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Abstract: Fractional vegetation cover (FVC) is one of the most critical parameters in monitoring
vegetation status. Accurate estimates of FVC are crucial to the use in land surface models.
The dimidiate pixel model is the most widely used method for retrieval of FVC. The normalized
difference vegetation index (NDVI) of bare soil endmember (NDVIsoil) is usually assumed to be
invariant without taking into account the spatial variability of soil backgrounds. Two NDVIsoil
determining methods were compared for estimating FVC. The first method used an invariant
NDVIsoil for the Northeast China. The second method used the historical minimum NDVI along
with information on soil types to estimate NDVIsoil for each soil type. We quantified the influence
of variations of NDVIsoil derived from the second method on FVC estimation for each soil type
and compared the differences in FVC estimated by these two methods. Analysis shows that the
uncertainty in FVC estimation introduced by NDVIsoil variability can exceed 0.1 (root mean square
error—RMSE), with the largest errors occurring in vegetation types with low NDVI. NDVIsoil with
higher variation causes greater uncertainty on FVC. The difference between the two versions of
FVC in Northeast China, is about 0.07 with an RMSE of 0.07. Validation using fine-resolution FVC
reference maps shows that the second approach yields better estimates of FVC than using an invariant
NDVIsoil value. The accuracy of FVC estimates is improved from 0.1 to 0.07 (RMSE), on average, in
the croplands and from 0.04 to 0.03 in the grasslands. Soil backgrounds have impacts not only on
NDVIsoil but also on other VIsoil. Further focus will be the selection of optimal vegetation indices and
the modeling of the relationships between VIsoil and soil properties for predicting VIsoil.

Keywords: fractional vegetation cover; NDVIsoil; dimidiate pixel model; HWSD; soil background

1. Introduction

The fractional vegetation cover (FVC) is the percentage of the vertical projected area of vegetation
(including leaves, stems and branches) within a total area, and is an important quantitative parameter
for evaluating and monitoring vegetation variation. FVC, which represents the horizontal density
of live vegetation [1], first introduced by Deardorff [2], is a crucial biophysical parameter in specific
models of numerical weather prediction, regional and global climate modeling and global change
monitoring [3,4]. A variation in FVC by only 0.2 in a land surface model can cause a change of as much
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as 100 W¨m´2 in latent heat flux, while all other factors remain equal [5]. Accurate estimation of FVC
is required for efficiently parameterizing global models.

Previous studies have shown that there are three basic approaches for retrieving FVC from
remote sensing data: regression model, vegetation index method and pixel unmixing model [6,7].
The linear unmixing model [1] is the most widely used approach to estimate FVC, due to its ease of
implementation [8–12]. Among different linear pixel unmixing models, the most widely used model
is the dimidiate pixel model. The model assumes that each pixel can be decomposed into a linear
combination of bare soil and full vegetation, and only contains three parameters: the normalized
difference vegetation index (NDVI) value of pixels in the image, the NDVI value of bare soil (NDVIsoil),
and the NDVI value of vegetation with infinite leaf area index (LAI) (NDVIveg). However, selecting
representative NDVIsoil and/or NDVIveg can be challenging, due to variations in soil composition,
grain size, and moisture content. Those cause the spectral characteristics of soil to vary and differences
in vegetation species, leaf water content, etc. causing the spectral signals of vegetation to vary [13,14].

Many studies have performed substantial efforts related to the determination of NDVIsoil [1,8,9,11].
Gutman and Ignatov, for example, used the historical minimum value of a desert as NDVIsoil value,
0.04, to derive global FVC [1]. Zeng et al. [11] combined the International Geosphere-Biosphere
Program (IGBP) land cover classification with 1 km NOAA AVHRR NDVI data, and employed the
fifth percentile of the histogram of the maximum NDVI for the barren or sparsely vegetated category
as the NDVIsoil, which was 0.05, to calculate global FVC. However, statistics from 2906 soil spectral
reflectances revealed that the mean value of NDVIsoil is significantly larger, at 0.2, and is highly
variable, with a standard deviation of 0.08 [5]. Therefore, it is inadequate to use an invariant value of
0.05 or 0.04, without considering the spatial variability of NDVIsoil [5,8]. Besides, the underestimation
of NDVIsoil yields overestimations of FVC. However, many researchers opt to use popular published
NDVIsoil values of 0.05 or 0.04 because of the extremely difficult task of specifying NDVIsoil at global
or regional scales [15–18].

The specification of NDVIsoil requires information on the spatial distribution of soil reflectance.
However, measurements of soil reflectance at global or regional scales are unrealistic. Montandon and
Small [5] used the NDVIsoil method described in Zeng et al. [11] and 2906 reflectance spectra of soil
collected from different datasets to calculate the statistically most likely FVC. Soil types with different
properties determine the key physical and chemical properties of soils [19]. Soil type may be a useful
tool in constraining variations of soil reflectances [9]. The Harmonized World Soil Database (HWSD)
Version 1.2.1 provides global soil types with a spatial resolution of 1 km [20], providing a potential
for improving FVC estimation by constraining NDVIsoil values for different soil types. Wu et al. [9]
combined the HWSD and annual minimum NDVI to calculate NDVIsoil for different soil types and
then estimated global FVC. The variations in soil reflectance also depend on soil properties, such as soil
organic matter, texture, clay mineralogy, color and water content [13,21]. Using soil types to determine
NDVIsoil takes into account the impact of soil types on NDVIsoil values but the impacts of NDVIsoil
variation for a specific soil type on FVC estimation have yet to be investigated.

Two NDVIsoil determining methods are used in this paper. The first method was proposed by
Zeng et al. [11] without considering the variations of NDVIsoil. The second method was described in
Wu et al. [9] that used the HWSD to derive NDVIsoil for each soil type. This paper aims to investigate the
influence of variations of NDVIsoil derived from the second method on FVC estimation by considering
the possible values of NDVIsoil for each specific soil type. This paper also assesses the differences in
FVC calculations using these two NDVIsoil approaches. Combined NDVIsoil approaches and 1 km
Systeme Probatoire d’Observation dela Tarre-VEGETATION (SPOT-VGT), two versions of FVC over
Northeast China in 2013 are estimated and compared. The accuracies of the two FVC estimations are
validated against fine-resolution FVC maps over cropland and meadow steppe. The impact of soil
backgrounds on FVC estimation by using the dimidiate pixel model is discussed.
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2. Data and Methods

2.1. Study Area

The study area is located in Northeast China, with approximate coordinates of 38˝421N–53˝351N
and 115˝321E–135˝091E (Figure 1). The geography covers Heilongjiang, Jilin and Liaoning Provinces,
as well as eastern parts of the Inner Mongolia Autonomous Region. Vegetation in this region varies
from temperate evergreen conifer-deciduous broad leaf mixed forests, to deciduous broadleaf forests,
to woods and shrubs in the east and the north, to typical steppes in the west, with agricultural fields in
the middle [22].

Both the IGBP land cover map and the HWSD were used to retrieve NDVIveg and NDVIsoil.
The NDVI dataset used in this study was from the SPOT-VGT sensor, for the period of 2013 [23].
The SPOT-VGT NDVI dataset was derived at a spatial resolution of 1 km at a 10-day interval. Daily 1 km
NDVI for the two sampling periods below were calculated from the SPOT-VGT 1 km surface reflectance,
and were corrected for atmospheric effects [24].

The sample areas (49˝20154.3511–49˝21148.8311N, 120˝06129.8811–120˝07129.4211E, 44˝06151.3111–44˝071

56.9411N, and 125˝21117.6811–125˝22148.2111E.) were located in the croplands of Dehui County,
Jilin Province and Hulun Buir meadow steppe of the Inner Mongolia Autonomous Region, respectively
(Figure 1). These two sites each had areas of 2 km ˆ 2 km, corresponding to four SPOT-VGT
1 km ˆ 1 km pixels.
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Figure 1. The sampling areas of in situ fractional vegetation covers (a) and the soil types (b) in
Northeast China.

2.2. Data

2.2.1. Collection of Soil Spectral Reflectances

Five-hundred-sixty-four reflectance spectra of soils were collected in Northeast China in 2002,
2005 and 2014 (Figure 2a). The corresponding soil types included Luvisols, Phaeozems, Chernozems,
Gleysols and so on. For each soil reflectance spectral, NDVI value was calculated using the red and
NIR bands, convolved by the SPOT-VGT spectral response function. Statistics show that the histogram
of NDVIsoil follows a normal distribution, with a mean value of 0.15 and a standard deviation of 0.04.
So, the range of NDVIsoil is 0.07–0.22 at the p = 0.05 level (Figure 2b). The prior hypothesis is that the
NDVI value in the annual minimum NDVI image, which ranges between 0.07 and 0.22, is considered
as the soil area.
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Figure 2. The spectral reflectances of different soil types in Northeast China (a); and the histogram of
NDVI computed from soil reflectance spectra (b).

2.2.2. Estimation of Fine-Resolution FVC Maps

Two Landsat 8 Operational Land Imager (OLI) 30 m scene images of Dehui site, without clouds,
were acquired on 17 June and 12 July 2013. The FVC field measurements were carried out on 19 June
and 13 July 2013. A scene HJ1B-Charge-Coupled Device (CCD) 30 m image of Hulun Buir site, without
clouds, was acquired on 11 August 2013, and ground sampling was carried out on 3 August (Table 1).
All the images were atmospherically corrected using FLAASH program embedded in the ENVI 4.8
software. FLAASH incorporates the MODTRAN4 radiation transfer code to correct atmospheric effect
in visible and near-infrared bands up to 3 nm [25].

The HJ-1B satellite is one of a new generation of Chinese small civilian Earth-observing satellites
that were launched on 6 September 2008. The satellite carries two CCD cameras with a swath width
of 700 km and a 480-h return period. The HJ-1B CCD satellite is widely used in eco-environmental
monitoring. The wide-coverage multispectral CCD camera has four bands of blue, green, red and near
infrared (NIR) spectral wavelengths (blue: 0.43–0.52 um, green: 0.52–0.60 um, red: 0.63–0.69 um, NIR:
0.76–0.90 um) with a spatial resolution of 30 m [26]. The image used in this study was provided by the
China Center for Resources Satellite Data and Application (CRESDA).

Table 1. Acquisition details for Landsat 8 OLI and HJ1-B CCD images and the corresponding ground
sampling dates.

In-Situ Area Image Data Land Cover Image Date Ground Sampling Date

Dehui Landsat 8 OLI Croplands 17 June 2013, 12 July 2013 19 June 2013, 13 July 2013
Hulun Buir HJ-1B CCD Steppe 11 August 2013 3 August 2013

The sampling strategy is known as two-stage sampling designed by the Validation of
Land European Remote Sensing Instruments (VALERI) project to collect ground parameters [27].
The 2 km ˆ 2 km areas of Dehui and Hulun Buir were divided into four 1 km ˆ 1 km pixels. In each
pixel, three 30 m ˆ 30 m elementary sampling units (ESUs) were considered, each equal in size to the
spatial resolution of the OLI and CCD images. Subsequently, we selected two-to-five sample plots to
measure FVC.

To estimate ground FVC, a Canon 60D (18–135 mm) digital camera was used. Digital images
were acquired at each plot at the same height. We used the modified excess green index suggested by
Tang et al. [28] to estimate FVC, employing a threshold of the difference between green, red and blue
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colors to distinguish vegetation against soil backgrounds and residues. Visual interpretation procedure
in ArcGIS was used to test the method. The precision can reach 99% [28,29].

Wang et al. [30] suggested that empirical regression is qualified to produce fine-resolution maps
because regression could provide the best fit between the regressed variables. Empirical regressions
were built between in situ FVC and different vegetation indices. Soil adjusted vegetation index (SAVI)
and modified soil adjusted vegetation index (MSAVI) provided the best fit with in situ FVC with the
highest R2 and the lowest root mean square error (RMSE). The 30 m FVC reference maps for both sites
were directly linked to the regressions (Figure 3). 1 km SPOT-VGT FVC estimations will be validated
using these reference maps.

Remote Sens. 2016, 8, 29 5 of 15 

 

Wang et al. [30] suggested that empirical regression is qualified to produce fine-resolution maps 
because regression could provide the best fit between the regressed variables. Empirical regressions 
were built between in situ FVC and different vegetation indices. Soil adjusted vegetation index 
(SAVI) and modified soil adjusted vegetation index (MSAVI) provided the best fit with in situ FVC 
with the highest R2 and the lowest root mean square error (RMSE). The 30 m FVC reference maps for 
both sites were directly linked to the regressions (Figure 3). 1 km SPOT-VGT FVC estimations will be 
validated using these reference maps.  

 
Figure 3. Regressions between in situ FVC and SAVI (a) and MSAVI (b). 

2.2.3. SPOT-VGT Data and Processing 

SPOT-VGT NDVI subsets derived from the VGT-S products are 10-day composites at 1 km 
spatial resolution. The VGT-S products are generated from the VGT-P products, atmospherically 
corrected by a modified version of the Simple Method for the Atmospheric Correction (SMAC) code 
[31]. The Maximum Value Composite (MVC) technique is used in the construction of the 10-day 
synthesis [32]. The procedures of cloud clearing, atmospheric correction, and bi-directional 
composition substantially reduce the noise in reflectance and NDVI [24]. The maximum, minimum 
and mean NDVI for each pixel, over a one-year period, were computed and used to calculate 
NDVIveg, NDVIsoil and FVC. Daily 1 km NDVI images for the three different sampling periods were 
derived from the 1 km VGT-P products, through atmospheric correction. 

2.3. Theory 

2.3.1. NDVIsoil Determining Methods 

The commonly used dimidiate pixel model for retrieval of FVC from NDVI is described in 
Gutman and Ignatov [1], as follows: ݂ = ܫܸܦܰ − ௩௘௚ܫܸܦ௦௢௜௟ܰܫܸܦܰ −  ௦௢௜௟ (1)ܫܸܦܰ

where f is the fractional vegetation coverage of the pixel, NDVI is the NDVI of the pixel, NDVIsoil is 
the NDVI of the bare soil endmember, and NDVIveg is the NDVI of the vegetation endmember. 

We used the method described in Zeng et al. [11] to compute the NDVIveg for each land cover 
type, as defined by IGBP. First, we computed the maximum NDVI over the period of 2013 in 
Northeast China. Second, histograms of the maximum NDVI values for each IGBP land cover type 
were plotted. NDVIveg was selected as the 90th percentile for category 16 (barren or sparsely 
vegetated), and the 75th percentile was selected for all other land cover types. The determined 
NDVIveg values are given in Table 2. 

NDVIsoil was computed using two approaches: (1) by utilizing the 5th percentile of barren and 
sparsely vegetated land, as described in Zeng et al. [11], which was 0.085 in Northeast China; (2) and 
by the method described in Wu et al. [9], which used the HWSD and the annual minimum NDVI for 

y = 79.421ln(x) + 125.73
R² = 0.98

RMSE=0.01
0

20

40

60

80

100

0.20 0.40 0.60 0.80

FV
C(

%
)

SAVI

(a)

y = 272.05x - 176.55
R² = 0.69

RMSE=0.03
50

55

60

65

70

75

80

85

0.86 0.88 0.9 0.92 0.94 0.96

FV
C(

%
)

MSAVI

(b)

Figure 3. Regressions between in situ FVC and SAVI (a) and MSAVI (b).

2.2.3. SPOT-VGT Data and Processing

SPOT-VGT NDVI subsets derived from the VGT-S products are 10-day composites at 1 km
spatial resolution. The VGT-S products are generated from the VGT-P products, atmospherically
corrected by a modified version of the Simple Method for the Atmospheric Correction (SMAC)
code [31]. The Maximum Value Composite (MVC) technique is used in the construction of the
10-day synthesis [32]. The procedures of cloud clearing, atmospheric correction, and bi-directional
composition substantially reduce the noise in reflectance and NDVI [24]. The maximum, minimum
and mean NDVI for each pixel, over a one-year period, were computed and used to calculate NDVIveg,
NDVIsoil and FVC. Daily 1 km NDVI images for the three different sampling periods were derived
from the 1 km VGT-P products, through atmospheric correction.

2.3. Theory

2.3.1. NDVIsoil Determining Methods

The commonly used dimidiate pixel model for retrieval of FVC from NDVI is described in Gutman
and Ignatov [1], as follows:

f “
NDVI ´ NDVIsoil

NDVIveg ´ NDVIsoil
(1)

where f is the fractional vegetation coverage of the pixel, NDVI is the NDVI of the pixel, NDVIsoil is
the NDVI of the bare soil endmember, and NDVIveg is the NDVI of the vegetation endmember.

We used the method described in Zeng et al. [11] to compute the NDVIveg for each land cover
type, as defined by IGBP. First, we computed the maximum NDVI over the period of 2013 in Northeast
China. Second, histograms of the maximum NDVI values for each IGBP land cover type were plotted.
NDVIveg was selected as the 90th percentile for category 16 (barren or sparsely vegetated), and the
75th percentile was selected for all other land cover types. The determined NDVIveg values are given
in Table 2.
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NDVIsoil was computed using two approaches: (1) by utilizing the 5th percentile of barren and
sparsely vegetated land, as described in Zeng et al. [11], which was 0.085 in Northeast China; (2) and by
the method described in Wu et al. [9], which used the HWSD and the annual minimum NDVI for the
period of 2013 to determine the NDVIsoil for each soil type. The NDVIsoil for each group was defined
as the average of the minimum NDVI values which ranged between 0.07 and 0.22, for each soil group
area. The NDVIsoil value determined for each soil type is given in Table 2. Different soil types have
different NDVIsoil. Combined NDVIveg and NDVIsoil, two versions of FVC in Northeast China for the
period of 2013 were calculated.

Table 2. Values of normalized difference vegetation index (NDVI)veg and NDVIsoil used in this study.

The HWSD Soil Type NDVIsoil IGBP Land Cover Type NDVIveg

1. Anthrosols 0.16 ˘ 0.03 1. Evergreen Needleleaf Forest 0.77
2. Arenosols 0.16 ˘ 0.03 3. Deciduous Needleleaf Forest 0.75
3. Calcisols 0.12 ˘ 0.04 4. Deciduous Broadleaf Forest 0.76

4. Cambisols 0.16 ˘ 0.03 5. Mixed Forest 0.77
5. Chernozems 0.16 ˘ 0.03 6. Closed Shrublands 0.78

6. Flubvisols 0.17 ˘ 0.02 7. Open Shrublands 0.80
7. Gleysols 0.13 ˘ 0.04 8. Woody Savannas 0.76
8. Histosols 0.16 ˘ 0.03 9. Savannas 0.77

9. Kastanozems 0.14 ˘ 0.04 10. Grasslands 0.64
10. Leptosols 0.15 ˘ 0.04 11. Permanent Wetlands 0.76
11. Luvisols 0.15 ˘ 0.04 12. Croplands 0.74

12. Phaeozems 0.15 ˘ 0.03 13. Urban and Built-up 0.74
13. Podzoluvisols 0.15 ˘ 0.03 14. Cropland/Natural Vegetation 0.66

14. Regosols 0.17 ˘ 0.04 16. Barren or Sparsely Vegetated 0.50
15. Solonchaks 0.15 ˘ 0.03

16. Solonetz 0.15 ˘ 0.03

2.3.2. Analysis of the Effect of Uncertainty of NDVIsoil in FVC Calculation

Table 2 shows the mean NDVIsoil values, with large standard deviations for each soil type. In order
to investigate the impact of NDVIsoil variability of each soil type on FVC calculation, a possible FVC
was calculated using the same NDVIveg as in Table 2. However, we used the values derived from
the HWSD for each soil type to vary NDVIsoil that ranging between 0.07 and 0.22 for each pixel and
satisfied the dimidiate pixel model condition of NDVIsoil ď NDVIpixel.

Assuming that there are n NDVIsoil values for each soil type, this yields n NDVIsoil for each pixel
in each soil group area, and n FVC values. The FVC as calculated by the mean of the n FVC is referred
to as f ˚ [5]:

f ˚ “
řn

i“1 fi
n

“

řn
i“1

ˆNDVIpixel ´ NDVIsoil_i

NDVIveg ´ NDVIsoil_i

˙

n
(2)

Then, the error in FVC estimation due to the variability of NDVIsoil is quantified, hereafter referred
to as ∆ f ˚. It was the difference between the FVC values, respectively computed from Equations (1)
and (2) for each pixel:

∆ f ˚ “ f ˚ ´ f (3)

The uncertainties in FVC estimation due to possible n NDVIsoil values for each pixel were
estimated by computing the standard deviation of the resulting n fi values:

σ “

d

ř

p fi ´ f q2

n
(4)
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In order to understand how the error (∆ f ˚) and the uncertainty (σ) varied throughout Northeast
China, we calculated the corresponding f , f ˚, ∆ f ˚, and σ values, using the parameters in Table 2 and
Equations (1)–(4).

3. Results

3.1. Influence of NDVIsoil Variability on FVC Calculation

In order to investigate the impact of inherent variation of NDVIsoil for each soil type on FVC
estimation, we consider the possible NDVIsoil values for each soil type. The possible NDVIsoil values
used in Equation (2) are in the range of 0.07 to 0.22. The NDVIsoil values listed in Table 2 are the
means of the n NDVIsoil, and f is computed using these mean values. f ˚ is averaged by n possible
f i for each pixel. f i is calculated using NDVIsoil_i. The difference ∆ f ˚ between f ˚ and f is caused
by the variability of NDVIsoil. For pixels with NDVIpixel < NDVIsoil, f is set to zero, indicating no
vegetation covers.

Figure 4 shows the ∆ f ˚ for the six main land cover types, with seven different soil backgrounds
in Northeast China. Over deciduous broadleaf forests (Figure 4a), the majority of pixel NDVI values
are higher than 0.22, and the absolute ∆ f ˚ decreases as the pixel NDVI increases. Over other land
cover types with pixel NDVI ranging from 0 to 0.8, ∆ f ˚ presents two peak values (Figure 4b–f). ∆ f ˚

displays similar variations over each land type, based on specific soil type. Vegetation types and the
values of NDVIv show little influence on ∆ f ˚, and differences in ∆ f ˚ exist among the eight soil types.

∆ f ˚ reaches its highest value when the pixel NDVI is equal to the mean value of NDVIsoil. The ∆ f ˚

caused by Flubvisols reaches 0.06 over grasslands and croplands/natural vegetation, as shown in
Figure 4d,f. f ˚ overestimates f, with ∆ f ˚ > 0 over areas with Arensols, Cambisols, Chernozems and
Flubvisols backgrounds. The derived NDVIsoil values for these soils are much larger than those for
Gleysols, and the NDVIsoil values for Gleysols is much lower than that of others. f overestimates f ˚

when the pixel NDVI is greater than 0.15, over areas with Gleysols. The ∆ f ˚ caused by Gleysols could
reach ´0.04 over grasslands and croplands/natural vegetation, as shown in Figure 4d,f, respectively.
With the growth of vegetation, the ∆ f ˚ caused by the NDVIsoil variability approaches zero. NDVIsoil
shows variation because of differences in soil types. Various NDVIsoil yields errors on FVC estimation,
especially when the pixel NDVI is at a low value.
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3.2. Uncertainty on FVC Estimation

For the variability of NDVIsoil, f is calculated using the mean value of n NDVIsoil, accompanied
by an uncertainty σ, as defined in Equation (4). The uncertainties σ in FVC estimation over the six land
cover types with different soil backgrounds are shown in Figure 5. Results illustrate that the σ displays
similar variations over the six land types. The σ for the seven soil backgrounds also shows similar
variations, with differences in magnitude. It increases with the increasing NDVIpixel when NDVIpixel
is lower than approximately 0.2, then decreased. The σ reaches the maximum value when pixel NDVI
is about 0.2. The σ caused by the Luvisols is the greatest, due to its high variance (std = 0.04 in Table 2),
and the σ of Flubvisols is the lowest, due to its low variance (std = 0.02 in Table 2).
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Figure 5. The uncertainty σ in FVC estimations over deciduous broadleaf forests (a); mixed forests (b);
woody savannas (c); grasslands (d); croplands (e) and croplands/natural vegetation (f), with different
soil backgrounds.

Statistics of uncertainty σ for the six land cover types with different soil backgrouds are shown in
Table 3. For deciduous and mixed forests with the seven soil backgrounds, the means and maximums
of σ are lower than those of the other land cover types. The uncertainty of the FVC estimation caused
by Luvisols can reach a maximum of 0.076, with a mean of 0.063 over the grasslands. The uncertainty
of the FVC calculation of croplands/natural vegetation is also great. Plotting the seasonal cycle for the
six land cover types reveals that the peaks of grasslands and croplands/natural vegetation NDVI are
lower than other land cover types throughout a typical year. The NDVI values of forests are large, so
the uncertainty remains small. The spatial distributions of σ and bias throughout Northeast China are
shown in Figure 6c,d, which are influenced by the spatial distribution of NDVIsoil (Figure 6b). In all,
the variability of NDVIsoil introduces great uncertainty for FVC estimations. NDVIsoil with higher
variation causes greater uncertainty. The accuracy of the results of the dimidiate pixel model will be
improved by parameterizing NDVIsoil instead of using an invariant NDVIsoil.



Remote Sens. 2016, 8, 29 9 of 15

Table 3. Statistics of σ over the main land cover types with different soil backgrounds.

Std (σ)
Luvisols Phaeozems Arenosols Cambisols Chernozems Flubvisols Gleysols

Mean, Max Mean, Max Mean, Max Mean, Max Mean, Max Mean, Max Mean, Max

Deciduous
broadleaf forest 0.043, 0.062 0.039, 0.051 0.033, 0.049 0.035, 0.050 0.036, 0.045 0.025, 0.029 0.039, 0.052

Mixed forest 0.044, 0.062 0.039, 0.050 0.038, 0.048 0.034, 0.049 0.036, 0.045 0.021, 0.031 0.040, 0.053
Woody savannas 0.049, 0.062 0.043, 0.051 0.041, 0.049 0.043, 0.050 0.040, 0.046 0.025, 0.031 0.044, 0.054

Grasslands 0.063, 0.076 0.054, 0.061 0.055, 0.060 0.055, 0.061 0.049, 0.056 0.033, 0.038 0.057, 0.065
Croplands 0.052, 0.064 0.045, 0.052 0.044, 0.051 0.042, 0.051 0.042, 0.047 0.027, 0.032 0.048, 0.055

Cropland/Natural
vegetation 0.052, 0.073 0.049, 0.059 0.052, 0.057 0.047, 0.059 0.044, 0.054 0.031, 0.037 0.053, 0.063
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3.3. Comparison of FVC Derived from Two NDVIsoil Methods

Although the invariant NDVIsoil method ignores the variability of NDVIsoil, many researchers use
this method anyway. In order to compare differences in FVC estimation caused by different NDVIsoil
values, two versions of the yearly mean FVC over Northeast China for the period of 2013 are calculated,
using the invariant NDVIsoil (0.085) and pairs of NDVIsoil, which are given in Table 2. Statistics of the
root mean square error (RMSE) and bias of the two versions of FVC for the main land cover types are
calculated and shown in Table 4. Large discrepancies between two retrievals are observed. Over forest
with high NDVI, the RMSE is about 0.07. Over grasslands and croplands/natural vegetation with low
NDVI, the RMSE is 0.08. The accuracy of FVC remote sensing products in the campaign of validation
is required to be 0.05 [33].

The invariant NDVIsoil method generates systematically higher FVC estimates than the second
approach with biases between 0.06 and 0.08. This is because the NDVIsoil mean value computed from
the soil database is about two times higher than the invariant NDVIsoil, at 0.15 versus 0.085, respectively,
confirming that the invariant NDVIsoil method tends to underestimate NDVIsoil [5]. This yields
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an overestimation of FVC, because NDVIsoil appears in the equation’s numerator and denominator.
FVC is an essential parameter in many hydroclimatic applications, due to its important contributions
to climate models [12]. Accurate estimation of FVC is crucial for proper application of the models. It is
important to accurately retrieve NDVIsoil values when using the dimidiate pixel model to estimate
FVC. In the next section, the accuracies of these two methods will be validated using fine-resolution
FVC reference maps.

Table 4. The root mean square error (RMSE) and bias derived from the two fractional vegetation cover
(FVC) versions for the main land cover types in Northeast China.

Deciduous
Broadleaf Forest

Mixed
Forest

Woody
Savannas Grasslands Croplands Cropland/Natural

Vegetation Over All

Average
FVC1 * 0.43 0.41 0.33 0.27 0.31 0.36 0.35
FVC2 0.37 0.35 0.26 0.19 0.24 0.28 0.28
RMSE 0.07 0.07 0.07 0.08 0.07 0.08 0.07
Bias 0.06 0.06 0.07 0.08 0.07 0.08 0.07

Note: * FVC1 and FVC2 are respectively derived using the invariant NDVIsoil and NDVIsoil in Table 2.

3.4. Validation of FVC Estimations Using 30 m FVC Reference Maps

High resolution imagery is a useful tool in scaling a point to a larger area, when using in situ
measurements to validate the accuracy of FVC estimated from satellite image [34]. Thirty meter FVC
reference maps are derived from Landsat 8 OLI 30 m images and a HJ-1B CCD 30 image, using the
empirical functions displayed in Figure 3. The 1 km FVC values are computed using SPOT-VGT 1 km
NDVI and three NDVIsoil methods below. Then, the FVC calculated by the three NDVIsoil methods are
compared with the 1 km FVC aggregated from the 30 m reference maps.

NDVIsoil are calculated using three approaches: (1) using in situ NDVIsoil measurements made at
the cropland Dehui sites, which is 0.21; (2) using the invariant NDVIsoil method, which equals to 0.085;
and (3) using the values computed from the historical minimum NDVI at each pixel, along with the
soil database shown in Table 2, which is 0.14 for croplands at Dehui site, and is 0.13 for grasslands
at Hulun Buir site. Figure 7 shows how different NDVIsoil approaches affect FVC estimates over the
croplands and grasslands. The FVC computed using the third method yields much better estimates
than the invariant method over croplands and meadow steppe, compared with the aggregated FVC
and the FVC derived from the first method.
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(a) Dehui, on 17 June 2013; (b) on 13 July 2013; and (c) Hulun Buir, on 11 August 2013.

At Dehui site (Figure 7a,b), the in situ NDVIsoil resampled using SPOT-VGT spectral response
functions is 0.21. The NDVIsoil computed from the third method is 0.14. Both values are much larger
than the invariant NDVIsoil. The invariant NDVIsoil method underestimates NDVIsoil, resulting in the
largest RMSE which is 0.14 and overestimations at both study areas (Table 5). The in situ NDVIsoil
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method shows the highest accuracies. However, NDVIsoil varies significantly between soils, it is
unrealistic to measure soil spectral reflectance all over the study area. FVC estimates using the third
method are more accurate than FVC estimated by the invariant method. In these three examples, the
estimated accuracies (RMSE) are improved from 0.14 to 0.09 and from 0.06 to 0.05 at Dehui site on
17 June 2013 and 13 July 2013, respectively. At Hulun Buir site, the accuracy is improved from 0.04
to 0.03. Using the information on soil types to take into account NDVIsoil variations is an effective
approach for improving FVC estimation accuracy.

Table 5. The estimated accuracies of the two versions of FVC validated by aggregated FVC
reference maps.

Dehui, on 17 June 2013 Dehui, on 13 July 2013 Hulun Buir

RMSE Bias RMSE Bias RMSE Bias

In situ NDVIsoil 0.04 0.02 0.05 0 - -
invariant NDVIsoil 0.14 0.04 0.06 0.03 0.04 0.04

NDVIsoil based on the HWSD 0.09 0.02 0.05 0.02 0.03 0.02

4. Discussion

4.1. Impact of Soil Backgrounds on Canopy Vegetation Indices

The results in Section 3 show that the biases and uncertainties on FVC estimation are greater
over areas with low NDVI, such as grasslands and croplands/natural vegetation, than over other
land covers with high NDVI. Validation results also show that the FVC estimates are more accurate at
high vegetation cover than at relatively low cover, i.e., RMSE = 0.09 and 0.05, respectively, which can
be explained by the sensitivity of canopy NDVI to soil backgrounds. Huete et al. [35] found that the
sensitivity of vegetation indices to soil backgrounds was greatest in canopies with intermediate levels
of vegetation cover. Soil influences on the spectra of incompletely covered canopy are partly due to
differences in red and NIR flux transferring the overlying canopy [36]. A significant amount of NIR flux
is scattered and transmitted by canopy towards the soil surface. The soil reflects parts of the scattered
and transmitted flux back toward the sensor. In red band, red light is mostly absorbed by leaf layers.
The soil only reflects the irradiance from the sun and sky through canopy gaps. NDVI, intrinsically
calculated from red and NIR reflectance, is sensitive to FVC, but it is also sensitive to soil backgrounds.

Estimations of FVC from NDVI suffer from the interference of soil backgrounds. Therefore, some
vegetation indices have been developed to reduce soil background effects, such as soil adjusted
vegetation index (SAVI) [37], modified soil adjusted vegetation index (MSAVI) [38], enhanced
vegetation index (EVI) [39] and so on, which have been widely used to monitor vegetation. Compared
to NDVI, EVI was found to be more suitable for monitoring vegetation greenness due to minimal
atmospheric and soil effects [40]. However, EVI is limited to sensor systems designed with a blue
band as well as the red and near-infrared bands [41]. Gitelson et al. [42] suggested that the two-band
enhanced vegetation index without a blue band (EVI2) was accurate in estimating FVC. Other indices
have been developed to estimate FVC, such as the scaled difference vegetation index (SDVI) and
the visible atmospherically resistant index (VARI) [43,44]. SDVI is a suitable approach for retrieval
of FVC over heterogeneous surfaces, and VARI is minimally sensitive to atmospheric effects. All of
the above indices are possible alternatives to NDVI in the dimidiate pixel model for estimating FVC.
The impact of soil backgrounds on the values of these vegetation indices of bare soil (VIsoil) need to
be investigated.

4.2. Impact of Soil Backgrounds on VIsoil

Above mentioned soil-adjusted vegetation indices considerably reduce soil effects on canopy
reflectance. However, calculations from the 564 soil reflectance spectra illustrate that EVIsoil and
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SAVIsoil also show variations with the same RMSE of 0.02 (Figure 8). It demonstrates that the impact of
various soil backgrounds on the parameter of VIsoil in the dimidiate pixel model cannot be neglected
even though using these vegetation indices to replace NDVI. The impact of soil backgrounds still need
to be taken into account.Remote Sens. 2016, 8, 29 12 of 15 
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5. Conclusions 

Two NDVIsoil determining methods were used to estimate FVC in Northeast China. The first 
method used an invariant NDVIsoil to estimate FVC and the second method considered the 
variations of NDVIsoil by using soil type information to derive NDVIsoil for each soil type. The 
accuracies of FVC derived from these two methods were compared and the impact of the variations 
of NDVIsoil derived from the second method on FVC estimations was quantified. Analysis shows 
that NDVIsoil has great differences compared to different soil types. NDVIsoil with larger variations 
introduces greater uncertainties in FVC estimation that can reach 0.08. The largest uncertainties and 
errors occur in vegetation with low NDVI. Compared to the FVC derived from the second method, 
the invariant NDVIsoil method yields overestimation of FVC that is about 0.08 in Northeast China. 
Validation results reveal that the second method of using soil type information to estimate NDVIsoil 
yields better estimates of FVC than using the invariant NDVIsoil value. The FVC estimate accuracies 
are improved from an average of 0.1 to 0.07 (RMSE) over the croplands and 0.04 to 0.03 over the 
grasslands. Soil backgrounds have impacts not only on NDVIsoil but also on other VIsoil. More 
advances will be acquired by selecting optimal vegetation indices sensitive to FVC and 
non-sensitive to soil backgrounds and modeling the relationships between VIsoil and soil properties. 
Soil type is an effective method for considering NDVIsoil variability. 
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Figure 8. EVI (a) and SAVI (b) calculated from the 564 soil reflectance spectra.

Soil is a complex composite of minerals, organic matter, grain size, moisture, etc. [19].
Many authors have attributed differences in soil spectra to variations in organic matter, clay
composition, color, as well as texture [45,46]. Although the influence of these soil properties on
the spectral signature of soil has been intensively studied, minimal research has focused on how these
properties impact the values of NDVIsoil. Many authors have pointed out that soil organic matter, clay
minerals, and water have broad absorption in the visible and NIR regions [47–49]. Correlations may
exist between VIsoil and soil properties. It is recommended to model the relationship between VIsoil
and soil properties for predicting VIsoil. In this work, we used soil types to estimate NDVIsoil for each
soil types. Soil type determines key physical and chemical properties, and appears to be the main
factor of variation in soil lines [50]. To some extent, soil type has an impact on VIsoil values. It is
an effective method for taking into account VIsoil variability.

5. Conclusions

Two NDVIsoil determining methods were used to estimate FVC in Northeast China. The first
method used an invariant NDVIsoil to estimate FVC and the second method considered the variations
of NDVIsoil by using soil type information to derive NDVIsoil for each soil type. The accuracies of
FVC derived from these two methods were compared and the impact of the variations of NDVIsoil
derived from the second method on FVC estimations was quantified. Analysis shows that NDVIsoil
has great differences compared to different soil types. NDVIsoil with larger variations introduces
greater uncertainties in FVC estimation that can reach 0.08. The largest uncertainties and errors
occur in vegetation with low NDVI. Compared to the FVC derived from the second method, the
invariant NDVIsoil method yields overestimation of FVC that is about 0.08 in Northeast China.
Validation results reveal that the second method of using soil type information to estimate NDVIsoil
yields better estimates of FVC than using the invariant NDVIsoil value. The FVC estimate accuracies are
improved from an average of 0.1 to 0.07 (RMSE) over the croplands and 0.04 to 0.03 over the grasslands.
Soil backgrounds have impacts not only on NDVIsoil but also on other VIsoil. More advances will be
acquired by selecting optimal vegetation indices sensitive to FVC and non-sensitive to soil backgrounds
and modeling the relationships between VIsoil and soil properties. Soil type is an effective method for
considering NDVIsoil variability.
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