical Tests and Scoring System

The statistical tests used to evaluate the performance of each TSS algorithm for different types of
water described in Section 2.1.2 are based on the statistical tests used by Brewin et al. [44]. Further, to
objectively rank the TSS algorithms we used the point scoring system of Brewin et al. [44]. The details
of each statistical test and scoring system of each test adopted from [44] are described in the following
sections. Further, to contain the effect of spurious TSS generated by some of the TSS models being
applied outside their range, we only included TSS estimations that were between a lower bound
available in each TSS model (zero for the TSS models which did not contain the lower bound) and an
upper bound of twice the highest TSS concentration reportedly used to calibrate each TSS model.

2.3.1. Pearson Correlation Coefficient (r) Test

The point scoring system for the r test involves determining if the r-value for each TSS algorithm
is statistically significant when compared with the mean r-value for all TSS algorithms. The statistical
significance is determined through z-scores and the z-score is computed through Fisher’s r-to-z
transformation using relationships between the r-values of two models and the total number of
samples used to determine the r-values, described in [44] as:

z1 = 0.5log
(

1 + r1

1− r1

)
(14)

z2 = 0.5log
(

1 + r2

1− r2

)
(15)

https://www.scopus.com/
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zscore =
z1 − z2√
1

n1−3 + 1
n2−3

(16)

where r1 is the r-value of a specific TSS algorithm and r2 is the mean of all r-values from all the
TSS algorithms. Similarly, n1 is the number of samples in a specific TSS algorithm and n2 is the
mean number of samples from all TSS algorithms. In the event that the TSS model fails to produce a
reasonable estimate of TSS within the accepted bounds of each TSS model when tested for a particular
water type then in such cases the value of n1 can be different between two different water conditions,
similarly, the value of n2 also changes as it is the average number of samples of all TSS models in that
particular water type.

For algorithm comparison, a two-tailed test was performed using the z-score to determine the
p-value. If the p-value was less than 0.05 then the r-values were considered as statistically significant
and for each TSS algorithm that were statistically significant the following scores were assigned
comparing the r-value and the mean r-value (r) of all TSS algorithms:

r− test


0 points i f r < r
1 point i f r = r
2 points i f r > r

(17)

2.3.2. Root Mean Square Error (ψ) Test

The Root Mean Square Error (ψ) of a model estimate, yi, with respect to a true value, xi, can be
computed using Equation (18):

ψ =

√√√√ 1
N

N

∑
i=1

(yi − xi)
2 (18)

The 95% confidence intervals were also calculated for each TSS algorithm and the mean of all
TSS algorithms. For each TSS algorithm, the following scoring points were assigned according to the
conditions in Equation (19):

ψ− test


0 points
1 point
2 points

i f
i f
i f

ψ− ψ95%CI > ψ + ψ95%CI
ψ− ψ95%CI ≤ ψ− ψ95%CI ≤ ψ + ψ95%CI or ψ− ψ95%CI ≤ ψ + ψ95%CI ≤ ψ + ψ95%CI

ψ + ψ95%CI < ψ− ψ95%CI

(19)

where ψ95%CI and ψ95%CI is the 95% confidence interval of ψ and mean—ψ (ψ) of all TSS
algorithms respectively.

Figure 2 shows an example of scoring point classification for Landsat algorithms used in retrieving
TSS concentration for the ψ—test.
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Figure 2. Point classification for Landsat algorithms using the Root Mean Square Error Test. The upper
and lower dashed lines indicate the mean ± 95% confidence limits and the solid horizontal line is the
mean RMSE of all the TSS algorithms. Unfilled circles are RMSE of each TSS algorithm with respective
± 95% confidence limits shown by error bars.

2.3.3. The Bias (δ) Test

The bias (δ) of model estimate yi and true xi is calculated using Equation (20):

δ =
1
N

N

∑
i=1

(yi − xi) (20)

For each TSS algorithm, following score points were awarded according to the conditions in
Equation (21):

δ− test


0 points
1 point
2 points

i f
i f
i f

δ95%CI > δ95%CI AND δ− δ95%CI > 0 + δ95%CI or δ + δ95%CI > 0− δ95%CI
δ95%CI < δ95%CI or 0− δ95%CI ≤ δ + δ95%CI ≤ 0 + δ95%CI or 0− δ95%CI ≤ δ− δ95%CI ≤ 0 + δ95%CI

δ95%CI < δ95%CI AND 0− δ95%CI ≤ δ− δ95%CI ≤ 0 + δ95%CI or 0− δ95%CI ≤ δ + δ95%CI ≤ 0 + δ95%CI

(21)

where δ95%CI and δ95%CI is the 95% confidence interval of mean—δ (δ) of all TSS algorithms respectively.
Further, to score one point only one conditions must be satisfied while to score two points both the
conditions must be satisfied.

2.3.4. The Center-Pattern Root Mean Square Error (∆) Test

The center-pattern Root Mean Square Error (∆) is calculated using Equation (21):

∆ =

√√√√ 1
N

N

∑
i=1
{(yi − y)− (xi − x)}

2

(22)

The 95% confidence intervals were also calculated for each TSS algorithm and the mean of all TSS
algorithms. For each TSS algorithm, the following scores were assigned according to the conditions in
Equation (23):
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∆− test


0 points
1 point
2 points

i f
i f
i f

∆− ∆95%CI > ∆ + ∆95%CI
∆− ∆95%CI ≤ ∆− ∆95%CI ≤ ∆ + ∆95%CI or ∆− ∆95%CI ≤ ∆ + ∆95%CI ≤ ∆ + ∆95%CI

∆ + ∆95%CI < ∆− ∆95%CI

(23)

where ∆95%CI and ∆95%CI is the 95% confidence interval of ∆ and mean—∆ (∆) of all TSS
algorithm respectively.

2.3.5. The Slope (S) and Intercept (I) of a Type-2 regression Test

The Slope (S) and Intercept (I) of a type-2 regression [64] were calculated using Equation (24):

Y = X× S + I (24)

where Y is the TSS estimates derived from the TSS algorithms and X the true TSS. The following
scores were assigned by comparing the S—value of each TSS algorithm and mean—S (s) value of all
TSS algorithms.

S− test


0 points
1 point
2 points

i f
i f
i f

σs > σs AND S− σs > 1 + 2σs or S + σs < 1− 2σs
σs < σs or 1− 2σs ≤ S− σs ≤ 1 + 2σs or 1− 2σs ≤ S + σs ≤ 1 + 2σs

σs < σs AND 1− 2σs ≤ S− σs ≤ 1 + 2σs or 1− 2σs ≤ S + σs ≤ 1 + 2σs

(25)

where σs is the standard deviation of s from all TSS algorithms.
For the I parameter, for each TSS algorithm, the following scores were assigned according to the

conditions in Equation (26).

I − test


0 points
1 point
2 points

i f
i f
i f

σI > σI AND I − σI > 0 + 2σI or I + σI < 0− 2σI
σI < σI or 0− 2σI ≤ I − σI ≤ 0 + 2σI or 0− 2σI ≤ I + σI ≤ 0 + 2σI

σI < σI AND 0− 2σI ≤ I − σI ≤ 0 + 2σI or 0− 2σI ≤ I + σI ≤ 0 + 2σI

(26)

where σI is the standard deviation of mean—I (I) from all TSS algorithms. Further, in the S and I—test
in Equations (25) and (26), to score one point only one of the two conditions must be satisfied while to
score two points both the conditions must be satisfied.

2.3.6. Percentage of Possible Retrievals (η)

The percentage of possible retrievals (η) was calculated using Equation (27):

η =
NE

NM × 100% (27)

where NE is the total number of TSS retrieved using each TSS algorithm from the total number of
TSS concentrations (NM) considered in the study. For the point scoring system the following basis
was followed:

η − test


0 points
1 point
2 points

i f
i f
i f

η < η − ση

η − ση ≤ η ≤ η + ση

η > η + ση

(28)

where η and ση is the mean η-value and its standard deviation for all TSS algorithm in η-test.

2.3.7. Total Points

For objective comparison the performance of each TSS algorithm with respect to different water
types, all points from each statistical test were added and normalized by the mean score of all TSS
algorithms. Thus, a score of zero indicates that the TSS algorithm is performing lower than the mean
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of all TSS algorithms, a score of one indicates that the TSS algorithm is at par with the average of all
TSS algorithms, and a score of 2 means the TSS algorithm is better than the mean of all TSS algorithms.

Further, to test the stability of the scoring systems used in this study, we used a bootstrap
method [65], with 1000 runs and each time generating a new dataset by resampling via the replacement
method for model generated TSS and HydroLight TSS. Each new dataset was tested using the statistical
tests and scored using the scoring system described in Section 2.3. The results reported in the Section 3
are the mean values of the total points from the bootstrapping method with 2.5 and 97.5 percentiles
reported as uncertainty estimates for 95% confidence limits.

2.3.8. Mean of Total Points

The mean of total points is achieved by averaging the score of each TSS model across different
sediment types or solar zenith angles or backscattering ratios for the particular water classes described
in Section 2.3.7. For example, in the case of different sediment types in CLASS-I water, the mean of
total points in CLASS-I is an aggregate of total scores of each TSS model for different sediment types.
For the case of different backscattering ratios and solar zenith angle, the mean of total points is an
aggregate of each TSS model for different backscattering ratios and solar zenith angles, respectively,
for a specific sediment type in a particular water class. The error bars in the mean of total points are
the mean of uncertainty estimates of the total points obtained from the 95% confidence limit from the
bootstrapping method.

2.3.9. Final Score

The final score is the aggregate of the mean of total points across all water classes for different
sediment types, backscattering ratios and solar zenith angles. For example, the final score for
MOD-E1 is derived as the mean from the aggregate score of MOD-E1 at five different sediment
types, backscattering ratios, and solar zenith angles across all five different water classes. The error
bars are the standard deviation of errors from the mean of total points across all five different water
classes. Figure 3 shows an illustration of the point score system adapted from [44] and used in
comparing TSS models in this study. The error bars in the Final score are the mean of uncertainty
estimates from the mean of total points.
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3. Results

3.1. TSS Model Comparisons

Figures 4 and 5 show the quantitative comparison between the models using the final scores
which are aggregates of the total scores from different sediment types, backscattering ratios, and solar
zenith angles across all five different water classes for MODIS and Landsat-based models respectively.
The final results presented in Figures 4 and 5 are indications of the overall performance of the
TSS models when weighted across different water types, sediment types and backscattering ratios.
The detailed results of individual model performance in respective sediment types, backscattering
ratios, and water types are presented in Supplementary Material, S11. In addition, the Supplementary
Materials S1–S10 also provide the detailed statistical test results for each TSS model.
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From the final scores displayed in Figures 4 and 5 we can visually observe that there are clearly
high and low performing models. The high performing MODIS TSS models with final scores greater
than 1.5, in the order of highest to lowest final score, are MOD-E6, MOD-A1, MOD-E28, MOD-A4,
MOD-E10, and MOD-E42 and low performing MODIS TSS models with scores less than 0.5 are
MOD-E8, MOD-E2, MOD-E24, MOD-E22 and MOD-E32. For the Landsat TSS models, LAN-E3,
LAN-A4, LAN-E9, LAN-A5, and LAN-A1 have final scores greater than 1.5 while LAN-E11, LAN-E22,
LAN-E16, and LAN-E18 have final scores less than 0.5. In the final scores of low performing TSS
models, the LAN-E18 model has scores of zeros which shows that LAN-E18 failed to derive TSS within
the acceptable TSS bounds of 0.4–5.8 mg/L. We suspect the published algorithm includes an error.
The overall ranking of the TSS models using the final scores for each TSS model is also presented
in Tables B1 and B2 for MODIS and Landsat respectively. Further, Tables B1 and B2 provides mean
total scores for different sediment types, backscattering ratios, and solar zenith angles in all five water
classes for respective TSS model.

With respect to the results displayed in Figures 4 and 5, without the inclusion of error bars the
distinction between the high performing TSS models is clear and we can easily compare the scores of
each TSS model to obtain a ranking. For instance, in Figures 4 and 5, the MOD-E6 and LAN-E3 are the
highest scoring models with final scores of 1.70 and 1.73 respectively. However, on inclusion of the
error bars, all high performing TSS models may be considered comparable and difficult to separate in
terms of robustness, thus may all be ranked equally. Likewise, the case is similar for low performing
TSS models where their error bars overlap. Further, we observe that two and three of the top five
high scoring TSS models in MODIS and Landsat respectively are semi-analytic while none of the
semi-analytic models were in the bottom five low scoring models.

3.2. Evaluation of Models

3.2.1. Model Evaluation Using HydroLight Data

The five high and low scoring models from MODIS and Landsat TSS models were selected to
further evaluate their performance. From all available HydroLight data discussed in Section 2.1.2,
the aforementioned high scoring TSS models were evaluated for their Relative Error (RE) between
model-derived and HydroLight TSS. From the results presented in Table 3 we observe that there is high
variability in the RE results amongst the respective MODIS and Landsat TSS models. The differences
in the Smallest Relative Error (SRE) for high scoring TSS models were not as large as the differences
within the MARE and Largest Relative Error (LRE). The MARE ranged from a low of 69.96% to a high
of 481.82% while the SRE and LRE ranged from 15% to 63.14% and 139.35% to 1109.80% respectively. In
the low scoring models, the high variability in the RE was observed with the MARE for low performing
models ranging from 106.43% to 1832.79% while the SRE and LRE ranged from 39.90% to 213.54%
and 118.16% to 6778.93% respectively. In both MODIS and Landsat high scoring models, the LRE
results were for backscattering ratios of 0.001 and for Bukata type sediment. The SRE results were
for backscattering ratios of 0.01 and calcareous sand sediment. Further, for the SRE in both the high
and low performing TSS models, we observe that the high and low performing TSS models scored
reasonably well in either one of the categories in sediment types, backscattering ratios, solar zenith
angle and water classes. For instance, the low performing LAN-E22 scored higher than most of the
high scoring TSS models in SRE results which indicated that LAN-E22 retrieves better in one of the
water types.
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Table 3. Relative Error and ∆Rrs Uncertainty Tolerance results for the highest and lowest scoring
models’ evaluation using HydroLight Data. The highest scoring models are in bold text and the lowest
scoring models are in regular italic text. The results provided in parenthesis represent the +∆Rrs and ‘-’
indicates the model failed to provide TSS estimation within acceptable bounds. SRE: Smallest Relative
Error. LRE: Largest Relative Error. MARE: Mean Absolute Relative Error. ARE: Absolute Relative Error.

Model
Relative Errors from HydroLight

Data Validation ARE from RRS Uncertainty (%)

SRE (%) MARE (%) LRE (%) −(+) 10% ∆ Rrs −(+) 20% ∆ Rrs −(+) 50% ∆ Rrs

MOD-E6 59.35 94.30 139.35 70.46 (113.02) 44.59 (129.11) 91.94 (170.65)
MOD-A1 15.00 75.56 151.14 39.24 (126.59) 38.89 (182.84) 97.92 (294.93)
MOD-E28 51.61 148.62 191.97 97.96 (211.76) 49. 89 (271.68) 53.30 (497.21)
MOD-A4 63.14 257.59 386.87 157.51 (346.27) 68.10 (410.35) 96.13 (530.23)
MOD-E10 32.17 92.42 171.47 53.64 (149.97) 33.54 (242.01) 49.85 (396.29)
MOD-E8 189.55 220.69 344.16 244.77 (197.29) 268.89 (180.18) 341.16 (164.68)
MOD-E2 189.55 220.69 344.16 244.77(197.29) 268.89 180.18() 341.16 (164.68)
MOD-E24 77.87 141.49 218.80 10824.61 (9960.40) 11278.06 (9549.92) 12747.84 (8416.88)
MOD-E22 42.31 1832.79 5403.47 2461.87(1149.55) 1369.44 (1306.50) 187.31 (1206.94)
MOD-E32 39.90 1717.85 6778.93 2575.05(1067.58) 1381.65 (1385.73) 184.20 (288.28)
LAN-E3 59.31 120.37 166.68 69.03 (170.14) 33.14 (220.15) 76.58 (387.62)
LAN-A4 57.05 197.26 266.40 134.36 (262.03) 72.73 (331.63) 74.29 (541.89)
LAN-E9 23.52 481.82 1109.80 171.42 (857.00) 51.00 (1167.00) 92.43 (1974.47)
LAN-A5 62.86 244.28 362.44 149. 20 (341.63) 66. 53 (414.85) 95.90 (543.85)
LAN-A1 16.07 69.96 141.53 38.02 (115.85) 39.00 (169.17) 97. 78 (286.31)
LAN-E10 76.17 106.43 118.16 88.74 (126.91) 82.69 (161.62) −(357.92)
LAN-E11 213.54 241.28 337.58 260.07 (22.48) 278.86 (203.89) 335.21 (177.52)
LAN-E22 19.41 110.69 164.56 110. 70 (110.688) 110. 64 (110.72) 196.66 (110.60)
LAN-E16 77.55 135.45 222.93 150.00 (109.18) 151.20 (103.59) 223.24 (85.67)
LAN-E18 - - - - - -

The TSS derived using real satellite-data are bound by uncertainty related to observational,
instrumental, measurement and data processing errors, the latter largely associated with the
atmospheric correction procedure [66]. Thus, to assess the tolerance of high and low performing
TSS models to the uncertainties in Rrs, which is the key input in derivation of the TSS concentration,
we simulated the effect of Rrs uncertainty (∆Rrs) by varying the Rrs by ±10%, ±20% and ±50% of
the HydroLight generated Rrs at each of the MODIS and Landsat bands. The Rrs ± ∆Rrs was used
in deriving TSS concentration and compared with HydroLight input TSS to calculate the Absolute
Relative Error (ARE) of the TSS model. Table 3 reports the ARE and the MARE of HydroLight Data
Validation as defined in Equation C2 in Appendix C. In general, we observe that with the increase
in ∆Rrs the ARE also increases and the errors are higher for +∆Rrs than −∆Rrs. The ARE for high
scoring TSS models ranged from 33.14% to 1974.47% while for low scoring TSS models it ranged from
82.69% to 12747.84% which shows both high and low performing TSS models are not impervious
to uncertainty in Rrs measurements. However, high scoring TSS models show better tolerance to
∆Rrs than the low scoring TSS models. The details of the TSS models deviation in estimating TSS
concentration from the error-free HydroLight data with ∆Rrs are shown in Table 3.

3.2.2. Model Evaluation Using In situ Data

As part of a regional water monitoring program, in situ reflectance and TSS measurements were
carried out for the waters off the coast of northern Western Australia to develop regional TSS models
(see MOD-A1 and LAN-A1 in Appendix A) [67]. The details of the in situ measurements and regional
TSS model developed using in situ data can be obtained from [67]. A set of high scoring models
(MOD-E10, MOD-A4, LAN-E9, and LAN-A5) and low scoring models (MOD-E1, MOD-E38, LAN-E6,
and LAN-A3) were selected to compare with MOD-A1 and LAN-A1 in the context of in situ data
comparisons. These subsets of models were selected because the reflectance bands used by other high
scoring models were beyond the available reflectance bands in the in situ data. Table 4 shows the Mean
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RE results obtained from each of the model evaluations against in situ data. Table 4 displays a high
variability in the Mean RE for model comparisons for high scoring models with in situ data, from a low
of 43.11% for LAN-E9 to a high of 102.59% for LAN-A5. When compared with the regional model’s
MOD-A1 and LAN-A1 MARE results, we see that both the high scoring TSS models MOD-E10 and
LAN-E9 and low scoring TSS models LAN-E6 and LAN-A3 were comparable. However, the results
presented in Table 4 also show the extreme variability observed in the Mean RE for the low scoring
models with a low of 35.62% and a high of 256%.

Table 4. The MARE for high and low scoring models for in situ data. The high scoring models are in
bold text and the low scoring models are in italics.

Error/
Model MOD-E10 MOD-A1 * MOD-A4 MOD-E1 MOD-E38 LAN-E9 LAN-A1 * LAN-A5 LAN-E6 LAN-A3

Mare
(%) 46.20 33.33 100.85 341.04 256.00 43.11 33.36 102.59 55.23 35.62

* MARE was obtained using the leave-one-out cross validation method discussed in [67].

4. Discussion

4.1. Data and Methodological Limitation

The data used in this study to quantitatively compare TSS models have been generated using
the widely used [68,69] in-water radiative transfer model HydroLight 4.2. The simulated data do not
encompass all different water types in which each TSS model was developed to be used, however,
it does provide us with a dataset that is independent of the data that has been used to parameterize
the models to avoid biases in the results. To include all the models in comparisons, the simulated data
were extrapolated to the NIR region of the spectrum using the methods discussed in Section 2.1.2.
The extrapolation of reflectance data can introduce unrealistic values if the underlying assumptions of
the spline extrapolation methodology does not hold true for the NIR regions. The extrapolation of
the data is not ideal when used in modelling remote sensing products but the error for extrapolation
had a MARE of 4.0% which was considered to be acceptable for this study. The ideal case for data for
model comparisons would be to use a real global water data base, which is currently not available.
The NOMAD dataset (http://seabass.gsfc.nasa.gov/) that is currently the most extensive dataset of in
situ reflectance measurement and in-water variables did not contain the TSS measurements essential
for this study.

The use of the objective methodology [44] of comparing models, used in this study to compare
TSS models, can aid users in selection of TSS models that are best suited for waters of regional interest
in the absence of means and a method to produce their own regionally tuned TSS algorithms. However,
the objective methodology used here is not without limitations, as discussed by [44] with respect
to using average performance to classify between high and low performing models. The very low
performance of one particular model would affect the average of all other models to the extent that it
becomes difficult to differentiate scores between models. For example, in Figure S11.1 for the score
of MODIS TSS models in yellow clay, MOD-E1-2, E8-9, E15, E22-24, E32, and E38 all have low scores
which increases the score of other TSS models making it difficult to differentiate among high scoring
models. This problem is further exacerbated when the majority of TSS models score low which makes
the few remaining high scoring models to appear similar in score, which is the case in Figure S11.22
for bb/b of 0.001.

The objective classification was conducted on a case by case basis for different water types,
sediment types, solar zenith angles, and backscattering ratios. The overall low performance of models
in the final scores in Figures 4 and 5 does not necessarily mean that low performing TSS models scored
less in all the categories used in deriving the final score. For example, in Figure 5, LAN-E22 scored
a very low final score when compared to other TSS models, but when considering specific results as
presented in Figures S11.16–S11.20, LAN-E22 received a score at least comparable with most of the

http://seabass.gsfc.nasa.gov/
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best performing models in all water classes for the red clay sediment type. Likewise, similar cases
can be ascertained for all the respective TSS model’s scores for specific water classes, sediment types,
backscattering ratios and solar zenith angle (Results provided as Supplementary Material S11 for
other overall low scoring TSS models in Figures 4 and 5). An additional disadvantage of the objective
methodology used here is that the final score does not necessarily show the performance of all models
in different categories considered, it shows only the relative performance of models in comparison
with the mean scores of TSS models. In Figure S11.1, we observe that almost all TSS models score
relatively higher total points for brown earth and lower for Bukata sediment types when compared
with other sediments.

To account for the methodological uncertainties from the range of univariate statistical tests
described in Section 2.3, we used a bootstrapping method [44,65] which generates the confidence limit
in the final score. The results from the 1000 bootstrap runs presented in all the score charts shows that
the mean score of models did not vary significantly for each different run, the ranges of 95% confidence
limits were smaller for most of the models. Further, to limit the effect of spurious TSS values derived
by some of the models, especially models with exponential and power functions, we filtered out
any derived TSS value below a minimum of 0.001 mg/L and greater than a twice the maximum TSS
concentration of each TSS model. Filtering out the spurious results can artificially inflate the final
scores because only values that are within the upper and lower bounds would be considered for
statistical tests. However, the possible percentage retrieval test discussed in Section 2.3.6 negate such
an effect because filtering out spurious results would result in lower possible percentage retrieval and
lower score in the percentage retrieval test.

4.2. TSS Model Selection Guidelines

Even though there were clearly distinct higher and lower performing TSS models from the
final score chart presented in Figures 4 and 5, the performance of individual models varied widely
when viewed against respective water types, sediment types, and backscattering ratios. The results
presented in Figures 4 and 5 can be of use to the end-users who are clearly interested in TSS models
that are robust enough to be used in waters for which they have little or no information of their
optical and physical properties to generate TSS products. Figures 4 and 5 indicate that the MODIS
TSS models MOD-E6, MOD-A1, MOD-E28, MOD-A4 and MOD-E10 and the Landsat TSS models
LAN-E3, LAN-A4, LAN-E9, LAN-A5 and LAN-A1 are ranked the highest in terms of likely suitability
for estimating TSS concentration of unknown water types. An example of the selection of high
performing TSS models using a real water dataset was demonstrated in Section 3.2.2 and it can
be seen that the results varied widely among the high scoring TSS models, with MOD-E10 and
LAN-E9 producing results within a MARE of 46.20% and 43.11% and other higher scoring models
producing results as high as 102.59%. Considering the retrieval error of TSS concentrations from MODIS
algorithms are typically reported as in the range of ~18.0% to ~61% for many studies conducted in
the last decade [35,37,38,46,47], we consider the regional TSS models MOD-A1 and LAN-A1, and the
empirical models MOD-E10 and LAN-E9 as being the most appropriate for the waters in the north of
Western Australia.

However, readers with prior information of water and sediment types can use information
provided in S11, and Tables B1 and B2 as a guideline in selecting the model that is best suited for
that particular water type. The difference in Relative Error between the high and low scoring models
validated using HydroLight data and the in situ data showed that there is a huge difference between
the two. The best performing model from the high scoring models shows that TSS can be estimated
with a Mean RE between 69.96% and 481.82% (for different water conditions), but the low scoring
model’s results can vary dramatically within a Mean RE ranging from 106.43% to 1832.79%. The high
Mean RE for low scoring models does not necessarily mean that the low scoring model performs
low for all waters types. The low scoring TSS model’s performance in one category or more can
be significantly better than other models, but overall on average the model performs poorly when
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compared with high scoring models across all water types. For example, the low scoring model
LAN-E22 displays the Smallest RE of 19.41% which is certainly better than the Smallest RE of most of
the high scoring model’s Smallest RE. Thus, with prior knowledge of water types and bio-geochemical
properties of the region, we can select a TSS model from both high and low performing TSS models
presented in Tables B1 and B2 that have higher scores in the water that are similar to the region where
TSS model would be applied.

The results also showed that semi-analytic models were generally higher in ranking when
compared with empirical models. The reason for most semi-analytic models performing better than
empirical models can be attributed to the fact that semi-analytic models, by design, were based on
radiative transfer theory [38,70] and one or more parameters were calibrated using general in situ
bio-optical properties representative of a wide range of global waters [7,38].

5. Conclusions

In summary, in this study we have applied an objective methodology to compare the TSS models
and their suitability in use for retrieving TSS in the absence of a regionally tuned TSS model. From the
study we have identified the MODIS TSS models MOD-E6, MOD-A1, MOD-E28, MOD-A4 and
MOD-E10 and the Landsat TSS models LAN-E3, LAN-A4, LAN-E9, LAN-A5 and LAN-A1 as suitable
for estimating TSS concentration in waters with no prior knowledge of bio-optical or bio-geochemical
properties. The results from this study highlighted the impact of “local tuning” of algorithms, showing
that some low scoring models performed better than the high scoring models in one or more specific
sediment, backscattering, solar zenith and water types. The results from this study can be used to
ascertain which TSS models perform well in particular water types, sediment types and backscattering
ratios for use in aiding the selection of a TSS model suited for use in a particular water type. In addition,
the results also show that the semi-analytic TSS models are generally better than empirical TSS models
in deriving TSS estimation in unknown water types.

Supplementary Materials: The following supplementary materials are available online at www.mdpi.com/2072-
4292/8/10/810/s1. Figure S1.1: Scatter plot of MODIS-TSS models in CLASS-I water for brown earth sediment
with bb/b ratio of 0.018 and solar zenith angle of 30◦, Figure S1.2: Scatter plot of MODIS-TSS models in CLASS-I
water for bukata sediment with bb/b ratio of 0.018 and solar zenith angle of 30◦, Figure S1.3: Scatter plot of
MODIS-TSS models in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.018 and solar zenith
angle of 30◦, Figure S1.4: Scatter plot of MODIS-TSS models in CLASS-I water for red clay sediment with bb/b
ratio of 0.018 and solar zenith angle of 30◦, Figure S1.5: Scatter plot of MODIS-TSS models in CLASS-I water for
yellow clay sediment with bb/b ratio of 0.018 and solar zenith angle of 30◦, Figure S1.6: Scatter plot of MODIS-TSS
models in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.001 and solar zenith angle of 30◦,
Figure S1.7: Scatter plot of MODIS-TSS models in CLASS-I water for calcareous sand sediment with bb/b ratio of
0.01 and solar zenith angle of 30◦, Figure S1.8: Scatter plot of MODIS-TSS models in CLASS-I water for calcareous
sand sediment with bb/b ratio of 0.05 and solar zenith angle of 30◦, Figure S1.9: Scatter plot of MODIS-TSS models
in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.1 and solar zenith angle of 30◦, Figure S1.10:
Scatter plot of MODIS-TSS models in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.081 and
solar zenith angle of 15◦, Figure S1.11: Scatter plot of MODIS-TSS models in CLASS-I water for calcareous sand
sediment with bb/b ratio of 0.081 and solar zenith angle of 45◦, Figure S1.12: Scatter plot of MODIS-TSS models
in CLASS-I water for calcareous sand sediment with bb/b ratio of 0.081 and solar zenith angle of 60◦; Figures in
S2, S3, S4 and S5 all aforementioned Figures in S1 in CLASS-II, CLASS-III, CLASS-IV and CLASS V water type.
In S6 and S10 are similar aforementioned Figures in S1–S5 but for Landsat TSS models; Figure S11.1–S11.5: Total
scores for different sediment and the average score across all five sediments in CLASS-I, CLASS-II, CLASS III,
CLASS IV and CLASS V water type respectively, Figures S11.6–S11.10: Total scores for different backscattering
ratios and the average scores across all backscattering ratios in CLASS-I, CLASS-II, CLASS III, CLASS-IV and
CLASS-V water type respectively, Figures S11.11–S11.15: Total scores for different solar zenith angles and the
average scores across all solar zenith angles in CLASS-I, CLASS-II, CLASS-III, CLASS IV, and CLASS-V water
type respectively, Figures S11.16–S11.30 are similar to Figures S11.1–S11.15 but for Landsat TSS models.
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Appendix A

Table A1. The summary of TSS algorithms mentioned in Section 2.2.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E1 Kumar, et al.
(2016) [71]

Chilika Lagoon,
India 3.9–161.7 TSS = 13181 Rrs(B1)2 − 1408.6 Rrs(B1) + 44.15 0.915 RMSE = 2.64 mg/L 54

MOD-E2 Ayana, et al.
(2015) [40]

Gumera
catchment, Lake
Tana, Ethiopia

~5–255 TSS = 2371ρ(B2)− 62.8 0.95 SE = 10.77 mg/L 54

MOD-E3 Chen, et al.
(2015) [22]

Estuary of Yangtze
River and Xuwen
Coral Reef, China

5.8–577.2

l og(TSS) = −b+
√

b2−4a(c−y)
2a

}
Rrs(B1) < 0.025

log(TSS) = −b+
√

b2−4a(c−y)
2a

}
Rrs(B1) > 0.025

a = −0.334, b = 1.0046, c = 0.8251, (b2− 4a(c− y)) ≥ 0
y = log(Rrs(B2))/log(Rrs(B1))

0.752 RMSE = 2.1 mg/L
RMSE = 38.6 mg/l 40

MOD-E4
Zhang, et al.

(2016) [72] and Shi,
et al. (2015) [21]

Lake Taihu, China 1.7–343.9 TSS = 9.65exp(58.81Rrs(B1)) 0.70 RMSE = 14.0 mg/L 150

MOD-E5 Choi, et al.
(2014) [34]

Mokpo coastal
area, Korea 1.03–193.10 TSS = 1.545exp(179.53Rrs(B1)) 0.92 - 96

MOD-E6 Feng, et al.
(2014) [35] Yangtze estuary 4.3–1762.1

TSSlow = 2.49exp (97.19Rrs(B1))} TSS < 10(mg/l)
TSShigh = 57.58exp (3.48 (Rrs(B2)/Rrs(B1)))

}
TSS > 150(mg/l)

TSSmid = α× TSSlow + β× TSShigh

}
50 < TSS < 150(mg/l)

α =
ln(TSSlow/50)

ln(150/50) , β =
ln(150/TSSlow)

ln(150/50)

0.88 (low)
0.93 (high) RMSE = 27.7% 78

MOD-E7 Hudson, et al.
(2014) [23]

Fjord in Southwest
Greenland 1.2–716 TSS = 1.80exp(19.11(Rrs(B1) + Rrs(B2)) 0.84 - 143

MOD-E8 Kaba, et al.
(2014) [31]

Lake Tana,
Ethiopia ~5–255 TSS = 2371× ρ(B2)− 62.8 0.95 RMSE = 16.5 mg/L 54

MOD-E9 Lu, et al. (2014) [73] Bohai Sea, China ~<160 TSS = exp
(

Rrs(B1)−0.0123
0.0038

)
0.75 RE ≤ 20% 627

MOD-E10 Park and Latrubesse,
(2014) [32]

Amazon River
system 30–150 TSS = 27.05exp(7.83ρ(B1)) 0.88 RMSE = 6.2 mg/L 232

MOD-E11 Sokoletsky, et al.
(2014) [74]

Yangtze river
estuary 0–2500 TSS = 10(2×[Rrs(B1)/Rrs(B4)]) - 361

MOD-E12 Chen, et al.
(2014) [61] Bohai Sea 4–106.4 TSS = 3× 108x3 − 2× 106x2 + 5453.3x + 3.8825

x = ρw(B15)− 1.107ρw(B16)
0.954 RMS = 30.12% 48
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E13 Cui, et al. (2013) [75] Ponyang lake,
China 0–141.9 TSS = 1.063exp(27.859ρ(B1)) 0.91 SE = 11.20 mg/L 54

MOD-E14 Kazemzadeh, et al.
(2013) [76]

Bahmanshir River,
Iran 30–500 TSS = 22.92ρ(B1)0.82 0.63 RMSE = 261.84 23

MOD-E15 Raag, et al.
(2013) [17]

Pakri Bay, Gulf of
Finland 0–10 TSS = 592.54ρ(B1)) + 1.1136 0.52 77

MOD-E16 Qui (2013) [46] Yellow River
Estuary, China 1.9–1896.5 TSS = exp

(
1.1932

(
Rrs(B12)
Rrs(B14)

)0.875
)

0.95 MAE = 24.5 mg/L 81

MOD-E17 Villar, et al.
(2013) [77] Maderia River 25–622 TSS = 1020

(
Rrs(B2)
Rrs(B1)

)2.94
0.62 - 282

MOD-E18 Min, et al.
(2012) [78]

Saemangeum
coastal area, Korea 0.1–55 TSS = 0.24exp(188.3Rrs(B12)) 0.90 - 88

MOD-E19 Ondrusek, et al.
(2012) [62] Chesapeake Bay 4.5–14.92 TSS = 3.8813(nLw(645))3 − 13.822(nLw(645))2

+19.61(nLw(645))
0.95 MPD = 4.2% 35

MOD-E20 Son and Wang,
(2012) [39] Chesapeake Bay 1.0–20 TSS = 1.7 + 5.263 Kd(490) 0.77 STD = 0.48 15,720

MOD-E21 Wang, et al.
(2012) [60]

Hangzhou Bay,
China 133–1,950 TSS = 1.4599

(
Rrs(B1)
Rrs(B2)

)2.3874
0.82 35

MOD-E22 Chen, et al.
(2011) [24]

Apalachicola Bay,
USA 1.29–208 log(ρ(B2)/log(ρ(B1)) = −0.1325log(TSS)2 + 0.7429log(TSS) + 0.6768 0.86 RMSE = 4.76 mg/L 32

MOD-E23 Chen, et al.
(2011) [36]

Apalachicola Bay,
USA 1.29–208 log(ρ(B2)/log(ρ(B1)) = 0.4339log(TSS) + 0.8288 0.8 RMSE = 4.79 25

MOD-E24 Jiang and Liu(2011)
as cited in [22]

Poyang Lake,
China 0–40 TSS = 1365.5x2 − 369.08x + 27.216

x = Rrs(B3) + Rrs(B4)
0.81 - 27

MOD-E25 Siswanto, et al.
(2011) [79]

Yellow and East
China Sea 0.04–340.07 TSS = 10(0.649+25.623(Rrs(B12)+Rrs(B13))−0.646( Rrs(B10)

Rrs(B12) )) 0.92 RPD = 15.7% 223

MOD-E26 Zhao, et al.
(2011) [80]

Mobile Bay
estuary, Alabama 0–87.8 TSS = 2.12exp(42.92ρ(B1)) 0.781 RMSE = 5.42 63

MOD-E27

Petus, et al.
(2010) [81] and

Petus, et al.
(2014) [37]

Bay of Biscay,
France 0.3–145.6 TSS = 12450 Rrs(B1)2 + 666.1Rrs(B1) + 0.45 0.97 RMSE = 61% 74
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E28 Wang and Lu
(2010) [25]

Yangtze River,
China 45–909 TSS = 61.369exp(0.2623x)

x(%) = ρ(B2)− ρ(B5) 0.78 RRMSE = 36.5% 35

MOD-E29 Wang, et al.
(2010) [82]

Apalachicola Bay,
USA 1–64 log(TSS) = 1.5144 (log(ρ(B2))/log(ρ(B1)))− 0.5755 0.72 - 16

MOD-E30 Wang, et al.
(2010) [47]

Middle and Lower
Yangtze River,

China
75–881 TSS = 60.24x− 23.03

x(%) = ρ(B2)− ρ(B5) 0.73 RMSE = 29.7% 153

MOD-E31 Zhang, et al.
(2010) [83]

Yellow and East
China Sea 0.68–27.2

log(TSS) = s0 + s1(Rrs(B4) + Rrs(B1))
+s2(Rrs(B10)/Rrs(B4))

s0 = 0.6311, s1 = 22.2158, s2 = −0.5239
0.87 ARE = 26% 81

MOD-E32 Chen, et al.
(2009) [63]

Apalachicola Bay,
USA 1.29–208 log(ρ(B2)/log(ρ(B1)) = −0.1356log(TSS)2 + 0.7402log(TSS) + 0.6836 0.853 RMSE = 5.5 mg/L 25

MOD-E33 Chu, et al.
(2009) [84]

Kangerlussuaq
Fjord, Greenland ~500 TSS = 10(

Rrs(B1)−1.6
7.5 ) - - -

MOD-E34 Doxaran, et al.
(2009L) [85]

Gironde Estuary,
France 77–2182 TSS = 12.996exp (Rrs(B2)/(0.189Rrs(B1))) 0.89 RMSE: 18%–22% 204

MOD-E35 Jiang, et al.
(2009) [86] Taihu Lake, China 0–170 TSS = 10(0.3568ln(Rrs(B2)+3.3431) 0.81 ARE = 20.5% 56

MOD-E36 Liu and Rossiter
(2008) as cited in [22]

Poyang Lake,
China 15.6–518.8 TSS = 7167ρ(B1)− 42.0 0.91 - 25

MOD-E37 Wang, et al.
(2008) [87]

Hangzhou Bay,
China 17–6949 TSS = exp (43.233Rrs(B2) + 1.396) 0.76 RMSE = 424 mg/L 25

MOD-E38 Wu and Cui (2008)
as cited in [22]

Poyang Lake,
China 0-142 TSS = 86236.23(Rrs(B1))3 − 15858.70(Rrs(B1))2

+1005.29(Rrs(B1))− 15.67
0.92 - 42

MOD-E39 Kutser, et al.
(2007) [26]

Muuga and
Sillmae Port,

Estonia
2–8 TSS = 349.83ρ(B1) + 2.9663 0.86 - 11

MOD-E40 Liu, et al. (2006) [58] Middle Yangtze
River, China 23.4–61.2

TSS = exp(2.495x + 1.81)
x =

ρ(B1)−ρ(B2)
ρ(B1)+ρ(B2)

0.72 RE = 34.7% 41

MOD-E41 Sipelgas, et al.
(2006) [27] Parki Bay, Finland 3–10 TSS = 110.3ρ(B1) + 2.0 0.58 - 48
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

MOD-E42 Miller and Mckee,
(2004) [3]

Northern Gulf of
Maxico, USA 1.0–55.0 TSS = 1140.25× Rrs(B1)− 1.91 0.89 RMSE = 4.74 mg/L 52

MOD-A1 Dorji, et al.
(2016) [67]

Onslow, Western
Australia 2.4–69.6 TSS =

23.47
(

x(B1)
1−x(B1)

)
1−0.69

(
x(B1)

1−x(B1)

)
∣∣∣∣∣ x(B1) =

−g1+
√
(g1)2+4g2rrs(B1)

2g2

g1 = 0.084, g2 = 0.17, and rrs(B1) = Rrs(B1)/(0.52 + 1.7Rrs(B1))
0.85 MARE = 33.33% 48

MOD-A2 Han, et al.
(2016) [88]

Europe, French
Guiana, Vietnam,

North Canada,
and China

0.154–2627

TSS = WL ·TSSL+WH ·TSSH
WL+WH

WL =


1, i f Rrs(B1) ≤ 0.03sr−1

0, i f Rrs(B1) ≥ 0.04sr−1

log10(0.04)− log10(Rrs(B1)), otherwise
|TSSL =

404.4ρw(B1)
1−ρw(B1)/0.5

WH =


0 i f Rrs(B1) ≤ 0.03sr−1

1, i f Rrs(B1) ≥ 0.04sr−1

log10(Rrs(B1))− log10(0.03), otherwise
|TSSH =

1214.669ρw(B1)
1−ρw(B1)/0.3394

- MRAD = 51.9-59% TSSL = 366
TSSH = 46

MOD-A3 Shen, et al.
(2014) [89]

Yangtze estuary,
China -

Rrs = αβ×TSS
1+β×TSS+

√
1+2β×TSS

Rrs(B2)} α = 0.1038, β = 1.8042
0.91 RMSE = 0.0048

(sr−1) 144

MOD-A4 Vanhellemont and
Ruddick (2014) [11]

Southern North
Sea, UK 0.5–100 TSS =

258.85ρ(B1)
1−ρ(B1)/0.1641

ρ(B1) = 0.529× π × rrs(B1)
- - -

MOD-A5 Chen, et al.
(2013) [56]

Changjiang River
Estuary, China 70–710 TSS = 1.7492 (Rrs(B16)−1 − Rrs(B15)−1)

−1
+ 0.0912 0.89 MRE = 28.99% 20

MOD-A6 Katlane, et al.
(2013) [90] Gulf of Gabes 0.7–30 TSS = 62.86

(
ρ(B1)

(0.1736−ρ(B1))

)
ρ(B1) = πRrs(B1)

- - 56

MOD-A7 Nechad, et al.
(2010) [38]

Southern North
Sea 1.24–110.27 TSS =

400.75ρ(B1)
1−ρ(B1)/0.1774 + 1.02

ρ(B1) = 0.539× πrrs(B1)
0.80 RMSE = 11.23 mg/L

MRE = 38.9% 72

LAN-E1 Cai, et al. (2015) [91] Hangzho Bay,
China 203–481 ln(TSS) = 0.01113115× L(TM4) + 4.794229 0.951 - 35

LAN-E2 Cai, et al. (2015) [92] Hangzho, Bay 179–389.58 TSS = 314.435ρ(TM3) + 3805.982ρ(TM4) + 28.54 0.976 - 27

LAN-E3 Kong, et al.
(2015) [7] Gulf of Bohai Sea 2.1–208.7 TSS = 5.184 + 1349.63Rrs(TM4) + 614561.673 [Rrs(TM4)]2 0.844 RMSE = 5.59 70

LAN-E4 Kong, et al.
(2015) [93]

Caofeidian, Bohai
Sea 4.3–104.1 TSS = 296.29x2 − 272.62x + 70.939

x = Rrs(TM3)/Rrs(TM2)
0.977 RMSE = 7.22 mg/L

MRE = 25.35
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Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

LAN-E5 Lim and Choi
(2015) [94]

Nakdong River,
South Korea ~3–14 TSS = 11.80− 50.608ρ(OLI2) + 14.58ρ(OLI5)

−4.764ρ(OLI5)/ρ(OLI3) 0.74 RMSE = 1.40 48

LAN-E6 Wu, et al. (2015) [9] Dongting Lake,
China 0–63.2 TSS = 1.1034× exp(23.61× ρ(OLI4)) 0.91 RMSE = 4.41 mg/L 52

LAN-E7 Zheng, et al.
(2015) [95]

Dongting Lake,
China 4.0–101 TSS = 4616.4× Rrs(TM4)− 4.362 0.82 MAPE = 21.3%

RMSE = 7.01 mg/L 42

LAN-E8 In-Young, et al.
(2014) [96]

Old Women Creek
Estuary, Ohio, US 1.0–278 Turb = 14.44× ρ(%, ETM4) + 7.61

Turb = 1.03TSS− 3.54 0.65 11

LAN-E9 Zhang, et al.
(2014) [10]

Yellow river
estuary 1.0–1500 log10(TSS) = 44.072× Rrs(TM3 + 0.1591) 0.9672 MRE = 26.1% 44

LAN-E10 Hao, et al.
(2013) [97]

Yangtze Estuary,
China ~40.0–750 R(B4) = 0.0444 + 32.7736× [TSS/ (51.6753 + TSS)]

−32.7260× [TSS/ (51.6753 + TSS)]× exp(−0.0000012081× TSS) 0.8175 ARE = 36.83 17

LAN-E11 Hicks, et al.
(2013) [98]

Waikato River,
New Zealand 2.0–962 TSS = −52.817 + 1449.4ρ(ETM4) 0.939 RMSE = 21.3 35

LAN-E12 Min, et al.
(2013) [78]

Saemangeum
coastal area, Korea 0.1–55 TSS = 0.24exp(188.3Rrs(TM2)) 0.90 - 88

LAN-E13 Miller, et al.
(2011) [99]

Albemarle-Pamlico
Estuarine System,
North Carolina,

USA

~5.0–30 TSS = 1.7 + 684.76ρ(%, ETM3) 0.87 - 599

LAN-E14 Li, et al. (2010) [100] Changjiang
Estuary ~1.5–560

1og10(TSS) = 0.892 + 6.2244x
x = [ρ(ETM2)+ρ(ETM3)]

[ρ(ETM2)/ρ(ETM3)]
0.915 - 21

LAN-E15 Wang, et al.
(2009) [12]

Yangtze river,
China 22–2610 ln(TSS) = 3.18236× ln(%, ρw(ETM4)) 0.88 MRE = 14.83% 24

LAN-E16
Onderka and

Pekarova
(2008) [101]

Danube River,
Slovakia 19.5–57.5 TSS = 4.17× L(ETM4)− 43.22 0.93 SE = 3.2 mg/L 10

LAN-E17 Teodoro, et al.
(2008) [102]

Douro River and
Mira Lagoon,

Portugal
14–449 TSS = 15.483− 12.688ρ(TM1) + 44.495ρ(TM3) 0.995 RMSE = 25.3 mg/L 11
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Table A1. Cont.

Algorithm Reference Location TSS Range
(mg/L) Bands/Algorithms Regression

Coefficient (R2) Error N

LAN-E18 Aparslan, et al.
(2007) [103]

Omerli Dam,
Turkey 0.4–2.9 TSS = 42.2671− 0.8694ρ(ETM1)− 0.3716ρ(ETM2)

+1.05ρ(ETM3) + 0.1247ρ(ETM4) 0.99 SE = 0.0085 mg/L 6

LAN-E19 Wang, et al.
(2007) [104]

Yangtze River,
China 0–900 TSS = 71.392× ρ(%, ETM4)− 272.48 0.92 MAE = 68.9

RMSE = 83.2 14

LAN-E20 Doxaran, et al.
(2006) [105]

Gironde Estuary,
France 10–2000 TSS = 29.022× exp(0.0335x)

x = Rrs(ETM4)/Rrs(ETM2)(%)
0.88 SD = 21% 132

LAN-E21 Wang, et al.
(2006) [33]

Lake Reelfoot,
USA 11.5–33.5 TSS = 22.74 + 156.202ρ(TM2)− 147.62ρ(TM3)

−45.66ρ(TM4) 0.52 - 18

LAN-E22 Zhou, et al.
(2006) [15] Lake Taihu, China 48.32–120.80 TSS = −122.4 + 304.1

(
ρ(TM4)
ρ(TM1)

)
+ 10.37 0.74 MPE = 65.40%

LAN-A1 Dorji, et al.
(2016) [67]

Onslow, Western
Australia 2.4–69.6 TSS =

25.34
(

x(B1)
1−x(B1)

)
1−0.69

(
x(B1)

1−x(B1)

)
∣∣∣∣∣ x(B1) =

−g1+
√
(g1)2+4g2rrs(B1)

2g2

g1 = 0.084, g2 = 0.17, and rrs(B1) = Rrs(B1)/(0.52 + 1.7Rrs(B1))
0.85 MARE = 33.36% 48

LAN-A2 Han, et al.
(2016) [88]

Europe, French
Guiana, Vietnam,

North Canada,
and China

0.154–2627

TSS = WL ·TSSL+WH ·TSSH
WL+WH

WL =


1, i f Rrs(B1) ≤ 0.03sr−1

0, i f Rrs(B1) ≥ 0.04sr−1

log10(0.04)− log10(Rrs(B1)), otherwise
|TSSL =

346.353ρw(OLI4)
1−ρw(OLI4)/0.5

WH =


0 i f Rrs(B1) ≤ 0.03sr−1

1, i f Rrs(B1) ≥ 0.04sr−1

log10(Rrs(B1))− log10(0.03), otherwise
|TSSH =

1221.390ρw(OLI4)
1−ρw(OLI4)/0.3329

- MRAD = 51.9%–59% TSSL = 366
TSSH = 38

LAN-A3 Zhang, et al.
(2016) [106]

Xinánjiang
Resevoir, China 0.67–5.66 TSS = 38.08× [0.42× ((Rrs(OLI2) + Rrs(OLI3))−1

−(Rrs(OLI3) + Rrs(OLI4))−1)× (Rrs(OLI4) + 0.24]− 3.39
>0.8 MRE = 24.3% 45

LAN-A4 Kong, et al.
(2015) [7] Gulf of Bohai Sea 2.1–208.7 TSS = 8.602 + 1805.26Rrs(TM4) + 900713.14Rrs(TM4)2 0.844 RMSE = 4.53 70

LAN-A5 Vanhellemont and
Ruddick (2014) [11]

Southern North
Sea, UK 0.5–100 TSS =

289.29ρw(OLI4)
1−ρw(OLI4)/0.1686

ρw(OLI4) = 0.529× π × rrs(OLI4)
- - -

MRE = Mean Relative Error, MARE = Mean Absolute Relative Error, MAE = Mean Absolute Error, MPE = Mean Percentage Error, SD = Standard Deviation, MRAD = Mean Relative
Absolute Difference, RMSE = Root Mean Square Error, SE = Standard Error, ARE = Absolute Relative Error, RPD = Relative Percentage Difference, APD = Absolute Percentage
Difference, RRMSE = Relative Root Mean Square Error.
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Appendix B

Table B1. Mean of Total Point and Final Scores of MODIS TSS models across different water classes as derived from different sediment types, backscattering ratios and
Solar Zenith Angles. The top five and bottom five scores from each water types and the final scores are in bold (top) and bold italics (bottom).

MODEL
Mean Total Score from

Sediment
Mean Total Score from

Backscattering Ratio (bb/b)
Mean Total Score from Solar

Zenith Angles Final
Score

Error Final Score

I II III IV V I II III IV V I II III IV V Lower Bound Upper Bound

MOD-E6 1.69 1.61 1.66 1.61 1.63 2.00 1.72 1.98 1.75 1.72 1.71 1.60 1.67 1.53 1.59 1.70 1.64 1.76
MOD-A1 1.46 1.53 1.50 1.56 1.46 1.54 1.71 1.57 1.82 1.67 1.54 1.67 1.55 1.73 1.65 1.60 1.55 1.63
MOD-E28 1.53 1.51 1.53 1.51 1.51 1.71 1.71 1.71 1.74 1.71 1.52 1.55 1.52 1.51 1.56 1.59 1.56 1.63
MOD-A4 1.47 1.55 1.48 1.42 1.43 1.57 1.71 1.57 1.59 1.51 1.61 1.62 1.60 1.54 1.57 1.55 1.51 1.60
MOD-E10 1.54 1.54 1.54 1.54 1.54 1.57 1.57 1.57 1.57 1.57 1.59 1.50 1.55 1.47 1.50 1.54 1.54 1.56
MOD-E42 1.48 1.49 1.46 1.42 1.47 1.57 1.16 1.57 1.76 1.57 1.61 1.17 1.60 1.51 1.62 1.50 1.40 1.63
MOD-E21 1.57 1.50 1.58 1.49 1.50 1.73 1.46 1.76 1.51 1.53 1.68 1.24 1.37 1.20 1.29 1.49 1.40 1.60
MOD-E31 1.45 1.46 1.43 1.42 1.42 1.55 1.60 1.52 1.46 1.46 1.55 1.51 1.51 1.48 1.55 1.49 1.38 1.58
MOD-A6 1.47 1.46 1.49 1.42 1.40 1.43 1.57 1.43 1.57 1.43 1.47 1.54 1.49 1.50 1.47 1.48 1.44 1.53
MOD-A7 1.50 1.47 1.54 1.47 1.44 1.44 1.53 1.57 1.55 1.43 1.53 1.31 1.59 1.28 1.25 1.46 1.39 1.51
MOD-E44 1.32 1.30 1.31 1.26 1.30 1.57 1.56 1.57 1.51 1.55 1.58 1.47 1.57 1.44 1.56 1.46 1.39 1.49
MOD-E27 1.38 1.42 1.37 1.41 1.41 1.46 1.57 1.47 1.57 1.54 1.49 1.33 1.49 1.27 1.35 1.44 1.38 1.50
MOD-E4 1.47 1.41 1.47 1.40 1.42 1.57 1.43 1.57 1.43 1.45 1.49 1.36 1.47 1.32 1.39 1.44 1.41 1.49
MOD-E34 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.43 1.45 1.43 1.49 1.43 1.50 1.44 1.43 1.44 1.43 1.46
MOD-E41 1.41 1.40 1.41 1.40 1.41 1.43 1.43 1.43 1.43 1.43 1.46 1.34 1.45 1.32 1.46 1.41 1.41 1.43
MOD-E20 1.36 1.40 1.33 1.46 1.46 1.33 1.47 1.30 1.57 1.52 1.37 1.30 1.33 1.43 1.53 1.41 1.34 1.49
MOD-E35 1.15 1.52 1.15 1.56 1.23 1.29 1.58 1.29 1.68 1.39 1.29 1.53 1.28 1.56 1.40 1.39 1.33 1.51
MOD-E39 1.31 1.31 1.31 1.31 1.31 1.28 1.29 1.29 1.29 1.29 1.31 1.26 1.30 1.25 1.31 1.29 1.29 1.30
MOD-E25 1.15 1.19 1.14 1.32 1.20 1.31 1.40 1.24 1.15 1.34 1.39 1.36 1.31 1.32 1.39 1.28 1.10 1.49
MOD-E3 0.99 1.21 0.83 1.25 1.10 1.39 1.75 1.09 1.67 1.53 1.29 1.33 1.03 1.23 1.53 1.28 1.09 1.48
MOD-E19 1.39 1.22 1.42 1.26 1.24 1.30 1.12 1.40 1.36 1.14 1.38 0.90 1.43 0.98 1.22 1.25 1.05 1.36
MOD-E40 1.14 1.20 1.14 1.23 1.20 1.14 1.29 1.14 1.29 1.29 1.16 1.25 1.15 1.29 1.24 1.21 1.20 1.22
MOD-E11 1.15 1.19 1.12 1.21 1.18 1.23 1.26 1.16 1.18 1.26 1.26 1.19 1.15 1.18 1.25 1.20 1.11 1.28
MOD-E37 1.13 1.09 1.13 1.09 1.10 1.24 1.22 1.25 1.27 1.23 1.14 1.11 1.14 1.11 1.14 1.16 1.08 1.23
MOD-E36 1.18 1.17 1.19 1.17 1.16 1.14 1.14 1.14 1.14 1.14 1.16 1.11 1.15 1.10 1.11 1.15 1.12 1.17
MOD-A5 1.14 1.12 1.14 1.12 1.13 1.14 1.14 1.14 1.14 1.14 1.14 1.14 1.13 1.14 1.14 1.14 1.13 1.14
MOD-E5 1.30 1.16 1.32 1.18 1.19 1.19 0.90 1.20 1.08 0.96 1.33 0.94 1.22 1.01 0.97 1.13 1.02 1.26
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Table B1. Cont.

MODEL
Mean Total Score from

Sediment
Mean Total Score from

Backscattering Ratio (bb/b)
Mean Total Score from Solar

Zenith Angles Final
Score

Error Final Score

I II III IV V I II III IV V I II III IV V Lower Bound Upper Bound

MOD-E30 1.12 1.09 1.12 1.08 1.09 1.14 1.14 1.14 1.14 1.14 1.16 1.14 1.16 1.13 1.14 1.13 1.10 1.16
MOD-E17 1.22 1.06 1.24 1.06 1.07 1.27 1.00 1.29 1.00 1.00 1.30 0.81 1.31 0.75 1.10 1.10 1.07 1.12
MOD-E18 1.23 1.12 1.08 1.05 1.11 1.32 1.16 1.12 0.84 0.92 1.47 1.01 1.28 0.71 0.88 1.09 0.88 1.30
MOD-E7 1.17 1.13 1.19 1.15 1.15 0.98 1.04 1.01 1.13 1.02 0.99 1.05 0.99 1.09 1.05 1.08 0.93 1.19
MOD-E14 1.18 1.03 1.21 1.03 1.03 1.16 1.00 1.22 1.00 1.00 1.20 0.80 1.24 0.75 1.07 1.06 1.02 1.11
MOD-E13 0.85 1.02 0.82 1.08 1.03 0.84 1.25 0.81 1.41 1.28 0.97 1.11 0.93 1.17 1.16 1.05 0.87 1.22
MOD-E16 1.11 1.04 1.06 1.16 1.12 1.00 1.00 1.00 1.14 1.05 1.04 0.80 1.05 0.85 1.15 1.04 1.01 1.07
MOD-E12 1.00 1.14 1.04 1.14 1.13 0.88 1.00 0.89 1.07 1.09 0.99 0.97 0.99 1.01 0.96 1.02 0.88 1.16
MOD-E33 0.94 1.03 0.91 1.07 1.03 0.90 1.10 0.82 1.14 1.12 0.93 1.02 0.88 1.03 1.07 1.00 0.90 1.09
MOD-E29 1.00 0.91 1.03 0.87 0.92 1.14 1.00 1.14 1.00 1.00 1.10 0.81 1.10 0.78 0.94 0.98 0.92 1.03
MOD-E45 0.94 1.09 0.94 1.09 0.93 0.87 1.13 0.87 1.22 0.93 0.82 0.98 0.80 0.98 0.86 0.96 0.88 1.08
MOD-E1 0.91 0.85 0.92 0.84 0.86 0.76 0.72 0.78 0.72 0.72 0.82 0.82 0.85 0.83 0.86 0.82 0.77 0.93
MOD-E26 0.85 0.79 0.86 0.83 0.78 0.62 0.50 0.64 0.72 0.55 0.80 0.65 0.82 0.80 0.76 0.73 0.55 0.92
MOD-E15 0.45 0.86 0.44 0.85 0.58 0.35 0.96 0.35 0.98 0.67 0.49 0.85 0.49 0.82 0.77 0.66 0.52 0.88
MOD-E9 0.60 0.71 0.59 0.75 0.73 0.48 0.49 0.47 0.58 0.56 0.68 0.57 0.68 0.67 0.60 0.61 0.49 0.80
MOD-E38 0.45 0.52 0.42 0.61 0.56 0.50 0.64 0.50 0.75 0.63 0.62 0.62 0.58 0.73 0.66 0.59 0.47 0.89
MOD-E23 0.75 0.44 0.79 0.44 0.44 0.75 0.30 0.80 0.53 0.30 0.80 0.27 0.86 0.34 0.57 0.56 0.43 0.69
MOD-E8 0.51 0.41 0.51 0.35 0.48 0.62 0.60 0.59 0.24 0.55 0.60 0.44 0.56 0.24 0.40 0.47 0.18 0.67
MOD-E2 0.51 0.42 0.51 0.34 0.48 0.63 0.59 0.60 0.23 0.54 0.61 0.45 0.56 0.24 0.40 0.47 0.17 0.67
MOD-E24 0.46 0.45 0.45 0.48 0.46 0.44 0.44 0.43 0.55 0.47 0.45 0.49 0.44 0.57 0.51 0.47 0.43 0.58
MOD-E22 0.44 0.23 0.54 0.32 0.24 0.31 0.11 0.42 0.37 0.16 0.46 0.09 0.58 0.25 0.40 0.33 0.17 0.52
MOD-E32 0.38 0.31 0.49 0.42 0.32 0.04 0.14 0.36 0.45 0.18 0.29 0.15 0.53 0.40 0.39 0.32 0.18 0.57
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Table B2. Mean of Total Point and Final Scores of Landsat TSS models across different water classes as derived from different sediment types, backscattering ratios
and Solar Zenith Angles. The top five and bottom five scores from each water types and the final scores are in bold (top) and bold italics (bottom).

MODEL
Mean Total Score

from Sediment
Mean Total Score from

Backscattering Ratio (bb/b)
Mean Total Score from Solar

Zenith Angles Final
Score

Error
Final Score

I II III IV V I II III IV V I II III IV V Lower Bound Upper Bound

LAN-E3 1.66 1.69 1.67 1.69 1.70 1.85 1.81 1.86 1.82 1.84 1.79 1.61 1.74 1.61 1.64 1.73 1.60 1.77
LAN-A4 1.54 1.63 1.54 1.63 1.64 1.62 1.69 1.64 1.71 1.67 1.59 1.50 1.56 1.48 1.50 1.60 1.46 1.69
LAN-E9 1.28 1.38 1.24 1.36 1.39 1.74 1.94 1.65 1.97 1.98 1.47 1.54 1.39 1.55 1.62 1.57 1.47 1.64
LAN-A5 1.38 1.51 1.39 1.52 1.43 1.52 1.60 1.53 1.59 1.49 1.52 1.54 1.52 1.52 1.52 1.51 1.44 1.59
LAN-A1 1.33 1.53 1.34 1.58 1.45 1.54 1.69 1.46 1.80 1.63 1.52 1.27 1.48 1.33 1.59 1.50 1.43 1.56
LAN-E14 1.47 1.32 1.46 1.33 1.45 1.76 1.37 1.78 1.42 1.56 1.75 1.09 1.74 1.12 1.56 1.48 1.35 1.60
LAN-E20 1.56 1.57 1.53 1.61 1.60 1.52 1.45 1.52 1.48 1.48 1.54 1.17 1.51 1.16 1.49 1.48 1.37 1.59
LAN-E4 1.53 1.42 1.42 1.33 1.58 1.41 1.54 1.46 0.91 1.45 1.51 1.21 1.46 0.68 1.50 1.36 1.23 1.48
LAN-E1 1.36 1.36 1.36 1.36 1.36 1.37 1.34 1.36 1.35 1.35 1.29 1.33 1.29 1.32 1.30 1.34 1.28 1.40
LAN-E8 1.31 1.35 1.32 1.35 1.35 1.35 1.36 1.36 1.41 1.36 1.29 1.26 1.27 1.28 1.28 1.33 1.18 1.42
LAN-E13 1.36 1.39 1.38 1.35 1.37 1.30 1.28 1.35 1.27 1.30 1.35 1.20 1.35 1.12 1.35 1.31 1.28 1.37
LAN-E2 1.33 1.33 1.32 1.34 1.33 1.34 1.30 1.33 1.32 1.30 1.16 1.26 1.21 1.26 1.23 1.29 1.27 1.35
LAN-A2 1.18 1.08 1.19 1.11 1.12 1.38 1.04 1.43 1.20 1.23 1.42 1.08 1.41 1.16 1.26 1.22 1.13 1.38
LAN-E21 1.16 1.11 1.20 1.10 1.11 1.28 1.13 1.43 1.01 1.08 1.25 1.16 1.40 1.05 1.15 1.17 1.07 1.24
LAN-E7 1.11 0.93 1.09 0.93 0.85 1.38 1.04 1.39 1.09 0.89 1.47 0.79 1.46 0.74 0.91 1.07 0.83 1.31
LAN-E17 1.09 1.04 1.10 1.08 1.09 1.00 0.99 1.01 1.02 1.00 0.89 0.97 0.89 0.97 0.94 1.01 0.98 1.03
LAN-E12 1.13 1.02 0.96 1.12 1.24 1.09 0.74 1.11 0.61 1.05 1.25 0.71 1.19 0.50 0.75 0.96 0.73 1.20
LAN-E15 0.98 0.91 0.97 0.99 0.97 1.04 0.92 1.02 0.97 0.99 1.06 0.71 1.09 0.69 0.99 0.95 0.83 1.04
LAN-E5 0.97 0.95 0.95 0.99 0.99 0.94 0.88 0.90 0.89 0.96 0.97 0.70 0.94 0.72 1.03 0.92 0.76 1.05
LAN-A3 0.93 0.93 0.90 0.93 0.89 0.92 0.85 0.88 0.66 0.61 0.92 0.91 0.90 0.72 0.69 0.84 0.68 1.02
LAN-E19 0.66 0.67 0.67 0.69 0.64 0.64 0.73 0.80 0.87 0.76 0.60 0.65 0.66 0.70 0.67 0.69 0.45 1.07
LAN-E6 0.59 0.68 0.57 0.73 0.66 0.61 0.61 0.56 0.76 0.63 0.68 0.58 0.62 0.69 0.65 0.64 0.53 0.81
LAN-E10 0.42 0.45 0.39 0.45 0.45 0.65 0.59 0.61 0.65 0.48 0.66 0.44 0.60 0.44 0.36 0.51 0.28 0.78
LAN-E11 0.40 0.46 0.40 0.48 0.41 0.45 0.37 0.46 0.52 0.38 0.42 0.30 0.40 0.36 0.27 0.41 0.23 0.67
LAN-E22 0.99 0.84 1.02 0.67 0.75 0.56 0.00 0.19 0.00 0.00 0.47 0.05 0.34 0.00 0.00 0.39 0.31 0.51
LAN-E16 0.29 0.20 0.30 0.30 0.31 0.43 0.30 0.43 0.42 0.45 0.36 0.27 0.41 0.32 0.44 0.35 0.16 0.62
LAN-E18 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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Appendix C

The statistical measures used in assessing the accuracy of the results between modeled and the
true value are as follow:

MARE =

n
∑

i=1
|(xi − yi) /yi|

n
× 100% (C1)

where n is the total number of samples, xi is the predicted value and yi is the true value.
The Absolute Relative Error that was used to gauge the tolerance of each TSS model is defined

as follows:

ARE =
|x− y|

x
× 100% (C2)

where x is the TSS MARE results from the HydroLight validation and y is the MARE result from the
TSS distribution generated from the 1000 data points in the Gaussian distribution of errors for 10%,
20% and 50% Rrs uncertainty.
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