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Abstract: Warming in the Arctic has resulted in changes in the distribution and composition of
vegetation communities. Many of these changes are occurring at fine spatial scales and at the level of
individual species. Broad-band, coarse-scale remote sensing methods are commonly used to assess
vegetation changes in the Arctic, and may not be appropriate for detecting these fine-scale changes;
however, the use of hyperspectral, high resolution data for assessing vegetation dynamics remains
scarce. The aim of this paper is to assess the ability of field spectroscopy to differentiate among
four vegetation communities in the Low Arctic of Alaska. Primary data were collected from the
North Slope site of Ivotuk, Alaska (68.49˝N, 155.74˝W) and analyzed using spectrally resampled
hyperspectral narrowbands (HNBs). A two-step sparse partial least squares (SPLS) and linear
discriminant analysis (LDA) was used for community separation. Results from Ivotuk were then
used to predict community membership at five other sites along the Dalton Highway in Arctic Alaska.
Overall classification accuracy at Ivotuk ranged from 84%–94% and from 55%–91% for the Dalton
Highway test sites. The results of this study suggest that hyperspectral data acquired at the field
level, along with the SPLS and LDA methodology, can be used to successfully discriminate among
Arctic tundra vegetation communities in Alaska, and present an improvement over broad-band,
coarse-scale methods for community classification.

Keywords: Arctic Transitions in the Land-Atmosphere System (ATLAS); North American Arctic
Transect (NAAT); hyperspectral; arctic tundra vegetation; vegetation classification

1. Introduction

Remote sensing has allowed for the assessment of changes occurring in arctic vegetation at a variety of
spatial and temporal scales [1]. Past studies have mapped vegetation changes at high northern latitudes
using aerial photography [2], coarse-scale satellite imagery such as that from the Advanced Very High
Resolution Radiometer (AVHRR) [3], and moderate-scale satellite imagery such as that from Landsat
platforms [4,5]. The Normalized Difference Vegetation Index (NDVI), a remotely sensed indicator
of photosynthetic capacity [6], is one of the most commonly used spectral vegetation indices (SVIs),
and is widely available from satellite sensors, such as the AVHRR, the Moderate-Resolution Imaging
Spectroradiometer (MODIS), and the various Landsat sensors that capture spectral information in a few
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broad spectral bands. NDVI provides an accessible means to monitor changes in the quantity of green
vegetation on broad spatial and relatively long temporal scales. NDVI is therefore frequently used
to evaluate vegetation changes in high latitude environments [1,6–16]. One of the previous analyses
at the site of interest for this study (Ivotuk, Alaska) showed that, at the landscape scale, broad-band
NDVI obtained by averaging hyperspectral bands across red and near infrared (NIR) regions had
the greatest peak growing season values for shrub tundra (ST), compared to three other tundra plant
communities [17]. While NDVI may be useful for separating some communities at peak growing
season, it may be problematic during the early or late growing season when vegetation communities
are more similar (Figure 1). Broad-band NDVI is calculated from two coarse regions of the spectrum [6],
which can potentially obscure important information in spectra that might be useful for differentiating
among vegetation communities.

Vegetation changes in the Arctic are likely occurring at fine spatial and spectral scales and at
the level of individual species, the monitoring of which may benefit from the use of hyperspectral
remote sensing [18]. More defined regions of the visible and near infrared spectra than those captured
by multispectral sensors, including those outside the range of NDVI bands, can be used to identify
functional and structural properties of vegetation communities [19,20]. Tundra vegetation communities
are often comprised of bare soils or large quantities of non-vascular components (mosses and lichens)
that affect the spectral signatures of vegetation communities [10,21]. Ground-based remote sensing
data have been collected from a variety of sites throughout the North Slope of Alaska [9,18,22–24]; this
hyperspectral remote sensing (also known as imaging spectroscopy) information has been useful in
differentiating among distinct vegetation communities in the Arctic [18], as well as between vascular and
non-vascular vegetation [24]. A discriminant analysis of peak season data from Barrow, Alaska, found
moss and vascular plant spectra to have similar reflectances in the green and NIR wavelengths, while
lichens had higher reflectance in the visible wavelengths and greater variability among species-specific
reflectances [24]. Dead biomass in the Arctic also influences NDVI and reflectivity spectra. This factor
becomes more influential as shrubs begin to dominate these systems, and their leaf litter covers more
low-lying plants [25,26].

The objective of this paper is to differentiate among Alaskan Arctic tundra plant communities
through the use of field spectroscopy and to identify diagnostic wavelength regions for discriminating
among these communities at different phenological stages. We first develop a model for identifying
different vegetation communities at Ivotuk, Alaska using hyperspectral data; this discrimination model
is then applied to five other sites on the North Slope of Alaska to test its utility in identifying tundra
vegetation across geographical space.
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2. Materials and Methods

2.1. Arctic Change

The Arctic has warmed at a greater rate than the rest of the globe through a process known
as polar amplification [22,27,28]. This warming phenomenon is largely attributed to a reduction
in sea-ice extent and concomitant changes in albedo [29,30]. From 1981–2012, the change in global
temperature was observed to be ~0.17 ˝C per decade [31], while warming in the Arctic (>66˝N) was
approximately 0.60 ˘ 0.07 ˝C per decade [30]. Satellite observations from 1982–2008 have shown
greater warming trends in the North American Arctic (+30%) than in the Eurasian Arctic (+16%)
based on the Summer Warmth Index (SWI), which is defined as the sum of average monthly surface
temperatures above freezing [32]. Temperature changes have likely caused a lengthening of the
growing season in the Arctic [14,33], and associated vegetation changes such as greater vegetation
biomass [7,32,34,35], changes in vegetation composition and leaf area index (LAI) [36], and an increase in
shrub cover [15,37–39]. Vegetation greenness as determined by the NDVI has increased approximately
9% in the North American Arctic, while greenness in the Eurasian Arctic has increased by only 2% since
1982 [32]. This recent increase in NDVI in the Arctic has been linked to greater plant biomass [7,40],
increased photosynthetic capacity, and an expansion of shrubs [41,42]. Substantial increases in biomass
are predominately seen in subzones C–E [43,44], the three southernmost tundra subzones as identified
in the Circumpolar Arctic Vegetation Map (CAVM) [43,44], with an average increase in biomass of
19.8% from 1982–2010 [7]. The total increase in Alaskan tundra biomass during this time period was
7.8% [7]. Enhanced spectral resolution in remote sensing data could potentially help identify the
nuances of these dynamics in plant biomass.

2.2. Vegetation Types throughout the North Slope of Alaska

The North Slope of Alaska extends from the Brooks Mountain Range to the Arctic Ocean [45]
and is largely dominated by either moist acidic tundra (MAT) or moist nonacidic tundra (MNT) [5].
Soil acidity differentiates MAT from MNT communities, with MAT occurring on soils with pH < 5.0–5.5,
and MNT occurring on soils with pH ě 5.0–5.5 [16,46]. MAT often occurs in areas with rolling
topography and gravelly or silty soils overlain by an organic mat of up to 20 cm [47]. MAT is
dominated by dwarf erect shrubs such as Betula nana, graminoid species such as Eriophorum vaginatum,
and acidophilous mosses (e.g., Aulacomium turgidum) [5,46]. MNT communities tend to occur along
rivers and in the more northern Arctic Foothills and Coastal Plains [42]. Mosses, graminoids (e.g.,
Carex bigelowii), and prostrate dwarf shrubs (e.g., Dryas integrifolia) dominate these communities [34]
on calcium-rich, nonacidic (neutral pH) soils [48,49]. Betula nana is absent from MNT communities
due to its affinity for acidic soils [5]. MNT differs in ecosystem structure and function from MAT, and
generally has lower NDVI, LAI, and rates of photosynthesis and ecosystem respiration compared to
MAT communities [49–51].

Other vegetation types on the North Slope of Alaska include shrub tundra (ST) and mossy tussock
tundra (MT). Shrub tundra is dominated by erect shrubs such as Salix alaxensis and Betula nana,
and is interspersed with graminoids, forbs, lichens, and mosses. Low shrub areas include shrubs
approximately 40–60 cm in height, whereas heath shrub landscapes include shrubs approximately
10–20 cm in height [52]. On average, ST communities have lower albedo, lower summer soil temperatures,
shallower summer active layer depths, and greater summer CO2 exchange and sensible heat flux than
other vegetation types [2]. Mossy tussock tundra is typified as an MAT community of tussock-forming
sedges (e.g., E. vaginatum) with abundant Sphagnum mosses, and contributes greatly to biomass
quantities in the Alaskan Arctic [53].

2.3. Study Sites

The primary study site of Ivotuk, Alaska (68.49˝N, 155.74˝W) is located on the North Slope of
the Brooks Mountain Range [8,17,54] and was one of seven sites established as part of the Arctic
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Transitions in the Land-Atmosphere System (ATLAS) project [16,55,56]. Ivotuk is part of the Western
Alaska Transect that starts in the north at Barrow and goes south through Atqasuk and Oumalik to
Ivotuk [16,42,55,57]. The Eastern Alaska Transect starts in the north at Prudhoe Bay and ends at Toolik
Lake, a Long-Term Ecological Research (LTER) site [46,58,59]. Ivotuk is located in bioclimatic subzone
E, the warmest and southernmost of the five tundra subzones (Figure 2) [56]. Ivotuk is largely a tussock
tundra ecosystem also dominated by deciduous shrubs [16] (Figure 3). It is located at an elevation
of approximately 550 m [54], and is considered comparable to the Toolik Lake site [8]. The site received
an average annual rainfall of 202 mm, had a July maximum temperature of approximately 12 ˝C and
an annual temperature of ´10.9 ˝C with a 110-day growing season from 1991–2001, a time period
including the sampling period for the Ivotuk vegetation data [8,17,42]. Aerial vegetation coverage is
nearly 100% for Ivotuk, and all four plant communities in this study—MAT, MNT, MT, and ST—occur
within a 2 km2 area [17]. ST had the greatest total aboveground peak growing season biomass
(1291 g/m2). MAT had a total aboveground biomass of 842 g/m2 during peak growing season,
while MT had a total of 804 g/m2, and MNT had a total of 725 g/m2 [17]. Moss was the dominant
contributor to biomass in MNT communities. Deciduous shrubs were the most dominant biomass
component in ST communities, and graminoids were the most dominant contributor in MAT and MT
communities (Table 1).
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Figure 3. The four vegetation communities at Ivotuk, Alaska along with the grid and spectral sampling
locations. Each point represents one sampling gridpoint. Study site images were taken between
16–31 July 1999. All grid images were taken on 19 July 1999 [60].

Table 1. Biomass percentages by plant functional type (PFT) during early (7 June–7 July) and peak
(16 July–17 August) growing season at Ivotuk, Alaska.

PFT Early Peak

MAT (%) MNT (%) MT (%) ST (%) MAT (%) MNT (%) MT (%) ST (%)

Deciduous shrub 15.6 3.7 3.6 64.1 18.8 5.1 3.6 55.9
Evergreen shrub 22.1 9.4 14.5 0.2 23.7 14.4 14.7 1.6

Forb 0.2 4.2 0.0 0.7 0.4 3.3 0.0 1.1
Graminoid 32.0 9.4 35.9 3.8 27.5 12.2 36.1 10.4

Lichen 4.9 3.0 3.1 1.3 5.7 3.6 3.3 2.4
Moss 25.2 70.3 42.4 29.9 23.9 61.5 42.4 28.6
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To evaluate the differentiation model developed with the data from Ivotuk, we used a series of
additional sites along the Dalton Highway on the North Slope of Alaska from which hyperspectral
data have also been collected [18]. The sites of Happy Valley (69.15˝N, 148.85˝W), Sagwon-MAT
(69.43˝N, 148.70˝W), Sagwon-MNT (69.43˝N, 148.7˝W), Franklin Bluffs (69.67˝N, 148.72˝W), and
Deadhorse (70.16˝N, 148.46˝W) are located along the Dalton Highway in Alaska and are part of the
North American Arctic Transect (NAAT). Detailed descriptions of the sites can be found in [22,61–64].
Deadhorse, Franklin Bluffs, and Sagwon-MNT are MNT communities; Happy Valley and Sagwon-MAT
are both MAT communities. Deadhorse is the northernmost site, occurs in the transition between
subzones C and D, and was atypically wet during the 2012 data collection period [18]. Franklin Bluffs
is in subzone D, and Sagwon MAT and MNT occur at the transition zone between subzones D and E.
Happy Valley is the southernmost site, is located in subzone E, and most closely resembles the primary
study site of Ivotuk.

2.4. Data Collection

One 100 m2 vegetation grid was established in each community at Ivotuk for a total of four grids.
Field spectroscopy data were collected during the 1999 growing season at biweekly intervals from
5 June–17 August. Spectroscopy data were grouped into early or peak growing season as determined
by seasonal NDVI curves (Figure 1, Table 2). Data were grouped to avoid issues with low sample
size for each of the individual sampling dates. Spectral measurements were taken using an Analytical
Spectral Devices FieldSpec spectro-radiometer with a spectral resolution of 1.42 nm and a spectral
range from 330–1062 nm. The sensor was held at nadir approximately 1.5 m above the vegetation
surface, producing a 0.35 m2 footprint with a 25˝ field of view [17]. Spectral measurements were
collected from ten random gridpoints established in each of the four vegetation grids. Spectra were
taken from an additional ten gridpoints during peak growing season. Both the MNT and the ST grids
exhibited some within-grid heterogeneity that was likely to influence the results. Within these grids,
we stratified the random sampling in such a way that we were sampling only vegetation that was
representative of that particular community. Four replicate spectral measurements were taken at each
gridpoint by moving 1 m in each cardinal direction from the actual gridpoint. Replicates were averaged
to create the ten gridpoint spectral measurements per vegetation community per biweekly interval.

Data from the study sites of Deadhorse, Franklin Bluffs, Sagwon-MNT, Sagwon-MAT, and Happy Valley
were collected during the 2012 growing season from 29 June to 11 July within the EyeSight-NAAT-Alaska
expedition [18,65]. Measurements were taken using two Spectra Vista Corporation GER1500 portable
field spectro-radiometers with a spectral resolution of 1.5 nm and a spectral range from 330–1050 nm [18].
One 100 m2 vegetation grid was sampled from each of the study sites. The grid was divided into
1 ˆ 1 m quadrats for a total of 100 observations. These values were then averaged to produce mean
reflectances per site.

Table 2. Sampling dates and total number of observations per vegetation community during the early
(7 June–7 July) and peak (16 July–17 August) 1999 growing season at Ivotuk, Alaska.

Growing Season MAT MNT MT ST

Early 7 June, 26 June,
2 July (n = 42)

10 June, 25 June,
2 July (n = 45)

10 June, 25 June,
2 July (n = 41)

10 June, 26 June,
7 July (n = 37)

Peak 16 July, 27 July,
17 August (n = 40)

16 July, 27 July,
17 August (n = 43)

16 July, 27 July
(n = 33)

16 July, 27 July,
7 August (n = 33)

2.5. Spectral Processing

All spectra were evaluated visibly for potentially bad data. Outliers were removed from the dataset
in an effort to achieve a more diagnostic spectral signature; this resulted in an underrepresentation
of MT and ST during peak growing season. Spectroscopy data were resampled to 5 nm wide hyperspectral
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narrowbands ranging from 400–1000 nm. Resampling increases the signal-to-noise ratio, reduces
redundancy issues among predictor variables, and makes the results potentially more transferable from
Ivotuk to the five other Alaskan sites, for which data were collected with a different spectro-radiometer.

In addition to the original reflectances, data were also analyzed using continuum removal.
Continuum removal normalizes spectra by establishing a baseline from which to compare absorption
features [66], and this methodology can be used to effectively discriminate among vegetation types [18].
Continuum removal for three absorption feature regions (blue, red, and water) was performed using
ENVI (Exelis Visual Information Solutions, Boulder, CO, USA). Averaged reflectances per vegetation
community were used for continuum-removal analysis of the three absorption features: (1) blue absorption
(400–550 nm); (2) red absorption (560–750 nm); and (3) water absorption (930–1055 nm). Spectral metrics
such as maximum band depth, HNB at maximum band depth, width of the absorption feature at half
maximum absorption depth, and area of the absorption feature were analyzed for these three features [67].

2.6. Data Analysis

To decrease the amount of redundant hyperspectral narrow bands (HNBs), overcome the Hughes’s
phenomenon [68,69], and identify optimal HNBs for distinguishing among arctic vegetation communities,
we used a two-step sparse partial least squares (SPLS) and linear discriminant analysis (LDA).
SPLS regression was done using the SIMPLS algorithm from the “spls” package in R [70]. SPLS is
a variable selection and dimension reduction technique that is useful for spectroscopic analysis, as it is
unaffected by issues such as high collinearity among predictor variables and cases where p > n. The resulting
latent vectors are in terms of the original HNBs as a result of the sparsity parameter in SPLS [71].

The HNBs with the greatest loading coefficients from the SPLS (top 10%) were then put through
an LDA to discriminate among the four vegetation communities at Ivotuk. A simple random sample
of approximately one-half of the Ivotuk data were used as a training set for the model, and then the
model was applied to the remaining test set of Ivotuk data. Following this, peak growing season
data from Ivotuk were used as the training set and tested against the five study sites of Deadhorse,
Franklin Bluffs, Sagwon-MNT, Sagwon-MAT, and Happy Valley.

3. Results

3.1. Sparse Partial Least Squares (SPLS) and Linear Discriminant Analysis (LDA)

SPLS identified eight optimal HNBs during early growing season and twelve optimal HNBs
during peak growing season (Table 3). The majority of HNBs for early and peak growing season were
in the NIR wavelength region (Figure 4), and the spectral locations of the most significant HNBs differ
seasonally. HNBs in the blue, green, and NIR load highest during the early growing season, whereas
HNBs in the NIR load highest during the peak growing season. Overall classification accuracy of
the LDA was greater during peak growing season at 94% compared to early growing season at 84%
(Table 4; Figure 5). MT was the best classified community during early growing season at 100%.
ST had the lowest classification accuracy during early growing season at 65%. MNT, MT, and ST were all
classified at 100% during peak growing season. MAT was classified at 80% during peak growing season.

Table 3. Top ten percent of significant hyperspectral narrowbands (HNBs) for all four vegetation
communities and overall classification accuracy of the linear discriminant analysis (LDA) using the
optimal HNBs. All Wilks’s lambda values are significant (p < 0.001).

Sampling
Period Significant HNBs (nm) Wilks’

Lambda
Sum of

Eigenvalues
Overall Classification Accuracy

Using the Optimal HNBs Only (%)

Early 405, 505, 690, 770, 840, 905,
920, 980 0.03 8.41 84

Peak 405, 450, 790, 795, 800, 845,
850, 910, 940, 975, 980, 990 0.01 12.39 94
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Table 4. Confusion matrices and classification accuracies at Ivotuk, Alaska using the top ten percent of
significant hyperspectral narrowbands (HNBs).

Classification
Accuracy (%) Early Growing Season Classification

Accuracy (%) Peak Growing Season

MAT MNT MT ST MAT MNT MT ST
73 MAT 16 - 4 2 80 MAT 16 - - 4
92 MNT 1 2 1 - 100 MNT - 23 - -
100 MT - - 21 - 100 MT - - 13 -
65 ST 2 - 4 11 100 ST - - - 13
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3.2. Continuum Removal

Continuum-removed reflectance spectra were examined in the blue, red, and water absorption
features. Continuum-removed reflectance spectra did not always exhibit clear distinctions among the
four vegetation communities during early (Figure 6) or peak growing season (Figure 7). Maximum absorption
depth for the blue absorption feature was found at 495–500 nm for all vegetation communities during
early and peak growing season (Table 5). Maximum absorption depth occurred at 680 nm for the red
absorption feature, and 965–980 nm for the water absorption feature. ST had the greatest values for
the three spectral metrics of maximum band depth, full width at half maximum band depth, and
area of absorption feature. Scaled continuum-removed reflectances indicate that differences among
vegetation community types are most pronounced in the 400–500 nm region of the blue absorption
feature. Differences are most pronounced in the 560–680 nm range in the red absorption feature, and
between 930–945 nm for the water absorption feature.Remote Sens. 2016, 8, 51 10 of 18 
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Table 5. Spectral metrics from continuum-removal analysis for the blue, red, and water absorption features at Ivotuk.

Blue Red Water

Growing
Season

Vegetation
Community

HNB of
Maximum

Depth (nm)

Maximum
Band
Depth

Full Width at
Half Maximum

Band Depth (nm)

Area of
Absorption
Feature

HNB of
Maximum

Depth (nm)

Maximum
Band
Depth

Full Width at
Half Maximum

Band Depth (nm)

Area of
Absorption
Feature

HNB of
Maximum

Depth (nm)

Maximum
Band
Depth

Full Width at
Half Maximum

Band Depth

Area of
Absorption

Feature

Early

MAT 500 0.26 87.53 22.8 680 0.68 125.01 78.1 980 0.04 61.66 2.2
MNT 500 0.23 96.52 20.2 680 0.61 120.23 67.6 965 0.03 65.44 1.7
MT 500 0.18 71.53 14.4 680 0.58 121.64 64.6 980 0.04 67.04 2.4
ST 500 0.39 98.56 35.6 680 0.77 131.28 92.2 980 0.04 60.69 2.8

Peak

MAT 500 0.39 101.14 35.5 680 0.74 125.02 84.6 980 0.03 58.99 2.0
MNT 500 0.29 102.65 27.2 680 0.62 113.72 65.7 965 0.01 59.64 0.8
MT 500 0.31 92.98 28.2 680 0.67 125.20 77.2 980 0.03 62.96 1.8
ST 495 0.45 103.67 41.6 680 0.76 125.79 86.0 980 0.03 40.70 2.2
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3.3. Predicting Vegetation Community Types at the Five Dalton Highway Test Sites

Peak growing season spectra from Ivotuk were used as a training set to create models that were
then used to predict plant community types at the five other Alaska sites. Only MAT and MNT
vegetation communities were used for this analysis as MT and ST communities were not sampled
at the other sites. This subset of the Ivotuk data was put through the two-step SPLS and LDA to
determine optimal HNBs. The resulting model was then applied to the five sites of Deadhorse, Franklin
Bluffs, Sagwon-MNT, Sagwon-MAT, and Happy Valley.

This analysis identified nine optimal HNBs. Bands in the red edge were the most common and
the most significant to the model (Table 6, Figure 8). Classification accuracy was better for MAT
communities than MNT communities, and generally better at sites more similar to, and geographically
nearer to, Ivotuk. Sagwon-MAT was the best classified community (91%), followed by Happy Valley
(90%). The closest MNT community to Ivotuk is Sagwon MNT, which had the greatest classification
accuracy of the three MNT communities (70%). Both Deadhorse and Franklin Bluffs are more northern
than the rest of the sites, and had similar classification accuracies of 56% and 55%, respectively.

Table 6. Optimal hyperspectral narrowbands (HNBs) for the five Dalton Highway sites and overall
classification accuracy of the linear discriminant analysis (LDA) using the top ten percent of optimal HNBs.

Optimal HNBs (nm) Site and Community
Classification

Overall Classification Accuracy
Using the Optimal HNBs Only (%)

470, 685, 690, 695, 710,
715, 760, 935, 980

Deadhorse 56
Franklin Bluffs 55
Sagwon-MNT 70
Sagwon-MAT 91
Happy Valley 90
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4. Discussion

This study uses HNBs and a two-step SPLS and LDA approach to differentiate among vegetation
communities at Ivotuk, Alaska. This differentiation model was then applied to the sites of Deadhorse,
Franklin Bluffs, Sagwon-MNT, Sagwon-MAT, and Happy Valley. Continuum-removal findings from
Ivotuk are similar to other vegetation studies along the North Slope of Alaska that have identified
maxima in the blue and red absorption features. Past research on MAT and MNT vegetation communities
has identified absorption maxima of 500 nm and 680 nm for the Dalton Highway data used in this
study [18]. Findings at Ivotuk are similar to these, with a chlorophyll and carotenoid absorption maximum
occurring between 495 and 500 nm, and a second chlorophyll maximum at 680 nm (Figures 6 and 7).
The greatest changes in maximum band depth from early to peak growing season were found in the
blue absorption feature, indicating greater absorption by chlorophyll and carotenoids during peak
growing season.

HNBs located in areas associated with pigments (400–700 nm) had greater linear discriminant
coefficients and were more frequently found to be significant during the early growing season.
HNBs associated with structural tissue (NIR) were more significant during peak growing season,
indicating an increased reliance on vegetation structure and morphological differences among species
to differentiate tundra communities during peak growing season. Separability at Ivotuk relied heavily
on HNBs outside the typical range of broad-band NDVI. Although HNBs in the NIR were significant,
they were never used in a model that also included the red wavelengths. Furthermore, the most
significant bands for the Dalton Highway test sites were located in the red edge (680–725 nm), which
is typically outside the range of broad-band NDVI. Whereas the vegetation community reflectance at
Ivotuk would appear homogeneous with regard to NDVI outside of the peak growing season [17],
this study shows that hyperspectral remote sensing data can be used to discriminate among these
vegetation communities during the early growing season. The communities of MAT and ST at Ivotuk
were the most compositionally similar with regard to the ratio of vascular to non-vascular vegetation,
and were the most commonly misclassified during early and peak growing season at Ivotuk. MAT and
ST are comprised of approximately 70% vascular plant and 30% non-vascular. MNT has the inverse
composition, and MT composition is almost equal between vascular and non-vascular vegetation, and
was the only vegetation community never misclassified at Ivotuk. During peak growing season, MAT
was exclusively misclassified as ST, highlighting the importance of vegetation structure for tundra
community discrimination during peak growing season.

Among the four vegetation types at Ivotuk, ST had the lowest reflectances in the visible spectrum
during both early and peak growing season, and MAT had the greatest absolute reflectances for both
early and peak growing season. Differences among vegetation communities in the NIR wavelength
region occurred during the early growing season, yet were amplified during peak growing season.
Other research in the Alaskan Arctic has identified five bands useful for discriminating among vascular
and non-vascular vegetation located in the blue, red, and NIR regions [24]. Our study suggests that
similar regions of the spectrum can be used to discriminate among vegetation communities also using
hyperspectral remote sensing data.

The MAT vegetation types at Ivotuk are most similar to the southernmost test site of Happy Valley.
Reflectances in the NIR were greater at Ivotuk than Happy Valley and the other four Dalton Highway
test sites. Happy Valley had the lowest reflectances in the visible regions and the highest reflectances
in the NIR wavelength regions of the Dalton Highway sites. Sagwon-MNT is the most similar MNT
site to the MNT grid at Ivotuk, and like the MNT spectral signature at Ivotuk, had lower reflectances
in the NIR than other sites with the exception of Deadhorse, which was unusually wet during the
data collection period. Sagwon-MNT had lower reflectances in the NIR than the MNT community at
Ivotuk, and greater reflectance in the red trough. Franklin Bluffs and Sagwon MAT exhibited similar
reflectances in the NIR, but differed in the visible wavelength region, where reflectance for Sagwon
MAT more closely mirrored Happy Valley, the only other Dalton Highway MAT community.
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5. Conclusions

This study presents an example of the potential for hyperspectral remote sensing to improve upon
the classification of tundra vegetation communities in the Arctic. Field research in the Arctic is difficult and
expensive. Ground-based remote sensing studies are critical, as they allow for the development of spectral
relationships that can then potentially be extrapolated to satellite remote sensing. The discriminability
of MAT, MNT, MT, and ST communities is improved upon through the use of hyperspectral remote
sensing in this study. Hyperspectral remote sensing allows for the inclusion of both a wider range of spectral
data and finer resolution spectral data than traditional multi-spectral approaches. Establishing these
relationships allows for the identification of HNBs on hyperspectral satellites that may be valuable
for distinguishing among vegetation communities. Such forthcoming projects include the NASA
Hyperspectral Infrared Imager (HyspIRI) and the German Environmental Mapping and Analysis
Program (EnMAP). Establishing the spectral differences among these vegetation communities using
field spectroscopy data facilitates the potential for monitoring of changes occurring in vegetation
communities as a result of increasing temperatures in the Arctic.
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