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Abstract: Due to the limited accuracy of exterior orientation parameters, ground control points
(GCPs) are commonly required to correct the geometric biases of remotely-sensed (RS) images.
This paper focuses on an automatic matching technique for the specific task of georeferencing
RS images and presents a technical frame to match large RS images efficiently using the prior
geometric information of the images. In addition, a novel matching approach using online aerial
images, e.g., Google satellite images, Bing aerial maps, etc., is introduced based on the technical
frame. Experimental results show that the proposed method can collect a sufficient number of
well-distributed and reliable GCPs in tens of seconds for different kinds of large-sized RS images,
whose spatial resolutions vary from 30 m to 2 m. It provides a convenient and efficient way to
automatically georeference RS images, as there is no need to manually prepare reference images
according to the location and spatial resolution of sensed images.
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1. Introduction

Direct geo-location of remotely-sensed (RS) images is based on the initial imaging model,
e.g., rigorous sensor model and Rational Polynomial Coefficients (RPC) model without ground
control, and the accuracy of the model is limited by the interior and exterior orientation parameters.
The accurate interior orientation parameters can be achieved by performing on-board geometric
calibration, but the exterior orientation parameters, which are directly observed by on-board GPS,
inertial measuring units and star-trackers, usually contain variable errors. Even the most modern
satellite geo-positioning equipment results in varying degrees of geo-location errors (from several
meters to hundreds of meters) on the ground [1]. In practical applications, the reference image
is of great importance to collect ground control points (GCPs) and to perform precise geometric
rectification. However, the reference images are commonly difficult or expensive to obtain, and an
alternative approach is to use GCPs obtained by GPS survey, which is time consuming and labor
intensive. In recent years, many online aerial maps (e.g., Google satellite images [2], Bing aerial
images [3], MapQuest satellite maps [4], Mapbox satellite images [5], etc.) and interactive online
mapping applications (e.g., Google Earth [6], NASA World Wind [7], etc.) have become available,
and they show high geometric accuracy according to the authors’ recent GPS survey experiments.
The surveyed GCPs are distributed in 17 different areas around China, where the latitude varies from
18◦N to 48◦N and the longitude varies from 75◦ E to 128◦ E. The accuracy of the online satellite
maps (Google satellite images, Bing aerial images and Mapbox satellite images) in the surveyed
areas is shown in Table 1. Note that the accuracy of MapQuest satellite maps is not included, as
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MapQuest satellite maps of high zoom levels (higher than 12) are not available in China. Although
some areas lack high resolution images or the positioning errors of the images are around 10 m, most
of the surveyed areas are of high geometric accuracy, and the root mean square (RMS) values of
the positioning errors of these online resources are less than 5 m. Moreover, the areas lacking high
resolution images are decreasing, and the geometric accuracy of the online resources is increasingly
improving. These online resources provide another alternative to manually collecting GCPs, and they
should be used more widely in the future as their accuracies increase. As far as we know, however,
automatic solutions have not been reported yet.

Table 1. Accuracy of the online aerial maps, i.e., root mean square (RMS) values of the positioning
errors according to our GPS survey results.

Map Source RMS Errors (Meters)

Google 3.89
Bing 4.12

Mapbox 4.23

Automatic image matching is one of the most essential techniques in remote sensing and
photogrammetry, and it is the basis of various advanced tasks, including image rectification, 3D
reconstruction, DEM extraction, image fusion, image mosaic, change detection, map updating, and so
on. Although it has been extensively studied during the past few decades, image matching remains
challenging due to the characteristics of RS images. A practical image matching approach should
have good performance in efficiency, robustness and accuracy, and it is difficult to perform well in all
of these aspects, as the RS images are usually of a large size and scene and are acquired in different
conditions of the spectrum, sensor, time and geometry (viewing angle, scale, occlusion, etc.).

The existing image matching methods can be classified into two major categories [8,9]:
area-based matching (ABM) methods and feature-based matching (FBM) methods.

Among the ABM methods, intensity correlation methods based on normalized cross-correlation
(NCC) and its modifications are classical and easy to implement, but the drawbacks of high
computational complexity and flatness of the similarity measure maxima (due to the self-similarity of
the images) prevent them from being applied to large-scale and multi-source images [9]. Compared
to intensity correlation methods, phase correlation methods have many advantages, including
high discriminating power, numerical efficiency, robustness against noise [10] and high matching
accuracy [11]. However, it is difficult for phase correlation methods to be extended to match images
with more complicated deformation, although Fourier–Mellin transformation can be applied to deal
with translated, rotated and scaled images [12]. Moreover, as phase correlation methods depend
on the statistical information of the intensity value of the image, the template image should not be
too small to provide reliable phase information, and phase correlation may frequently fail to achieve
correct results if the template image covers changed content (e.g., a newly-built road). In least squares
matching (LSM) methods, a geometric model and a radiometric model between two image fragments
are modeled together, and then, least squares estimation is used to find the best geometric model and
matched points [13]. LSM has a very high matching accuracy potential (up to 1/50 pixels [14]) and
is computationally efficient and adaptable (can be applied to complicated geometric transformation
models and multispectral or multitemporal images [15]). However, LSM requires good initial values
for the unknown parameters, as the alignment/correspondence between two images to be matched
generally has to be within a few pixels or the process will not converge [14,16].

In contrast to the ABM methods, the FBM methods do not work directly with image intensity
values, and this property makes them suitable for situations when illumination changes are expected
or multisensor analysis is demanded [9]. However, FBM methods, particularly line- and region-based
methods, are commonly less accurate than ABM methods [15] (fitting these high-level features usually
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introduces additional uncertainty [17] to the matching result). FBM methods generally include two
stages: feature extracting and feature matching. As automatic matching of line- and region-features
is more difficult and less accurate, the point-based methods are much more widely used. Among the
point-based methods, scale-invariant feature transform (or SIFT) [18] is one of the most important
ones, which is invariant to image rotation and scale and robust across a substantial range of affine
distortion, the addition of noise and changes in illumination, but imposes a heavy computational
burden. More recently-proposed point detectors, e.g., Speeded Up Robust Features (SURF) [19],
Features from accelerated segment test (FAST) [20], Binary Robust Invariant Scalable Keypoints
(BRISK) [21], Oriented FAST and Rotated BRIEF (ORB) [22] and Fast Retina Keypoint (FREAK) [23],
provide fast and efficient alternatives to SIFT, but they are proven not as robust as SIFT. However,
SIFT-based methods face the following challenges when directly used in RS images: large image size,
large scene, multi-source images, accuracy, distribution of matched points, outliers, etc.

During the last ten years, many improvements have been made to cope with the drawbacks
of SIFT:

Efficiency: In the PCA-SIFT descriptor [24], the 3042-dimensional vector of a 39× 39 gradient
region is reduced to a 36-dimensional descriptor, which is fast for matching, but it is proven to be
less distinctive than SIFT [25] and to require more computation to yield the descriptor. Speeded-up
robust features (SURF) is one of the most significant speeded up versions of SIFT, but can only slightly
decrease the computational cost [26] when becoming less repeatable and distinctive [22]. Some GPU
(graphic process unit)-accelerated implementations of SIFT (e.g., SiftGPU [27] and CudaSift [28])
can get comparable results as Lowe’s SIFT [18], but are much more efficient. However, these
implementations require particular hardware, such as the GPU, which is not available for every
personal computer (PC), and they are not robust enough when applied to very large satellite images.

Multi-source image: [29] refined the SIFT descriptor to cope with the different main orientations
of corresponding interesting points, which are caused by the significant difference in the pixel
intensity and gradient intensity of sensed and reference images. The work in [30] proposed an
improved SIFT to perform registration between optical and SAR satellite images. The work in [31]
introduced a similarity metric based on local self-similarity (LSS) descriptor to determine the
correspondences between multi-source images.

Distribution control: Uniform robust SIFT (UR-SIFT) [32] was proposed to extract high-quality
SIFT features in the uniform distribution of both the scale and image spaces, while the distribution
of matched points is not guaranteed. More recently, the tiling method was used to deal with large RS
images [26,33] and to yield uniform, distributed ground control points.

Outliers’ elimination: Scale restriction SIFT (SR-SIFT) [34] was proposed to eliminate
the obvious translation, rotation and scale differences between the reference and the sensed
image. The work in [35] introduced a robust estimation algorithm called the HTSC (histogram
of TARsample consensus) algorithm, which is more efficient than the RANSAC algorithm. The
mode-seeking SIFT (MS-SIFT) algorithm [36] performs mode seeking (similarity transformation
model) to eliminate outlying matched points, and it outperformed SIFT-based RANSAC according
to the authors’ experiments. The similarity transformation, nevertheless, is not suitable for all kinds
of RS images when the effects of image perspective and relief are serious.

In summary, despite the high matching accuracy, ABM methods do not have good performance
for RS images due to the complex imaging conditions and geometric distortions. On the other
hand, FBM methods are more suitable for multisensor analysis. SIFT is one of the most successful
FBM methods, but it still faces many difficulties when directly applied to RS images. Although a
number of improved versions of SIFT have been proposed to cope with the drawbacks, all of these
methods do not make full use of the prior information (initial imaging model and possible geometric
distortions) of the RS image and the requirement of a specific task. In this work, we focus on the
task of image rectification (e.g., geometric correction, orthorectification and co-registration), while
the tasks of 3D reconstruction and DEM extraction, which require densely-matched points, are not
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considered. Commonly, tens of uniform, distributed and accurate control points are sufficient to
perform rectification of RS images, and more control points do not necessarily improve the accuracy
of the result [37]. The purpose of this paper is to overcome the difficulties of SIFT and to develop
a practical online matching method, which is efficient, robust and accurate, for the georeferencing
task of RS images. The original contribution of this work mainly includes the following aspects:
(i) a convenient approach to perform point matching for RS images using online aerial images; (ii) a
technical frame to find uniformly-distributed control points for large RS images efficiently using the
prior geometric information of the images; and (iii) an improved strategy to match SIFT features and
eliminate false matches.

The rest of this paper is organized as follows. Section 2 introduces the technical frame of the
proposed matching method, and Section 3 states the approach to utilize online aerial images in detail.
Experimental evaluation is presented in Section 4, and the conclusion is drawn in Section 5.

2. Technical Frame

The proposed point matching method is mainly based on the following scheme:
(1) Image tiling:
The geometric distortion of the RS image is complicated, resulting from the distortion of

the camera, projective deformation, affect of interior and exterior orientation parameters, Earth
curvature, reliefs, and so on, and the rational function model (RFM) of 78 coefficients (RPCs) is usually
used to model the deformation of the RS image [38]. However, the local distortion, e.g., that of a small
image patch of 256× 256, can be approximated by much simpler transformations (affine or similar
transformation).

In a remotely-sensed image of a large scene, SIFT may be computationally difficult and
error-prone, and dividing the large image into small tiles can avoid this drawback.

The tilling strategy also helps to control the distribution and quantity of the matched points, and
the computational cost can be notably saved if the number of target matches is limited.

(2) Make use of prior geometric information:
The prior geometric information of RS images, e.g., ground sample distance (or spatial

resolution) and coarse geographic location, can be utilized to make the image matching process more
efficient and robust.

(3) Make use of the attributes of SIFT feature:
The attributes of a SIFT feature, including location, scale, orientation and contrast, can be used

to eliminate false matches and evaluate the quality of the feature.
(4) Refine the results of SIFT:
The matched points of SIFT are extracted from the sensed and reference image independently

and are less accurate than those of area-based methods. However, the results of SIFT provide good
initial values for least squares matching (LSM) and can be refined to achieve very high accuracy
by LSM.

The process of the proposed matching method can be summarized as the flowchart in Figure 1,
and the detailed techniques of the method will be introduced in the following sections (Section 2.1 to
Section 2.6).

2.1. Image Tiling

In the proposed method, image tiling consists of three steps:

• The region of interest (the whole region of the sensed image or the intersection region of the
sensed and reference image) is divided into blocks according to the number of target matches.

• Each block of the image is divided into small tiles (processing unit) to perform SIFT matching,
and in this work, the size of the image tile is 256× 256.

• The corresponding tile is extracted from the reference image (online aerial maps) according to
the tile in the sensed image and the initial geometric model.
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Figure 1. Flowchart of the proposed matching method.

Figure 2 illustrates the blocks of an image and the tiles of a block. The aim of image matching is
to achieve a reliable control point in each block, and the process will move on to the next block once
any tile of the current block succeeds to yield a reliable control point.
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Figure 2. Blocks of an image and tiles of a block.

When extracting the corresponding tile from the reference image, the initial geometric model
should be utilized, which can be various types: the affine transformation model contained in a
georeferenced image or all kinds of imaging models, such as a rigorous sensor model, a polynomial
model, a direct linear transformation model, a rational function model (RFM), etc.
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Commonly, these imaging models can be defined as a forward model (from the image space to
the object space) or an inverse model (from the object space to the image space).{

X = FX(x, y, Z)
Y = FY(x, y, Z)

(1)

{
x = Fx(X, Y, Z)
y = Fy(X, Y, Z)

(2)

where:
(x, y) are the coordinates in image space,
(X, Y, Z) are the coordinates in object space,
Z is the elevation,
FX and FY are the forward transforming functions of the X and Y coordinates, respectively,
Fx and Fx are the inverse transforming functions of x and y coordinates, respectively.
In the forward model, image coordinates (x, y) and elevation Z are needed to determine the

ground coordinates (X, Y, Z). With the help of DEM data, however, the ground coordinates (X, Y, Z)
can be determined by the image coordinates (x, y) after several iterations. Therefore, the forward
model can also be denoted by Equation (3) if DEM data are available.{

X = FX(x, y)
Y = FY(x, y)

(3)

With the help of the initial geometric model of the sensed image, the reference image tile can
be extracted by calculating its approximate extent. Moreover, to make SIFT matching more efficient
and robust, the reference image tile is resampled to a similar resolution as the sensed image tile.
The detailed techniques of fetching the reference image tile from online aerial maps will be introduced
in Section 3.

2.2. Extracting SIFT Features

As the reference image tile is resampled to a similar resolution as the sensed image tile, the SIFT
detector can be performed in only one octave to get the expected results, and the process becomes
much more efficient. In the only octave, the scale space of the image tile is defined as a function,
L(x, y, σ), that is produced from the convolution of a variable-scale Gaussian, G(x, y, σ), with the
input image tile, I(x, y) [18]:

L(x, y, σ) = G(x, y, σ) ∗ I(x, y) (4)

where G(x, y, σ) = 1
2πσ2 e−(x2+y2)/2σ2

and ∗ is the convolution operation.
Then, D(x, y, σ), the convolution of the difference-of-Gaussian (DoG) function and the image

tile, which can also be computed from the difference of two nearby scales separated by a constant
multiplicative factor k, is used to detect stable keypoint locations in the scale space by searching the
scale space extrema.

D(x, y, σ) = (G(x, y, kσ)− G(x, y, σ)) ∗ I(x, y)

= L(x, y, kσ)− L(x, y, σ)
(5)

Once a keypoint candidate has been found, its location (x, y), scale σ, contrast c and edge
response r can be computed [18], and the unstable keypoint candidates whose contrast c is less than
threshold Tc (e.g., Tc = 0.03) or whose edge response r is greater than threshold Tr (e.g., Tr = 10)
will be eliminated. Then, image gradient magnitudes and orientations are sampled around the



Remote Sens. 2016, 8, 56 7 of 23

keypoint location to compute the dominant direction θ of local gradients and the 128-dimensional
SIFT descriptor of the keypoint.

2.3. Matching SIFT Features

In standard SIFT, the minimum Euclidean distance between the SIFT descriptors is used to match
the corresponding keypoints, and the ratio of closest to second-closest neighbors of a reliable keypoint
should be greater than an empirical threshold Tdr, e.g., Tdr = 0.8 [18]. However, [29,32] pointed out
that the Tdr constraint was not suitable for RS images and would lead to numerous correctly-matched
eliminations.

In this work, both the Tdr constraint and a cross matching [32] strategy are applied to find the
initial matches. Denoting by P and Q the keypoint sets in the sensed and reference image tiles, once
either of the following two conditions is satisfied, the corresponding keypoints pi ∈ P and qj ∈ Q
will be included in the match candidates.

Tdr constraint: The ratio of closest to second-closest neighbors of the keypoint pi is greater than
Tdr = 0.75, and the keypoint qj is the closest neighbor of pi. Here, we chose a smaller Tdr
rather than 0.8, which is recommended by [18], to reduce the chance of including too many
false matches for RS images.

Cross matching: The keypoint pi is the closest neighbor of qj in P, and the keypoint qj is also the
closest neighbor of pi in Q.

Of course, the match candidates usually include a number of false matches, which will be
eliminated in the following step.

2.4. Eliminating False Matches

Commonly, some well-known robust fitting methods, such as RANSAC or least median of
squares (LMS), are applied to estimate an affine transformation, as well as the inliers from the match
candidates. However, these methods perform poorly when the percent of inliers falls much below
50%. In this work, the false matches are eliminated by four steps, i.e., rejecting by scale ratio, rejecting
by rotation angle, rejecting by the coarse similarity transformation (Equation (6)) using RANSAC and
rejecting outliers by the precise affine transformation (Equation (7)) one by one.{

xr = s(xs cos θ + ys sin θ) + tx

yr = s(−xs sin θ + ys cos θ) + ty
(6)

{
xr = a0 + a1xs + a2ys

yr = b0 + b1xs + b2ys
(7)

where:
s and θ are the scale parameter and rotation angle parameter of similarity transformation,
tx and ty are the translation parameters of similarity transformation in the x direction and the y

direction,
a0,a1, a2, b0, b1, b2 are the parameters of affine transformation.
There are a number of reasons for choosing similarity transformation to perform RANSAC

estimation instead of affine transformation. Firstly, it is possible for a similarity transformation to
model the geometric deformation coarsely in a small tile of an RS image. Secondly, the similarity
transformation solution requires less point matches than the affine transformation solution and is
also more robust. In addition, the similarity transformation can make full use of the geometric
information, such as the scale and dominant direction, of the SIFT keypoints.

(1) Rejecting by scale ratio:
The scale has been computed for each keypoint in the phase of extracting SIFT features

(Section 2.2) and the scale ratio of a pair of corresponding keypoints in the sensed image tile and
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reference image tile indicates the scale factor between the two image tiles. By computing a histogram
of the scale ratios of all match candidates, the peak of the histogram will locate around the true
scale factor between the two image tiles [36]. The match candidates whose scale ratio is far from
the peak of the histogram are not likely to be correct matches and, therefore, are rejected from the
match candidates. Denoting the peak scale ratio by σpeak, the acceptable matches should satisfy the
following criterion:

Tσ <
∆σ

σpeak
<

1
Tσ

where ∆σ is the scale ratio of a match candidate, Tσ is the scale ratio threshold and Tσ = 0.8 is used
in this work. The selection of Tσ will be discussed later at the end of Section 2.4.

Note that the reference image tile is resampled to a similar resolution as the sensed image tile;
the computation of the scale ratio histogram is not necessary. The σpeak is expected to be around 1.0,
even if we do not check the scale ratio histogram.

(2) Rejecting by rotation angle:
Similarly, as the difference of the dominant direction of corresponding keypoints indicates the

rotation angle between the two image tiles, a rotation angle histogram can be computed using the
dominant directions of the SIFT keypoints in all match candidates. The rotation angle histogram
has 36 bins covering the 360 degree range of angles, and the match candidates whose difference of
dominant direction is far from the peak of the histogram are rejected. Denoting the peak rotation
angle by θpeak, the acceptable matches should satisfy the following criterion:

| ∆θ − θpeak |< Tθ

where ∆θ is the dominant directions of the SIFT features in a match candidate, Tθ is the rotation angle
threshold and Tθ=15◦ is used in this work. The selection of Tθ will be discussed later at the end of
Section 2.4.

(3) Rejecting by similarity transformation:
After the first two steps, most of the false matches will be rejected, and the RANSAC algorithm

is quite robust to estimate a coarse similarity transformation from the remaining match candidates.
Meanwhile, outliers for similarity transformation are also excluded.

(4) Rejecting by affine transformation:
In order to achieve accurate matching results, the remaining match candidates should be further

checked by an affine model. Specifically, all of the remaining match candidates are used to find the
least-squares solution of an affine transformation, and inaccurate matches, which do not agree with
the estimated affine transformation, should be removed. The process will iterate until none of the
remaining matches deviates from the estimated affine transformation by more than one pixel.

Note that once fewer than four match candidates remain before or after any of the four steps, the
match will be terminated for this tile immediately.

Next, we will provide a discussion on the recommended values of Tσ and Tθ , and this is based on
a matching task using a collection of 1000 pairs of real image tiles that were extracted from different
sources of RS images, including Landsat-8, ZY-3, GF-1, etc.

The matching task includes two groups of tests: (1) set Tθ=15◦, and let Tσ vary from zero to
one; (2) set Tσ = 0.8, and let Tθ vary from 0◦ to 360◦. A pair of image tiles is called a “matched
pair” if the matching process of this image pair yields at least four matches after all four filtering
steps. However, for a matched pair, it is possible that not all of the false matches were excluded after
the filtering steps, and the results will be untrustworthy. Therefore, only the correctly-matched pairs,
whose output matches are all correct, are reliable, and we refer to the percentage of correctly-matched
pairs out of all of the matched pairs as the “correct match rate”. In each group of tests, the numbers of
matched pairs and correct match rates were obtained for different values of Tσ or Tθ . Figure 3a shows
the matching results with respect to different values of Tσ, while Figure 3b shows the matching results
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with respect to different values of Tθ . According to Figure 3a, as Tσ increases from zero to one, the
number of matched pairs declines, but the correct match rate ascends. According to Figure 3b, as Tθ

increases from 0◦ to 360◦, the number of matched pairs ascends, while the correct match rate declines.
To ensure a high correct match rate and enough matches, the value of Tσ should be between 0.70 and
0.85, and the value of Tθ should be between 15◦ and 30◦.
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Figure 3. The numbers of matched pairs and correct match rates for different values of Tσ and
Tθ . (a) The results with respect to different values of Tσ; (b) the results with respect to different values
of Tθ .

2.5. Refining Position

After the step of eliminating false matches, all of the remaining matches have good agreement
(within one pixel) with the local affine transformation. However, the accuracy of the matched points
is not high enough considering that they are extracted from the sensed image and reference image
independently. Consequently, least squares matching (LSM) is applied to refine the matching results.

It is possible to further include any matches that agree with the final affine transformation from
those rejected by error in the phase of eliminating false matches, and then, the new set of matches will
be more complete. However, only a pair of matched points is needed for a sensed image tile in the
proposed method, even if a large number of matches are found. Therefore, the step of adding missed
matches is not included in this work for the sake of efficiency.

Considering that the features having high contrast are stable to image deformation [32], the
keypoint with the highest contrast is chosen from the output of the phase of eliminating false matches.
Actually, the high contrast not only guarantees the stability of the keypoints, but also benefits the
accuracy of LSM.

LSM is performed in a small region around the SIFT keypoint in sensed image tile, e.g., a
template of 11× 11, and it is quite efficient. In order to cope with both the geometric deformation and
radiometric difference, a geometric model and a radiometric model between two image fragments
are modeled together [16], and the condition equation of a single point is:

k1 Is(xs, ys) + k2 − Ir(xr, yr) = 0 (8)

where xr = a0 + a1xs + a2ys and yr = b0 + b1xs + b2ys, a0,a1, a2, b0, b1, b2 are six parameters of
geometric transformation, k1 and k2 are two radiometric parameters for contrast and brightness (or
equivalently gain and offset), Is(xs, ys) and Ir(xr, yr) are the gray values of a pixel in a source and
reference image tile.

The geometric model and the radiometric model are estimated by least squares, and then, we
can accurately locate the corresponding point in the reference image tile.
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As Equation (8) is nonlinear, good initial values are required to find the optimal models.
Fortunately, the previously-calculated affine transformation provides very good initial values for the
geometric parameters, and those of the radiometric parameters can be set as k1 = 1 and k2 = 0 [16].
Finally, the Levenberg–Marquardt algorithm [39] is applied to solve the problem.

Below is an example to show the effect of position refinement. Figure 4 illustrates matched
keypoints in the sensed image tile and the reference image tile, and Figure 5 shows the image
fragments around the keypoints, as well as the the matched points before and after the phase of
position refinement. Figure 5a,b is the original matching result of SIFT, and it is very difficult to tell
whether the matched points in the sensed image and the reference image are corresponding points
exactly. However, by applying least squares matching, the warped image fragment in Figure 5c is
in good agreement with the search image fragment in Figure 5b, both in geometry and radiometry.
Consequently, it is very clear that the marked point in Figure 5c (transformed from the keypoint in
Figure 5a) and that in Figure 5d (refined by LSM) are corresponding. Meanwhile, one can see that the
original SIFT keypoint in Figure 5b is not accurate enough when comparing to the point in Figure 5d.
Note that the images in Figure 5 are enlarged by eight times using the cubic interpolation method,
and the actual deviation between Figure 5b,d is about one pixel.

(a) (b)

Figure 4. The matched keypoints in a sensed image tile and a reference image tile. (a) The sensed
image tile; and (b) the reference image tile.

(a) (b) (c) (d)

Figure 5. (a) The template image around the SIFT keypoint (marked with a cross) in the sensed
image tile; (b) the search image around the SIFT keypoint (marked with a cross) in the reference
image tile; (c) an image fragment warped from the template image using the geometric model and the
radiometric model in Equation (8), and the cross denotes the SIFT keypoint in the sensed image tile
after geometric transformation; (d) the search image, and the cross denotes the refined keypoint in the
reference image tile.

2.6. Summary

According to the number of required control points, the sensed image will be divided into a
number of blocks evenly, and only one control point is needed for each block. Then, each block is
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divided into a number of tiles according to the previously-defined tile size, and once any of the tiles
succeeds to produce a control point, the process will move on to the next block. We do not intend
to exhaust all of the possible matches, but find a moderate number of control points that are very
reliable. Obviously, this method is greedy and therefore efficient.

After the matching of all image blocks is finished, it is easy to further identify potential outliers
by checking for agreement between each matched point and a global geometric model, e.g., rigorous
sensor model, rational function model, etc. However, hardly any false matches were found in the final
matches according to the results of all our tests.

We call the process of matching a pair of a sensed image tile and a reference image tile a “tile
trial” (as shown in Figure 1), and the actual efficiency of the method is decided by the number of tile
trial times. If the success rate of tile trial is 100% (the best case), only one tile trial is performed for
each control point, and the number of tile trial times is not related to the size of the sensed image; if
the success rate of tile trial is 0% (the worst case), all of the tiles of the sensed image will be tested,
and the number of tile trial times is decided by the size of the sensed image. The success rate of tile
trial is related to the similarity between the sensed image and the reference image and the distinction,
which can be affected by a number of factors, e.g., the quality (cloud coverage, contrast, exposure,
etc.) of the images, the scale difference, the spectral difference, changes caused by different imaging
times, etc. Additionally, as the tile trial is based on SIFT matching, the success rate is limited if the test
images cover a region of low texture, such as water, desert and forest.

Furthermore, the high independence among the image blocks enables a parallel implementation,
which can further accelerate the proposed method. The processing of image blocks can be
assigned to multiple processors and nodes (computers) in a cluster and, therefore, run concurrently.
Parallelization makes full use of the computing resources and exponentially shortens the consumed
time of image matching. In this work, we implemented a parallel version on multiple processors, but
not on multiple computers.

In addition, the SIFT implementation designed on a graphic process unit (GPU) [27] may
considerably accelerate the process of the tile trial, but it is not yet included in this work.

3. Fetch Reference Image from Online Aerial Maps

In Section 2.1, we mentioned that the reference image tile can be extracted by calculating its
approximate extent, and this section will introduce the detailed techniques to fetch reference image
tiles from online aerial maps, i.e., Google satellite images, Bing aerial images, MapQuest satellite maps
and Mapbox satellite images.

3.1. Static Maps API Service

In this work, we use the Static Maps API Service of online aerial maps, i.e., sending a URL
(Uniform Resource Locator) request, to fetch the required reference image tiles automatically. For
example, the formats of URL request of Google satellite images, Bing aerial images, MapQuest
satellite maps and Mapbox satellite images are listed below.

Google satellite images:
https://maps.googleapis.com/maps/api/staticmap?maptype=satellite&zoom={zoomLevel}&center={lat},{lon}&size=
{width}x{height}&key={googleKey}

Bing aerial images:
http://dev.virtualearth.net/REST/v1/Imagery/Map/Aerial/{lat},{lon}/{zoomLevel}?mapSize={width},{height}&key=
{BingMapsKey}

MapQuest satellite maps:
http://www.mapquestapi.com/staticmap/v4/getmap?type=sat&zoom={zoomLevel}&center={lat},{lon}&size={width},
{height}&key={mapquestKey}
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Mapbox satellite images:
http://api.tiles.mapbox.com/v4/mapbox.satellite/{lon},{lat},{zoomLevel}/{width}x{height}.png?access_token=
{mapboxKey}

In these URLs, the parameters inside “{}” should be specified, i.e., the longitude and latitude of
the center point, zoom level, width and height of the image tile and the API keys. One can apply
either free or enterprise API keys from corresponding websites, freely or with a low cost, and the
calculation of the other parameters will be introduced in the following sections.

3.2. Zoom Level

For online global maps, a single projection, Mercator projection, is typically used for the entire
world, to make the map seamless [40]. Moreover, the aerial maps are organized in discrete zoom
levels, from 1 to 23, to be rendered for different map scales. At the lowest zoom level, i.e., 1, the map
is 512× 512 pixels, and once the zoom level is increased by one, the width and height of the map
expand twice.

Consequently, in order to fetch the corresponding reference image tile, we need to firstly
determine the zoom level, which is related to the ground sample distances (GSD) of the sensed image
tile. Similar to the relative scale between the sensed image and the reference image, the GSDs of the
sensed image are not necessarily constant in a whole image, and the local GSDs of an image tile can
be calculated by the formula:{

GSDx =
√
(FX(xc + 1, yc)− FX(xc, yc))2 + (FY(xc + 1, yc)− FY(xc, yc))2

GSDy =
√
(FX(xc, yc + 1)− FX(xc, yc))2 + (FY(xc, yc + 1)− FY(xc, yc))2 (9)

where:
GSDx and GSDy are the ground sample distances in x direction and y direction,
xc and yc are the image coordinates of the center point of the sensed image tile,
FX and FY are the forward transforming functions of the X and Y coordinates, which are

described in Equation (3).
On the other hand, the GSDs (in meters) of online aerial maps vary depending on the zoom level

and the latitude at which they are measured, and the conversion between the GSD and nearest zoom
level is described by Equation (10),

GSD =
2πRearth

512× 2n−1 cos φ

n = blog2
2πRearth cos φ

512× GSD
+ 1e

(10)

where:
Rearth is the earth radius, for which 6,378,137 meters is used,
φ is the latitude at which it is measured,
GSD is the ground sample distance (in meters), both in the x direction and y direction,
n is the zoom level,
b·e is an operator to find the nearest integer.
Equation (10) can be applied to find the nearest zoom level according to the GSD of the sensed

image tile (the mean value of those in the x direction and the y direction) calculated by Equation (9).

3.3. Width and Height

By providing the rectangle extent of the sensed image tile, the corresponding geographic
coordinates (longitude and latitude) of the four corners can be calculated by the initial forward
transforming functions in Equation (3). In order to find the extent of the required reference image
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tile, the geographic coordinates, λ and φ, should be converted to the image coordinates, x and y, in
the map of the nearest zoom level, n, according to Equation (11) [40],

x =
λ + 180

360
× 512× 2n−1

y =

(
0.5− 1

4π
ln

1− sin φ

1 + sin φ

)
× 512× 2n−1

(11)

where λ and φ are the longitude and latitude.
Then, the extent of reference image tile is the minimum boundary rectangle of the four corners

in the map of zoom level n, and the width and height of the tile are known, accordingly.

3.4. Center Point

Next, we need to calculate the geographic coordinates of the center point of reference image tile,
and the following inverse transformation from image coordinates, x and y, in the map of the nearest
zoom level, n, to geographic coordinates, λ and φ, will be used,

λ =
360

512× 2n−1 x− 180

φ =
180
π

arcsin
exp[4π(0.5− y

512×2n−1 )]− 1

exp[4π(0.5− y
512×2n−1 )] + 1

(12)

Equation (12) is derived from Equation (11) directly, and it will be used again when the matched
points in the sensed and reference image tile are found, as the image coordinates in the reference
image tile should be converted to geographic coordinates to obtain ground control points.

3.5. Resizing

Given the nearest zoom level, the width and height of the image tile, the longitude and latitude of
the center point and the API keys, the Static Maps API service can be used to download the required
reference image tile from the online aerial images. However, the GSD of the downloaded reference
image tile may not be very close to that of the sensed image tile, since the zoom level is discrete.
The downloaded image tile needs to be further resampled to a similar resolution as the sensed image
tile for the sake of efficiency and robustness, according to the relative scale between the two image
tiles, which can be calculated by dividing the GSD of the sensed image tile by that of the online
reference image tile.

3.6. Summary

The scene of a RapidEye image captured in 2010 is used to show an example of online matching.
The image is of Oahu, Hawaii, and the spatial resolution is 5 m. Figure 6 shows a tile of the RapidEye
image matched with different online aerial maps, including Google satellite images, Bing aerial
images, MapQuest satellite maps and Mapbox satellite images. Note that we intentionally chose a
scene in the USA, as the MapQuest satellite maps of high zoom levels (higher than 12) are provided
only in the United States.

From Figure 6, one can see that in the same range, the data sources of the four kinds of online
aerial maps are not the same. In practically applications, different online aerial maps can be used for
complementation.
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(a) Google satellite images (b) Bing aerial maps

(c) MapQuest satellite (d) Mapbox satellite images

Figure 6. Example of online matching, and the matched points are marked by cross. (a) to (d) are
matching results using Google satellite images, Bing aerial maps, MapQuest satellite maps and
Mapbox satellite images, respectively. In each figure, the left is the RapidEye image tile, while the
right is the online aerial map.

4. Experiments and Analysis

In this section, several groups of experiments are carried out to check the validity of the proposed
method, and all experiments are performed on a 3.07-GHz CPU with four cores.

4.1. Robustness

To show the superiority of the matching strategy of the proposed method, we carry out
comparative tests with three methods: the proposed method, the ordinary SIFT [18] and SR-SIFT [34],
which is claimed to be more robust than ordinary SIFT. In the ordinary SIFT matching method, match
candidates are found by using the distance ratio constraint of closest to second-closest neighbors, and
outliers are eliminated by using the RANSAC algorithm and affine transformation. In the SR-SIFT
method, scale restriction is applied to exclude unreasonable matches before the RANSAC filtering.
The distance ratio threshold Tdt = 0.75 is applied in all of the methods. Figure 7 shows the results of
the three methods when applied to a pair of AVIRIS image tiles (visible and infrared).

(a) original SIFT (b) SR-SIFT (c) the proposed method

Figure 7. Matching results of the AVIRIS visible image tile (left) and the AVIRIS infrared image
tile (right), using three different methods. (a) The result of original SIFT (four matches are found,
including a wrong match); (b) the result of SR-SIFT (six correct matches are found); and (c) the result
of the proposed method (20 correct matches are found).
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From Figure 7, we can see that the original SIFT yields the poorest matching results, while
SR-SIFT provides more correct matches. However, the best results come from the proposed method,
not only the quantity of correct matches, but also the distribution of matched points.

We also test more than 100 successfully-matched tiles, from six pairs of RS images, including
Landsat-5 vs. Landsat-5 (captured at different times), Huanjing-1 (HJ-1) vs. Landsat-8, Gaofen-1
(GF-1) vs. Bing aerial maps, Ziyuan-3 (ZY-3) vs. RapidEye, GF-1 Multispectral (MSS) vs. GF-1
Panchromatic (PAN) (captured simultaneously), Kompsat-2 vs. Worldview-1, and the numbers of
remaining matches after each step of the methods are noted. Table 2 shows the results of 12 pairs of
tiles (two pairs of tiles are randomly selected from each dataset).

Table 2. The number of remaining matches after each step in the three methods.

Datasets Tiles Proposed Method Ordinary SIFT Ordinary SIFT
S1 b S2 S3 S4 S5 S6 S1 S2 S1 S2 S3

D1 a Tile 1 125 88 33 23 17 17 19 14(11) c 19 17 14(11)
Tile 2 98 60 17 8 5 5 10 6(4) 10 9 7(6)

D2 Tile 1 142 91 20 15 8 9 8 8(6) 8 8 8(6)
Tile 2 124 88 18 15 10 11 15 13(9) 15 15 13(9)

D3 Tile 1 122 72 31 14 7 8 14 10(5) 14 14 10(5)
Tile 2 124 91 52 44 26 28 55 49(26) 55 52 50(25)

D4 Tile 1 130 87 40 9 6 7 25 16(5) 25 23 17(6)
Tile 2 153 114 69 16 8 9 37 34(3) 37 36 34(3)

D5 Tile 1 215 206 113 75 75 105 195 104(102) 195 190 103(101)
Tile 2 216 200 100 69 68 101 184 102(98) 184 182 102(98)

D6 Tile 1 129 76 19 7 5 5 3 0(0) 3 3 0(0)
Tile 2 115 73 26 8 6 7 10 4(2) 10 9 5(3)

a D1 to D6 denote the 6 datasets. D1: Landsat-5 vs. Landsat-5 (captured at different times); D2:
Huanjing-1 (HJ-1) vs. Landsat-8; D3: Gaofen-1 (GF-1) vs. Bing aerial map; D4: Ziyuan-2 (ZY-3) vs.
RapidEye; D5: GF-1 Multispectral (MSS) vs. GF-1 Panchromatic (PAN) (captured simultaneously);
D6: Kompsat-2 vs. Worldview-1; b S1 to S6 denote the 6 steps. In the proposed method: S1:
matching with the distance ratio constraint and cross matching; S2: rejecting by the scale ratio;
S3: rejecting by the rotation angle; S4: rejecting by similarity transformation; S5: rejecting by affine
transformation; S6: adding missed matches with the help of the affine transformation estimated in
S5. In ordinary SIFT: S1: matching with the distance ratio constraint; S2: rejecting by RANSAC and
affine transformation. In scale restriction (SR)-SIFT, S1: matching with the distance ratio constraint;
S2: rejecting by scale restriction; S3: rejecting by RANSAC and affine transformation. c The number
in brackets denotes the number of correct matches.

From Table 2, the following points can be drawn:

• The results of ordinary SIFT and SR-SIFT are similar, and a simple scale restriction filter seems
not helpful to find correct matches. Specifically, in most cases (except for Dataset 5), the distance
ratio constraint excludes a number of correct matches and sometimes results in failure (e.g., in
Dataset 6). By applying cross matching, the proposed method includes much more initial match
candidates, although many of them are false matches.

• The percentage of outliers in the initial match candidates is usually greater than 90%, and
the RANSAC algorithm is not robust enough to identify correct subsets of matches; thus, it
frequently fails or yields untrustworthy results. On the other hand, in the proposed method,
four steps of outlier rejecting can eliminate all of the false matches. Actually, after the first
two steps of rejecting (by the scale ratio and by the rotation angle), most of the outliers will be
cast out.

• Commonly, only a few matches will be added in Step 6 of the proposed method, except for
Dataset 5, in which the correct matches are plentiful. Consequently, Step 6 can be omitted,
without affecting the final result too much.
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• The ordinary SIFT matching method performs quite well for Dataset 5, in which the sensed
image and reference image were captured simultaneously from the same aircraft and in the
same view angle. With little variation in content, illumination and scale, the SIFT descriptor
is very robust and distinctive, and the distance ratio constraint identified most of the correct
matches. Then RANSAC algorithm manages to find reliable results, since the match candidates
contain fewer than 50% outliers.

4.2. Efficiency

In order to show the efficiency of the proposed method, SiftGPU [27], which is the fastest version
of SIFT to our best knowledge, is applied to carry out comparative tests with the proposed method.
The implementation of SiftGPU is provided by Wu C. in [27].

Two scenes of GF-2 PAN images in Beijing, China, which were acquired on 3 September 2015 and
12 September 2015, respectively, are used to perform the matching tests. GF-2 is a newly-launched
Chinese resource satellite; the spatial resolution of its panchromatic image is around 0.8 m, and the
size of an image scene is around 29,000 × 28,000 pixels.

(a) SiftGPU

(b) proposed method

Figure 8. Matching results of GF-2 PAN images, using SiftGPU and the proposed method. In each
sub-figure, the left is the image captured on 3 September 2015 and the right is the image captured on
12 September 2015. The matched points are labeled by the same numbers, and red crosses stand for
correct matches, while yellow crosses stand for wrong matches. (a) The result of SiftGPU (71 correct
matches and 11 wrong matches); and (b) the result of proposed method (30 correct matches are found).

SiftGPU spends 19.4 s to find 82 matched points (including 11 incorrectly matched points) from
the two scenes of GF-2 images, while the proposed method spends 20.6 s to find 30 matched points,
and the matching results are shown in Figure 8. Although SiftGPU yields more matches within
less time, the distribution and the correctness of the results of the proposed method (as shown in
Figure 8b) are obviously superior to those of SiftGPU (as shown in Figure 8a). SiftGPU makes
full use of the computing resource of the computer devices and is quite efficient when processing
large images, and 15,030 and 16,291 SIFT keypoints are extracted from the two images respectively
within a dozen seconds. However, finding the corresponding keypoints is difficult, as the large
scene makes the descriptors of SIFT keypoints less distinctive. Moreover, the serious distortion of
the satellite images also makes it difficult to identify the outliers from matched points; the residual
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errors of the 71 correctly matched points are more than 100 pixels when fitted by a three-degree 2D
polynomial function.

Actually, SiftGPU frequently fails to provide sound results for very large satellite images
according to our experimental results, despite its outstanding efficiency.

In summary, the proposed method is almost as fast as SiftGPU, but provides more reliable results.

4.3. Accuracy

In Section 2.5, an example has shown the effect of least squares match (LSM) refinement, and
in this section, 42 scenes of the GF-1 MSS image are used to further evaluate the accuracy of the
proposed method.

Firstly, the original GF-1 images are rectified based on the vendor-provided RPC model with
constant height zero and projected in longitude and latitude. Secondly, 25 check points, (x, y, λ, φ, 0),
are collected between each pair of the original image and the rectified image using the proposed
method. Finally, the geographic coordinates, (λ, φ, 0), of the check point in the rectified images
are transformed into the image coordinates, (x′, y′), in the original images using the inverse
transformation of the vendor-provided RPC model, and then, the biases between the matched points
can be measured by the difference of the image coordinates, (x − x′, y− y′). The results before and
after LSM refinement are compared to show the accuracy improvement of the proposed method.

Figure 9 shows the root mean square biases of matched points before and after LSM refinement
in each image, and one can see that in most of the tests, the accuracy of the matched points is notably
improved after LSM refinement.

There are several reasons to use this experimental scheme. Geometric transformation, especially
longitude and latitude projection, usually results in distortion of the image and then increases the
uncertainty of the position of detected SIFT features, while image distortion commonly exists in
practical image matching tasks. In addition, by performing image matching between the original
image and the rectified image, the ground truth of the bias should be zero, since the parameters of
geometric transformation are already known. Moreover, the least squares match is performed in a
small patch and is independent of the global transformation (vendor-provided RPC model); thus, the
agreement between the matched points and the global transformation can be applied to evaluate the
accuracy of matching, objectively. Note that the position biases between matched points may not be
exactly zero, due to the errors introduced by interpolation.
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Figure 9. Root mean square biases of matched points before and after least squares match
(LSM) refinement.
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4.4. Practical Tests

To evaluate the proposed method, four scenes of RS images, including Landsat-5, China-Brazil
Earth Resources Satellite 2 (Cbers-2), Cbers-4, ZY-3, GF-2, Spot-5, Thailand Earth Observation System
(Theos) and GF-1, are used to perform online matching, while Bing aerial images are utilized as the
reference images. For each image, the proposed matching method is used to automatically collect
control points, which are then applied to rectify the sensed image, and finally, 20 well-distributed
check points are manually collected from the rectified image and reference images (Bing aerial
images) to evaluate the matching accuracy. Table 3 shows the general information of the test images
used in these experiments.

Table 3. General information of the test images.

Test
No. Data Source Band Image Size GSD (m) Acquisition

Time
Elevation Location Initial

Model

1 Landsat-5 Band 4 6850 × 5733 30 2007
566 to
4733 China-Sichuan Rigorous

2 Cbers-2 Band 3 6823 × 6813 20 2008
486 to
1239 Brazil-Grão Mogol Affine

3 Cbers-4 P10 Band 3 6000 × 6000 10 2015
813 to
1514 South Africa-Buysdorp Rigorous

4 ZY-3 Band 1 8819 × 9279 5.8 2014
769 to
2549 China-Shaanxi RPC

5 GF-2 Band 1 7300 × 6908 3.2 2015
273 to

821 China-Ningxia RPC

6 Spot-5 Pan 33,730 × 29,756 2.5 2010
17 to
155 China-Wuhan Affine

7 Theos Pan 14,083 × 14,115 2 2014
1285 to

1736 China-Xinjiang Affine

8 GF-1 Pan 18,192 × 18,000 2 2014
3080 to

4159 China-Qinghai RPC

As shown in Table 3, different initial image models of the sensed image are utilized,
including the rigorous sensor model, affine transformation contained in georeferenced images, the
vendor-provided RPC model, etc. The rigorous sensor model of Landsat-5 is provided by the open
source software OSSIM [41] and the rigorous sensor model of the Cbers-4 image is built according to
the 3D ray from the image line-sample to ground coordinates in the WGS-84 system. The RPC models
of the ZY-3, GF-2 and GF-1 images are provided by the vendors. The Spot-5, Cbers-2 and Theos
images are processed to the L2 level of correction, and the affine transformation models contained in
images are used as initial imaging models.

Cbers-2 (Test 2), Cbers-4 P10 (Test 3), Spot-5 (Test 6) and Theos (Test 7) images are rectified based
on the terrain-dependent RPC (TD-RPC) model. Landsat-5 image in Test 1 is rectified based on the
rigorous sensor model, and RPC refinement is applied to rectify the ZY-3 (Test 4), GF-2 (Test 5) and
GF-1 (Test 8) images. Therefore, we intend to find 100 GCPs for each image in Tests 2, 3, 6 and 7, while
30 GCPs are required for each image in Tests 1, 4, 5 and 8. Note that all of the TD-RPC models in the
tests are calculated using `1-Norm-Regularized Least Squares (L1LS) [42] estimation method, to cope
with the potential correlation between the parameters.

Figure 10 shows the distribution of matched points in Test 1 – Test 8, and Table 4 shows more
results for each test, including the number of correct matches, consumed time, the model used for
geometric rectification and the RMSE of check points. Figure 11 is the comparison between the sensed
images and the online Bing aerial maps in Tests 4, 6, 7 and 8 using the “Swipe Layer” tool in ArcGIS
Desktop, and ArcBruTile [43] is used to display the Bing aerial maps in ArcGIS Desktop.

In this section, the spatial resolution of the test image varies from 30 m to 2 m, but the very high
resolution (less than 1 m) RS images are not included, as the geometric accuracy of the online aerial
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maps is limited. In this sense, we can successfully find enough GCPs for very high resolution images
from the online aerial maps, but the accuracy of the GCPs is not guaranteed.

According to Figure 3, and the test results in Figure 10, Figure 11 and Table 4, one can see that:

• Various kinds of geometric models can be used as the initial imaging model, including rigorous
models for different sensors, the vendor-provided RPC model and the affine transformation
model contained in georeferenced images.

• The proposed method is successfully applied to match images captured in different imaging
conditions, e.g., by different sensors, at different times, at different ground sample distances, etc.

• Sufficient and well-distributed GCPs are efficiently collected for sensed images of different
spatial resolutions, and the biases between the sensed images and online aerial maps are
corrected after the process of image matching and geometric rectification.

• It is a very convenient and efficient way to automatically collect GCPs for the task of geometric
rectification of RS images, as there is no need to manually prepare reference images according
to the location and spatial resolution of sensed images.

Note that the process of matching online is commonly a bit more time consuming than matching
locally, since sending requests and downloading image tiles from online aerial maps may take more
time than extracting image tiles from local reference images.

(a) Landsat-5 (b) Cbers-2 (c) Cbers-4 (d) ZY-3

(e) GF-2 (f) Spot-5 (g) Theos (h) GF-1

Figure 10. Distribution of matched points (marked by a cross) and sensed images in online image
matching tests. (a–h) are the results of Landsat-5, Cbers-2, Cbers-4, ZY-3, GF-2, Spot-5, Theos and
GF-1 images, respectively.
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Table 4. Test results of online image matching.

Test
No.

Required
GCPs

Block
No.

Correct
Matches

Run-Time
(S)

Rectification
Model

RMSE
(Pixel)

1 30 6 × 6 32 7.11 Rigorous 1.24
2 100 10 × 10 75 41.00 TD-RPC 1.01
3 100 10 × 10 97 42.94 TD-RPC 0.84
4 30 6 × 6 35 23.48 RPC-Refine 1.82
5 30 6 × 6 36 16.01 RPC-Refine 1.35
6 100 10 × 10 82 45.93 TD-RPC 1.53
7 100 10 × 10 77 67.41 TD-RPC 1.46
8 30 6 × 6 36 21.96 RPC-Refine 1.77

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 11. Layer swiping between sensed images and online aerial maps in Tests 4, 6, 7 and 8. (a) and
(b) are from Test 4, and the top ones are Bing aerial maps, while the lower one in (a) is the warped
ZY-3 image using vendor-provided RPC and the lower one in (b) is the rectified ZY-3 image using RPC
refinement; (c) and (d) are from Test 6, and the left are Bing aerial maps, while the right one in (c) is the
Spot-5 image of Level 2 and the right one in (d) is the rectified Spot-5 image using terrain-dependent
RPC; (e) and (f) are from Test 7, and the right are Bing aerial maps, while the left one in (e) is the
Theos image of Level 2 and the left one in (f) is the rectified Theos image using terrain-dependent
RPC; (g) and (h) are from Test 8, and the upper are Bing aerial maps, while the lower one in (e) is the
warped GF-1 image using vendor-provided RPC and the lower one in (f) is the rectified GF-1 image
using RPC refinement.

5. Conclusions

In this paper, we proposed a convenient approach to automatically collect GCPs from online
aerial maps, which focuses on automated georeferencing of remotely-sensed (RS) images and makes
use of the prior information of the RS image. The proposed method is based on SIFT feature, and
the improvements accomplished in this work help to overcome the difficulties of SIFT when directly
used in RS images, e.g., large image size, distribution of matched points, limited accuracy, outliers, etc.
Both local reference images and online aerial maps can be utilized to collect control points. Different
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kinds of large-sized RS images, whose spatial resolutions vary from 30 m to 2 m, are included in the
experiments, and the results show that the matching process can be finished within tens of seconds,
yielding a sufficient number of reliable ground control points (GCPs). With the help of these reliable
GCPs and DEM data, the root mean square errors (RMSEs) of the check points from the georeferenced
images are less then two pixels. Moreover, by utilizing the online aerial maps, there is no need to
manually prepare reference images according to the location and spatial resolution of sensed images.

Although we can successfully find enough GCPs for very high resolution (less than 1 m) RS
images from the online aerial maps, the accuracy of the GCPs is not guaranteed. However, we believe
the proposed approach will become even more useful as the accuracy of online aerial maps improves.
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