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Abstract: Mapping aboveground carbon density in tropical forests can support CO2 emission
monitoring and provide benefits for national resource management. Although LiDAR technology
has been shown to be useful for assessing carbon density patterns, the accuracy and generality of
calibrations of LiDAR-based aboveground carbon density (ACD) predictions with those obtained
from field inventory techniques should be intensified in order to advance tropical forest carbon
mapping. Here we present results from the application of a general ACD estimation model
applied with small-footprint LiDAR data and field-based estimates of a 50-ha forest plot in
Ecuador’s Yasuní National Park. Subplots used for calibration and validation of the general
LiDAR equation were selected based on analysis of topographic position and spatial distribution
of aboveground carbon stocks. The results showed that stratification of plot locations based on
topography can improve the calibration and application of ACD estimation using airborne LiDAR
(R2 = 0.94, RMSE = 5.81 Mg¨C¨ha´1, BIAS = 0.59). These results strongly suggest that a general
LiDAR-based approach can be used for mapping aboveground carbon stocks in western lowland
Amazonian forests.

Keywords: aboveground carbon density; biomass; Ecuador; LiDAR; topographic features;
tropical rainforest

1. Introduction

Tropical forests are important carbon and biodiversity reserves, and characterizing the spatial
distribution of their aboveground carbon density (ACD; units of Mg of carbon per hectare or
Mg¨C¨ha´1) is a prerequisite for understanding the spatial and temporal dynamics of the terrestrial
carbon cycle. Accurate estimations of ACD and any changes in carbon stocks due to human activities
are required in order to reduce emissions from deforestation and forest degradation (REDD+), and so
contribute to the efforts being made to mitigate climate change [1]. Tropical forests hold large stores
of carbon, yet uncertainty remains regarding their precise contribution to the global carbon cycle and
how it is distributed in space and time [2,3]. In the last ten years, estimating carbon capture reserves
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in tropical forests has evolved from activities based mainly on inventories carried out in the field [4]
to approaches based on airborne and spaceborne remote sensing [5–9].

Modern forest ecology and management applications require accurate maps so that their
dynamics, biodiversity and carbon content can be tracked through time, especially in ecologically
fragile and/or inaccessible regions, as is the case of many tropical forests. Several studies on
estimating ACD have been carried out using different approaches [10–12]. The most widely used
LiDAR-based approaches to ACD prediction are based on regression models that combine LiDAR
metrics with field estimations of carbon stocks in forest plots. The derived model is then used to
assess ACD across larger geographic areas. In the last five years, studies to estimate ACD in tropical
forests have been performed using a plot-aggregate allometric approach [13–15].

The plot-aggregate allometry approach [16,17] for estimating ACD from airborne LiDAR
has provided estimates that are comparable in predictive power to locally-calibrated models.
This approach is based on a simplified general model showing that dry tree biomass, and its
carbon content, roughly ~48% of dry biomass by weight [18], can be estimated from LiDAR-derived
top-of-canopy height (TCH), basal area and wood density information. This approach has the
potential to reduce the time required to calibrate airborne LiDAR data; however, it requires testing in
new regions.

Although broad-scale mapping is based primarily on remote sensing data, the accuracy of
resulting forest carbon stock estimates depends critically on the quality of field measurements and
calibration procedures [19]. A careful quantification of local spatial variability and spatial structure
in ACD should be useful for remote sensing calibration efforts. Reported errors associated with
LiDAR-based carbon maps range from 17 to more than 40 Mg¨C¨ha´1 (RMSE) in the tropics [20].
These errors apply to the calibration step (i.e., the ability of LiDAR to predict the carbon density of
a set of field inventory plots as assessed by a regression model), and not necessarily to carbon maps
produced by such regression.

The size of field plots is an important design parameter in forest inventory using LiDAR, as it
has the potential to either reduce or inflate the impact of edge effects [21] and co-registration error
on ACD estimates [22]. Disagreement in protocol between LiDAR and field observations—namely
the effects of bisecting tree crowns in LiDAR data versus calling a tree “in” or “out” of the plot in
field data—decreases to a manageable level when field plots reach 1 ha in size [20]. The spatial
variability in ACD is large for standard plot sizes (e.g., 0.1, 0.25, 1 ha), averaging 46.3% for replicate
0.1 ha subplots within a single large plot, and 16.6% for 1 ha subplots [19]. Furthermore, large parcels
are needed for dynamic forest studies in order to include all the important populations of most of
the species present, especially in tropical forests [23]. Errors in estimating forest structural attributes
tend to decline and highest coefficient of determination (R2) values are reached by combining large
plot sizes [21] and high density LiDAR data [24]. A review of studies published on estimating ACD
using LiDAR [25] concludes that there is an uncertainty level between airborne and field-based ACD
estimates of around 10% when plot size is approximately 1 ha. Plot sizes of around 1 ha are usually
considered to give sufficiently accurate results in forest biomass estimation [26].

Marvin et al. [27] found that an average sample size of 44 plots of 1 ha in the lowland Peruvian
Amazon are needed to reliably (i.e., a probability of 0.9) estimate ACD to within 90% of the actual
landscape-scale (102–104 ha) mean value. The results obtained in [19] show the importance of keeping
the topography in mind, and suggest that sampling should be stratified by topographic position
(e.g., ridges, valleys and slopes), especially when the estimations involve a terrain-based approach.

The accuracy of carbon stock estimations also depends on reliable allometric models being
available in order to estimate AGB from forest inventories [28–30]. Estimating biomass in tropical
forests is limited by the available information on the allometry of tropical tree species. When it turns
out to be impossible to obtain allometric relationships for a specific area of interest, pre-existing
allometric equations are normally used. Due to the large number of studies in which these
relationships are documented [31], it is important to identify the most suitable equations [32].
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The objective of this study was to calibrate and evaluate the use of a general LiDAR-based
approach for estimating ACD in a western lowland Amazonian forest of Ecuador, where little work
has been undertaken in the past. We used geo-statistical modeling techniques and LiDAR-derived
topographic features to locate plots for fitting and validating the general ACD estimation model.

2. Data and Methods

2.1. Study Area

The study area is located at 0˝411S and 76˝241W, to the south of the Tiputini River, in the Yasuní
National Park (PNY) of Ecuador (Figure 1). This park contains a high concentration of western
lowland Amazonian species, making it one of the highest biodiversity regions in the world [33].
Due to its wealth of natural life, in 1995 the Catholic University of Ecuador, together with the
Smithsonian Tropical Research Institute and the University of Aarhus, selected an area of 50 ha in
the northwest of the Yasuní National Park to study the distribution and dynamics of species. The first
census of the west 25 ha showed that 1104 species were coexisting in this area [34], which represent
more species of trees than in North America. The Yasuní plot is part of a global network of 61 large
permanent plots associated to the Center for Tropical Forest Science (CTFS) [35].
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study area. A swampy area, topographically recessed, contains water throughout the year. Both the 
northern and southern boundaries consist of low ridges with some steep-sided gullies. The lowest 
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Figure 1. (Left) Location of the study area (red point) within the Yasuní National Park (in yellow) in
the western Amazonian Basin. (Upper right) Digital Terrain Model of the 50-ha forest plot (centered
rectangle). (Lower right) A regular grid system of 1-ha subplots used for calibration (red) and
validation (green) of the airborne LiDAR model for aboveground carbon density estimation.

The plot is 50 ha in size, with an average topographic gradient of 13%, and an elevation range
of 215–249 m above sea level. The study area is crossed by a valley that divides it into three
groups of small hills. The southwest portion of the plot contains a 0.48-ha patch of secondary
forest corresponding to a heliport, abandoned around 1987, during oil exploration. The plot
contains two types of characteristic and dominant topographical environments: valleys and ridges.
The valleys include several small permanent streams and swamps associated with a depression to
the east of the study area. A swampy area, topographically recessed, contains water throughout the
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year. Both the northern and southern boundaries consist of low ridges with some steep-sided gullies.
The lowest zones between the ridges contain grey and brown sedimentary deposits. Most of the soil
in the Yasuní National Park is classified as Ultisol, but the swamps and floodplains are dominated
by Histosols, which are prone to flooding [36]. The plot is located in lowland evergreen forest of the
western Amazon region.

2.2. Field Data

2.2.1. The Forest Census Data

The first forest census was carried out from 1995 to 1997 in the west 25 ha of the plot, and after
that, several censuses were carried out in different portions of the 50-ha plot. Trees were measured
and tagged following a standard method used by the global network of large forest plots [37].
In the first census, all trees ě1 cm were measured, and 1104 morphospecies were identified
among 152,353 individuals. Several species of understory treelets in the genera Matisia and Rinorea
dominated the forest, while important canopy species were Iriartea deltoidea and Eschweilera coriacea.
The swampy area occupying 1 ha in the eastern half of the plot is most notably different. The palm
Mauritia flexuosa (Palmae), a Sapium sp. (Euphorbiaceae), and several species of Piper (Piperaceae) are
found only in the swamp [36–38]. The canopy is 15–30 m tall, and some emergent trees reach 40–50 m
in height.

The first complete forest census of the 50-ha plot was conducted from 2002 to 2006. Detailed
information on taxonomic and ecological characteristics of tree species in the 50-ha plot can be found
in [39]. For this study, measures of stem diameters at breast height (D) for all individuals in the
50-ha plot and wood density data (wood specific gravity) were used to compute ACD. Wood density
data were taken from the literature or obtained from direct measurements in and around the plot.
Tree height was unavailable in these censuses.

2.2.2. Field-Based Aboveground Biomass Estimation

It has often argued that local allometric equations should be constructed in as many sites and
for as many species as possible. However, the extreme diversity of the species in Yasuní National
Park prevents the allometry of specific species being developed, so that generalist relationships are
usually applied. We estimated AGB using a new allometric model [30] shown in Equation (1), which
is used in cases in which tree height is not known and includes variables such as trunk diameter, wood
density, and the bioclimatic stress variable (E). The value of the E parameter for Yasuní National Park
is ´0.0228121.

AGBi “ exp
”

´1.803´ 0.976E` 0.976ln pρq ` 2.673ln pDq ´ 0.0299 rln pDqs2
ı

(1)

where D represents trunk diameter at breast height in cm, and ρ is wood density of each tree in
g¨ cm´3. The quantity of AGB (in Mg¨ha´1) of all trees in the entire plot was calculated from the data
obtained in the census. Within each 1-ha subplot, AGB was calculated by summing AGB estimates
for all trees whose stems were located within the subplot and expressing this on a per ha-basis
(Equation (2)). A summary of the field plot characteristic is presented in Table 1.

AGBSUBPLOT “

n
ÿ

i“1

AGBi (2)
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Table 1. Characteristics of 1-ha field plots.

Characteristic Range Mean

N a (ha´1) 4680–7430 6012.68
D b (cm) 1–185 19.30

BA c (m2¨ ha´1) 25.38–39.78 32.84
AGB d (Mg¨ ha´1) 161.47–339.39 250.25

a number of trees; b diameter at breast height (1.3 m); c basal area; d aboveground biomass.

2.2.3. Georeferencing of the Field Plots

Any errors in identification or imprecision of the estimated variables are often attributed to
discrepancies between the information on the reference plots obtained on the ground and that
obtained from LiDAR [22–40]. To avoid such discrepancies, a planimetric survey was carried out to
precisely locate the coordinates of the plot’s corners, and to correlate the data obtained from the forest
census with that obtained from the airborne LiDAR system. The Horizontal Reference System used in
the survey was the Geocentric Reference System for the Americas (SIRGAS–ECUADOR) [41], which
is compatible with GNSS satellite positioning system. Four geodetic survey markers using GNSS
technology and formed the baselines for the planimetric survey. Observations were made from the
Y-NPF geodetic survey marker, which belongs to Ecuador’s GPS RENAGE network. The coordinates
of the geodetic survey markers were fixed by the static phase differential GPS positioning method
using TRIMBLE R8 dual frequency receivers which can measure baselines up to 200 km long with
an accuracy of ˘0.005 m + 1.0 ppm. Horizontal precision was set at <0.050 m + 1.0 ppm, and
vertical precision at <0.100 m + 1.0 ppm. The basic geodetic network was then used to carry out
the observations required to calculate the coordinates of the four corners of the plot (Table 2) using a
TRIMBLE S3 total station with a precision of 211.

Table 2. Coordinates of the four corners of the plot (UTM 18S).

Plot Corner East (m) North (m) Precision (m) Ellipsoidal. Elev.

NW 343,737.794 9,924,696.411 0.050 249.31
SW 343,735.023 9,924,196.086 0.050 252.79
NE 344,733.958 9,924,695.236 0.050 244.89
SE 344,734.085 9,924,195.180 0.050 252.07

2.3. LiDAR Data

2.3.1. Data Collection

The LiDAR data were acquired in May 2014 from a Cessna 172 Skyhawk aircraft, which can
cover a large area at low altitudes and low speeds. The LiDAR sensor used in the airborne platform
was an Optech ALTM Gemini. Flight data and configurations are given below in Table 3:

Table 3. Flight data and LiDAR configuration.

Flight Data LiDAR Configuration

Height above ground (m) 781.25 Pulse frequency repetition (Khz) 166
Distance between lines of flight (m) 203.89 Scanning frequency (Hz) 40

Overlapping 50% Scan angle /FOV ˘15
Speed (m/s) 56.6 Nominal density of pulses per m2 5.08
Flight lines 16 Sweep width (m) 407.78

Number of returns Up to 4
Laser beam divergence (mrad) (IFOV) 0.8

Space between points (m) 0.24
Density of points per m2 19.4
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2.3.2. LiDAR Data Processing

Estimating the tree canopy height using LiDAR data relies on an accurate representation of the
ground surface in a Digital Terrain Model (DTM). Any errors in the DTM will propagate and affect
the accuracy of the derived vegetation metrics [26,42,43] and canopy height models (CHM) [44,45].
The DTM (Figure 2a) was obtained by applying the procedure described in [17]. The vertical accuracy
of the DTM was assessed using GNSS measurements for georeferencing the 50-ha plot. The LiDAR
data were normalized at ground level and gridded into 1-ha subplots using LAStools [46].

The canopy height model (CHM) (Figure 2c) was obtained as the difference between the digital
surface model (DSM) and the DTM [47]. In each 1-ha subplot, the average of all 0.5 m CHM pixels
was used to estimate mean subplot top-of-canopy height (TCH).
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2.4. Data Analysis

2.4.1. Selection of Subplots for Fitting and Validating the General Model

LiDAR is capable of characterizing both terrain and vegetation structure. However, LiDAR-based
DTM variables have been rarely used to plan plot locations in ACD calibration schemes. In the
present study, when selecting the subplots for fitting and validating the model, we considered the
spatial distribution of ACD and topographic position (e.g., valleys, ridges and slopes) in the 50-ha
plot. The 1-ha subplot size was necessary to encompass substantial populations of most tree species
in the community.

The sample design was a regular grid of 1-ha subplots, allowing us to capture spatial variation
in ACD and forest structure throughout the study area. The X, Y coordinates of the southwest corner
obtained in the planimetric survey were used as the starting point, so that the subplots and all trees
whose stems were located within the subplots were geo-referenced. Subplots were numbered from
1 to 50 starting from the lower left-hand corner.

The DTM was used to calculate a topographic wetness index using the Compound Topographic
Index (CTI) tool [48] in ArcGIS 10.1 (ESRI, Redlands, CA, USA: Environmental Systems Research
Institute) (Figure 2b). The CTI is a function of both the slope and the upstream contributing area per
unit width orthogonal to the flow direction [49]. Higher CTI values represent water accumulation
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(potential wetland formation), and lower CTI values represent dryness or steep places where water
would not likely accumulate based on topography [50]. Zonal Statistics for each 1-ha subplot was
summarized using Spatial Analyst tools for DTM and CTI. Pearson’s correlation coefficient was
calculated to analyze relationships between field-ACD and mean elevation (r = 0.6794) and mean
CTI (r = ´0.5902) in each 1-ha subplots. The Hot Spot Analysis tool (Getis-Ord Gi * statistic) in
spatial statistics tools in ArcGIS, were used to locate the patterns of biomass distribution in the plot
(Figure 2d). This tool identifies clusters or statistically significant spatial clusters of high values
(hot spots) and low values (cold spots) that provide important insights into the underlying processes
that produce spatial patterns. An incremental spatial autocorrelation tool was used to test for spatial
autocorrelation within distance bands, measuring the intensity of spatial clustering for each distance.

The sampling was then stratified by topographic position: valley, slope and ridges. These three
topographic positions were defined after evaluating DTM and CTI zonal statistics in each 1 ha
subplot. A valley was defined as all 1-ha subplots with mean elevation <239.10 m and mean CTI
>6.60. The ridge was defined as all 1-ha subplots with mean elevation >248.20 m and mean CTI
<6.12. The remaining 1-ha subplots were defined as slope (Table 4).

Table 4. Summary Statistics for the LiDAR plot 1-ha grid of study area.

Topographic
Position

Number of
Plots

Mean (SD)
LiDAR TCH Basal Area Wood Density AGBfield

(m) (m2¨ ha´1) (g¨ cm´3) (Mg¨ ha´1)

Valley 18 20.60 (1.8) 24.37 (2.5) 0.557 (0.01) 198.24 (29.5)
Ridge 16 23.50 (1.1) 29.90 (2.6) 0.574 (0.01) 265.39 (33.3)
Slope 15 21.47 (1.9) 27.41 (3.1) 0.563 (0.01) 228.30 (37.06)
RSF 1 22.74 30.76 0.471 199.40

RSF = Ridge with remnant of secondary forest; TCH = Top of canopy height.

We selected 66% of the sample for the fitting of the model (32 subplots) and 34% for validating
the model (18 subplots) using random sampling in every topographic position (Figure 1). Subplot #2,
which contained secondary forest (0.48 ha), was used for model validation. In the data exploratory
analysis, two atypical subplots were identified (36, 50) as having the largest trees in the area. Both
subplots presented the highest values of coefficient of variation in elevation and variance. These
were left out of the fitting process but were included for model validation. Only trees with a diameter
at breast height (dbh) of ě10 cm were considered when fitting the model. Previous study on AGB
estimation by habitats in 25-ha of the plot, reported that trees <10 cm dbh contributes ~5% in ridge
and ~7% in valley of total AGB [51].

2.4.2. LiDAR Model Application

The most widely used LiDAR-based approaches to ACD prediction are based on regression
models that correlate LiDAR metrics with field estimations of biomass in forest plots. The models are
obtained from a statistical analysis to ensure consistency, mathematical rigor and predictive power.
We used the plot-aggregate allometric approach [17] (Equation (3)).

ACD “ aTCHb1BAb2WDb3
BA (3)

where ACD is the AGB obtained from Equation (2) and multiplied by 0.48, TCH is the top of canopy
height obtained by LiDAR, BA is the basal area (i.e., cross-sectional area of all stems), estimated using
individual tree diameter and WDBA is basal area-weighted wood density taken from the literature or
obtained from direct measurements in and around the plot. Equation (3) was fitted using multiple
linear regression on ln-transformed subplot level data for ACD, TCH, BA and WDBA at 1-ha subplots
in the form:

ln pACDq “ lna` b1ln pTCHq ` b2ln pBAq ` b3ln pWDBAq (4)
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Model fitting and diagnostics were performed with R Commander Software [52]. After fitting
the model we assessed the following issues [53]: (i) normal residuals; (ii) homoscedastity (constant
variance); (iii) linear relationship; (iv) presence of atypical observations; and (v) absence of colinearity.
The model estimated satisfies all the conditions. A rigorous model validation process requires that
the results be verified with a sample different from the one used to build it. We therefore validated
the model by applying 18 subplots selected for this purpose.

3. Results

We back-transformed the final model, since we were interested in the ACD parameter per hectare
and not its natural logarithm. The model was multiplied by a correction factor (CF) to account for the
back-transformation of the regression error [54]. The correction factor is given by CF = e MSE/ 2 where
MSE is the mean square error of the regression model. In this case it is equal to 1.00044. The equation
thus became (Equation (5)):

ACD “ 2.15813 ˚ TCH0.14015BA1.2292WD0.9839 (5)

When we applied the resulting model (Equation (5)) to the validation plots, we obtained the
results as shown in Figure 3. The LiDAR-based ACD equation accurately and precisely predicted
field plot-based ACD in eighteen plots (Figure 3a). The low bias (0.59 Mg¨C¨ha´1) and RMSE
(5.81 Mg¨C¨ha´1), along with an adjusted R2 of 0.94, validates the use of plot-aggregate allometric
approach for estimating ACD in the study area. The final model was spatially sensitive to ACD
variation in valley, ridge and slope areas (Figure 3b–d), which were the main habitats in the zone.
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Our results strongly suggest that the spatial arrangement of forest carbon stocks, based on
topographic location, influences the accuracy of estimates of ACD in western lowland Amazonian
mature forest achieving an overall accuracy of 5% at 1-ha resolution (RMSE = 5.81 Mg¨C¨ha´1

relative to forest carbon density of ~120 Mg¨C¨ha´1). The model validation for ACD estimation
in ridge positions (Figure 3c) indicated higher bias and RMSE compared with the other topographic
positions because these areas include the plot with remnant of secondary forest. Secondary forest
growth is higher than adjacent mature forest on ridges where the growth is minimal [51], affecting the
estimation of the model due to the time lag between field census and the LiDAR survey (RMSE = 2.33,
bias = 0.74 and R2 = 0.97 without secondary forest).

For the fitting of the model, only trees with stem diameter ě10 cm (34,567) were included for
the field-based AGB estimation (11,438.68 Mg). However, total AGB estimations (12,512.59 Mg) were
made for all the individuals (297,777) with diameter ě1 cm in the entire 50-ha plot. Results show that
11.6% of all the trees in the 50-ha plot contribute approximately 91% of total ACD, while vegetation
with diameters <10 cm provide 9% of the total. We also found that ACD differ by up to 100% for a
vertical variation of only 30 m. The variation in ACD (78–163 Mg¨C¨ha´1) in a small elevation range
suggests a strong influence of topographic position and confirms that topography should be taken
into account in the forest inventory sampling design.

4. Discussion

Whether from a forest management or conservation perspective, it is important to establish a
robust and confident methodology for estimating carbon stocks in tropical forest. The present study
calibrated and evaluated ACD estimations by means of linear regression, considering the size and
location of the plots in topographic positions used for fitting the general model.

We selected a regular grid of 1-ha subplots based on an underlying assumption that field plots
(ca. 1 ha scale) are an unbiased sample of the landscape (ca. 102- to 104 -ha scale) [28,55], and
previous findings of diminishing uncertainties between field-based and LiDAR-based estimates at
this resolution [20]. The 1-ha grid scheme and the horizontal precision of the 50-ha plot corners
(0.050 m) helped to reduce co-registration errors related to misalignment between field subplots and
LiDAR data, as well as plot-edge effects. There is a tendency for errors to decrease in biomass
estimates with increasing plot size, because large plots reduce the likelihood of plot-edge effects,
which occur when the canopy of trees are found along the plot boundary [21]. Edge effects are
likely more pronounced in less dense stands and where plot sizes are smaller [56]. The accuracy of
plot-aggregate allometry used in this study appears to increase when averaging over more vegetation
in larger plots since larger plots minimize the edge effects related to uncertainty in including or
excluding a tree in the field survey. In the LiDAR calibration phase, use of small plots will always lead
to inflated scatter and thus increased RMSE between LiDAR TCH (or any metric) and field-estimated
ACD [17]. Although implementing larger plot sizes increase the costs and time needed for field
sampling, large plots results in models with better performance, increase the accuracy of ACD
predictions and reduce the variation in ALS-derived metrics [43].

The time lag between the forest census and LiDAR acquisition will also introduce errors in the
final model. On the western 25 ha, Valencia et al. [51] examined aboveground biomass flux in different
habitats and across diameter classes using data from two censuses separated by an average time
interval of 6.3 years. They found that the forest lost small stems (4.6%), gained large trees (2.6%), and
gained biomass (0.7%). The change in AGB stock was due entirely to this upward shift in size leading
to more canopy trees and fewer saplings after just six year. Across habitats, the biggest increment in
biomass was in the secondary forest patch (3.4% y´1), whereas mature forest on ridges and valleys
had small increases (0.10% and 0.09% y´1, respectively). Relative to the difference between habitats,
the 6 year change in AGB stock was almost trivial. The one exception was the increase in large trees in
the secondary forest. The forest increased its standing biomass, but far less than the average reported
for other Amazonian forest (i.e., 0.30 vs. 0.98 Mg´1¨y´1). Similarly, change in basal area in the three
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previous censuses (1997, 2002, 2009) was negligible and accounted for maximum 1% (32.94, 32.90,
33.25 m2¨ha´1, respectively). This can change in abnormal time periods but is very unlikely that
it changes in aseasonal forest like Yasuni. Even in extreme years, like 2010, such a change did not
showed a huge impact on large trees, judging by a subsampled check in the forest dynamics we
carried out in year 2012 (<2% change in basal area). From these results we infer that the change in
ACD stocks due to the time lag between the field census and the LiDAR survey are minimal.

Field-based ACD estimations were calculated using an improved allometric model [30].
This pantropical model (Equation (1)) is used for estimating ACD in the absence of height
measurements and incorporates wood density, trunk diameter, and a variable called E. Equation
(1) shows that information on wood density (as inferred from the taxonomic determination of the
tree), trunk diameter, and the variable E (as inferred from the geolocation of the plot) is sufficient to
provide a robust ACD estimate [30]. However, to minimize bias, the development of locally derived
diameter-height relationships is advised whenever possible. Our estimations showed that the ridge
and valley of the Yasuni forest are remarkably different in ACD (Table 1); the difference is due almost
entirely to a higher number of very large trees on the ridge, and to a lesser extent from higher density
wood on the ridge. The results obtained confirm the estimates made by Valencia et al. [39], particularly
the differences in AGB between valley and ridge.

To explore patterns of ACD distribution within the 50-ha plot, hot-spot analysis was performed.
in which spatial patterns of high ACD (hot spots) and low ACD (cold spots) were identified.
As expected, subplots with high ACD were located in the ridge while the lowest ACD were founded
in valley containing swamps (Figure 2d). Spatial autocorrelation was calculated using Moran’s index
(<0.01), every 100 m to a distance of 500 m. ACD is less spatially clustered at 300 m (z-score = 3.479;
p-value = 0.0005 and variance = 0). The compound topographic index (CTI), often referred to as the
steady-state wetness index, is a quantification of catenary landscape position [57]. CTI is a useful
indicator of ACD because it combines contextual and site information via the upslope catchment area
and slope, respectively. Moore et al. [49] showed that the CTI is correlated with several soil attributes
such as silt percentage, organic matter content, phosphorus and A horizon depth in the soil surface of
a small toposequence. Kanagaraj et al. [58] found that CTI, slope and elevation were important drivers
of species assemblage in the Barro Colorado Island plot. In our study, mean CTI at 1-ha subplot was
correlated with field ACD estimations (r = ´0.59); therefore, it was used as a variable together with
mean elevation (r = 0.67) to allocate plots for the model calibration.

The high R2 values reached can be attributed to the influence of 1-ha plot size and LiDAR density
points (~20 m´2) [24]. Although an analysis of LiDAR density and its influence on the estimation of
ACD was not made in this study, a recent study by Leitold et al. [42] in tropical forest of Brazil,
with complex topography (ranging from 100 m to 1100 m a.s.l.), reported errors of 80–125 Mg¨ha´1

in predicted aboveground biomass for LiDAR return densities below 4 m´2. The canopy heights
calculated from reduced density LiDAR data declined as data density decreased due to a systematic
effect of pulse density in the construction of digital terrain model (DTM) attributed to the algorithm
used to classify ground points. The study requires some caution when using generalized ACD models
based on a single LiDAR metric (e.g., TCH), as in our case study, especially at low LiDAR return
densities. Yet increasing point density mitigates the problem of accurate canopy height and DTM
generation. In contrast to the study made by Leitold et al. [42], Hansen et al. [43], showed that canopy
metrics derived from sparse laser pulse density data can be used for ACD estimation in a tropical
forest in Tanzania. Reducing the laser pulse density from 8 to 0.25 pulses m´2 increased the variation
in the DTMs and canopy metrics. However, the replication effects, expressed by the reliability ratio,
were not important at pulse densities of >0.5 pulses m´2. In our study, using the four corners of
the 50-ha plot, the mean difference in elevation between DTM and GNSS observations (´0.722 m)
indicated a slight underestimate from LiDAR-derived terrain elevations in the study area. These
results suggest that more research should be conducted to evaluate the influence of LiDAR point
density on DTM generation and canopy metrics especially in tropical forests.
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The calibration and validation accuracy of the model may depend on the number and size of
the field plots available for analysis. For the calibration of the general approach used in this study,
Asner et al. [17] reported an adj-R2 = 0.86 and RMSE = 13.2 Mg¨C¨ha´1 using a network of 754 field
inventory plots distributed across a wide range of tropical vegetation types, climates and successional
states. Here, our local model considering topographic location yielded an adj-R2 = 0.94 and
RMSE = 5.81 Mg¨C¨ha´1 using 32 field plots of 1-ha for fitting the model and 18 field plots for
validating the model. Given that all plots used for fitting and validating the local model were
partitioned from a single large plot, our results should be interpreted with caution. It is important
to recognize that having larger plots fully mapped and partitioned subplots, representing the host
landscape, may lead to a more robust understanding of calibration uncertainties. We tested the
general approach by acquiring the LiDAR model of top-of-canopy height, and combining them
with spatially explicit estimates of basal area and wood density in the study area. However this
approach allows for regional assessments of basal area and WDBA to replace exhaustive tree-specific
measurements. In the simplest form, this approach used a single stocking coefficient (the ratio
of BA to TCH) and a single wood density constant for each broad tropical region based on the
literature. To apply the general model in a new region, exhaustive inventory would not be needed.
Instead, spatially-explicit point-based estimates of BA (by relascope or prism method) and WDBA

(by recording dominant species) could be collected within the coverage of a LiDAR TCH dataset.
By regressing BA and WDBA onto TCH and substituting these regressions into the general model,
regionally-tailored predictions could be generated.

5. Conclusions

A combination of LiDAR-derived topographic features (DTM and CTI), geo-statistical modeling
techniques and plots tactically located and representative of the landscape, provide a consistent
approach to calibrate a general LiDAR-based ACD model to a western Amazonian forest. In this
study we assessed the errors in applying this calibration (i.e., the ability of LiDAR to predict the
carbon density of a set of field inventory plots as assessed by the regression model), and not
comparing to field-based methods. Fifty subplots of 1 ha were used to estimate and validate
the general LiDAR-based ACD model, with uncertainty values of 5.81 Mg¨C¨ha´1 and a bias of
0.59 Mg¨C¨ha´1, along with an adjusted R2 of 0.94 indicates that the plot-aggregate allometric
approach can be used to accurately estimate carbon stocks in the study area. The results showed
that spatial stratification by topographic position may reduce bias in model calibration. The study
also identified issues for further research related to the influence of pulse density and plot size to
reliably estimate the metrics used to predict forest biomass in tropical forest.
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