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Abstract: Operational assessment of forest structure is an on-going challenge for land 

managers, particularly over large, remote or inaccessible areas. Here, we present an easily 

adopted method for generating a continuous map of canopy height at a 30 m resolution, 

demonstrated over 2.9 million hectares of highly heterogeneous forest (canopy height 0–70 m) 

in Victoria, Australia. A two-stage approach was utilized where Airborne Laser Scanning 

(ALS) derived canopy height, captured over ~18% of the study area, was used to train a 

regression tree ensemble method; random forest. Predictor variables, which have a global 

coverage and are freely available, included Landsat Thematic Mapper (Tasselled Cap 
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transformed), Moderate Resolution Imaging Spectroradiometer Normalized Difference 

Vegetation Index time series, Shuttle Radar Topography Mission elevation data and other 

ancillary datasets. Reflectance variables were further processed to extract additional spatial 

and temporal contextual and textural variables. Modeled canopy height was validated 

following two approaches; (i) random sample cross validation, and (ii) with 108 inventory 

plots from outside the ALS capture extent. Both the cross validation and comparison with 

inventory data indicate canopy height can be estimated with a Root Mean Square Error 

(RMSE) of ≤ 31% (~5.6 m) at the 95th percentile confidence interval. Subtraction of the 

systematic component of model error, estimated from training data error residuals, rescaled 

canopy height values to more accurately represent the response variable distribution  

tails e.g., tall and short forest. Two further experiments were carried out to test the 

applicability and scalability of the presented method. Results suggest that (a) no 

improvement in canopy height estimation is achieved when models were constructed and 

validated for smaller geographic areas, suggesting there is no upper limit to model 

scalability; and (b) training data can be captured over a small percentage of the study area 

(~6%) if response and predictor variable variance is captured within the training cohort, 

however RMSE is higher than when compared to a stratified random sample. 

Keywords: canopy height; ALS; Landsat; open-source; large area assessment; random forest 

 

1. Introduction 

For large, inaccessible and remote forested areas, the assessment of vegetation structure in an 

operational framework remains an on-going challenge for land managers [1–3]. Synoptic capture of 

large forested areas is provided by space borne passive optical remote sensing platforms and has proved 

useful for the attribution of forest structure [1,4–7]. However, the inability of passive instruments to 

sense below the principal canopy limits their applicability for assessing three-dimensional forest 

structure attributes, such as canopy height [8–10]. Over the last two decades, Light Detection and 

Ranging (LiDAR) technologies, and in particular discrete return Airborne Laser Scanners (ALS), have 

become an operational alternative to traditional forest inventory [2,11,12]. Consequently, there has been 

recent interest in the fusion of ALS and satellite multispectral imagery for the improved retrieval of 

vegetation parameters (see review by Torabzadeh et al. [13]). However, although examples of acquisition 

of ALS over very large areas exist [2,14–18], ALS coverage is often incomplete and follows a transect or 

linear pattern and is therefore inappropriate for deriving wall-to-wall maps of vegetation structure. 

To achieve large area attribution, ALS can be used as a sampling tool in a two-stage approach where 

ALS is captured over a fraction of the study area. This is achieved by first establishing an empirical 

statistical model between ALS metrics and spectral reflectance and/or other spatially synoptic datasets. 

The model is then applied to the reflectance/synoptic data and therefore upscales estimates of canopy 

structure beyond the confines of the ALS survey extent [19–24]. Examples where assessment has been 

carried out over large areas of heterogeneous forest include Asner et al. [15] who estimated forest 

biomass across ~4 million hectares of Peruvian rainforest and Wulder and Seemann [25] who estimated 
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canopy height over 700,000 ha of boreal forest in Canada. Both studies used a linear regression of ALS 

derived variables with segmented Landsat imagery to predict canopy structure. Continental and global 

maps of forest structure have also been produced using this method where LiDAR data from the 

spaceborne the Geoscience Laser Altimeter System (GLAS) sensor was used as a sampling tool in 

conjunction with coarse resolution satellite imagery (250–1000 m) [26–28]. 

Modeling approaches that have determined a parametric association between response and predictor 

variables have been successfully applied to the attribution of forest structure [20,22,25]. However, in 

more recent years machine learning techniques have been utilized for remote sensing applications, where 

the complex statistical associations of multi-source datasets require more advanced approaches to 

characterize forests over large areas [19,23,29]. A machine learning technique that has gained in 

popularity is random forest, an ensemble regression tree technique from the Classification and 

Regression Tree or CART family [30]. Random forest works by constructing “weak” regression trees 

(usually in the order of hundreds) from bootstrapped samples of input variables. The “weak” regression 

trees are then aggregated in an ensemble to produce a robust model that is insensitive to collinear predictor 

variables and a non-normal distributed response variable [31]. Furthermore, the ease of application (e.g., only 

two model parameters, see Section 2.3.1) and the ability to run efficiently over large datasets makes random 

forest an ideal choice for large area attribution [32]. A number of studies have utilized random forest for 

mapping forest attributes with remotely sensed data, including biomass [28,33], species extent [34], forest 

extent [21,35,36], canopy cover [7,37,38] and canopy height [24,26,38–41].  

The majority of studies use a combination of predictor variables that can be roughly split into two 

cohorts: (a) variables that respond to changes in vegetation and are derived from surface reflectance, and 

(b) variables that determine vegetation growth potential (in the absence of disturbance) such as site quality 

and climate. Particular choices of predictor datasets are dictated by the target variable, scale of analysis 

and data costs or accessibility; the ready access to free satellite imagery has been recognized as crucial for 

the long term modeling of environmental systems [42]. Large area forest assessment should be consistent 

across the domain of the study, providing an accurate estimate of forest structure regardless of forest type, 

as well as being locally relevant, for example identifying features in the landscape [6].  

An earth observing platform that has proved useful in this respect is the Landsat program, for example, 9 of 

the 11 random forest studies listed above used Landsat products as a predictor variable in some way. 

Random Forest is capable of efficiently incorporating a large number of both continuous and categorical 

variables, as a result of sub-sampling predictor variables at each node when constructing regression trees. 

From a remote sensing perspective, this enables additional contextual or textural variables (and the large 

number of variables this can produce) to be easily incorporated into modeling [43]. The addition of first and 

second order textural information from satellite imagery has been shown to improve the classification 

accuracy of forest structure [43–46]. Additionally, the incorporation of variables generated from a 

remote sensing time series have also improved model performance. For example, when estimating 

canopy height Ahmed et al. [38] included a time-since-disturbance variable generated from a Landsat 

ETM time series, which led to improvements in RMSE of ~20%. 

This manuscript extends the work of previous authors by presenting a method for the production of a 

medium-resolution (30 m) continuous map of canopy height, for a large area (millions of hectares) of 

highly heterogeneous forest, using freely available datasets as predictive variables and in an open source 

computing framework. The presented method is intended to be easily adopted (and adapted) by forest 
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scientists and land management agencies for the routine assessment of canopy height. Canopy height 

was chosen as a candidate metric owing to its importance across many applications including biomass 

estimation [15,47,48], habitat assessment [49,50] and forest inventory [51–53]. An estimate of canopy 

height is also required to fulfill international assessment and reporting obligations such as those outlined 

in the Montreal process [54]. 

2. Materials and Methods 

2.1. Study Area 

The study area is located in the state of Victoria, Australia (Figure 1A) and comprises a total area  

of 4 million ha, an area similar in size to the country of Switzerland or the US state of Maryland. Land 

tenure is predominantly public (> 70%), the majority of which is located in state forest and national parks; 

the remainder is privately owned and primarily used for grazing livestock. Within this boundary, forest 

covers 2.9 million ha [35] where forest is defined as “having the potential to reach > 2 m in height  

and > 20% canopy cover” [55] (Figure 1D). Canopy height across the study area ranges from 0–70 m  

(Figure 1B). 

 

Figure 1. Study area in east Victoria, Australia. A mosaic of 5 Landsat TM false color 

composite images covering the study area (outlined in white) and location of the study area 

within Australia (inset) (A). Canopy height derived from ALS capture where canopy height 

values are aggregated into 10 × 10 km cells (grey indicates no data) (B). The extent of the 

ALS capture (C). Forest extent [35] and location of Victorian Forest Monitoring Programme 

forest inventory plots (VFMP) (D). Map coordinate system is the projected Map Grid of 

Australia (MGA) zone 55. 
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The forested area extends across seven seven Interim Biogeographic Regionalisation for Australia 

(IBRA) regions, IBRA regions have distinct ecological, geological and climatological features [56]. 

Vegetation is dominated by dry sclerophyll forest and woodlands, which have a relatively sparse canopy 

and a patchy, scrubby understorey. In the foothills of the Australian Alps there are areas of  

highly-productive wet forest and rainforest characterized by a tall (> 40 m) and closed canopy with high 

species richness [57]. There are also subalpine and alpine areas in the Australian Alps that straddle the 

middle of the study area; these are characterized by relatively short vegetation. 

Two factors confound the estimation of canopy height in the study area when using remote sensing. 

Firstly, the area is subject to regular disturbance from fuel reduction burns, bush fires and drought. For 

example, the area experienced the most severe drought in a century in the decade prior to the study, 

which led to large-scale tree mortality [58,59]. Secondly, the physiology of Eucalypt trees and stands, 

such as an erectophile leaf angle distribution, asymmetrical crown configuration, low foliage density 

and leaf and crown clumping [60] increase the proportion of reflectance coming from the ground, mid 

and understorey as well as increasing the shadow fraction [7,61]. 

2.2. Data Collection 

2.2.1. Forest Inventory 

Forest inventory plot data was collected as part of the Department of Environment, Land, Water and 

Planning (DELWP) Victorian Forest Monitoring Programme (VFMP). A total of 130 forest inventory 

plots were within the study area including 22 that intersected the ALS acquisition extent. Forest 

inventory plots were installed between May 2011 and December 2014, where at each sampling location 

a 0.04 ha plot was established following DELWP protocol [62]. Measurements for all trees within the forest 

inventory plot included diameter at breast height, species and live status. For a subset of trees (including the 

three tallest) height was also recorded. Dominant canopy height, the mean height of the three tallest live trees 

in a forest inventory plot, was calculated as the metric summarizing canopy height [63].  

2.2.2. Airborne Laser Scanning Data 

Airborne Laser Scanning (ALS) data was acquired as part of the DELWP River Health  

Programme [14]. ALS instrument and survey specifications are presented in Table 1. The ALS data was 

originally acquired to assess stream bank condition and therefore capture was restricted to the riparian 

zone, extending 300 m on either side of the river or stream. Flight lines followed the course of the rivers 

and streams and were therefore off cardinal (Figure 1C), this resulted in a substantial and multiple 

overlap at flight line intersections. A combination of pulse density and the ability of the two ALS 

instruments utilized to record up to 4 discrete returns per outgoing laser pulse meant the data was suitable 

for characterizing vegetation structure [1,64]. 

The ALS acquisition extent was clipped to the existing forest area [29] and totaled 520,000 ha  

(Figure 1C). A regular grid with a 250 m spacing (to reduce the spatial autocorrelation of the response 

variable) was placed over the study area and a total of 12,000 ALS plots were extracted using random 

stratified sampling. To capture canopy structural variance across the study area, the IBRA bioregion 

layer was used to stratify the area into distinctive vegetation types. ALS plots that either intersected the 
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edge of the ALS acquisition or had a pulse density < 0.5 pulses·m−2 [64] were removed from analysis. 

This resulted in ~11,000 ALS plots for model construction and evaluation. 

Table 1. ALS capture and instrument specifications. 

Specifications  

Capture specifications  

Date December 2009–January 2011 

Flying height 600–1500 m above ground level 

Mean pulse density  9.4 pl m−2 

Swath overlap 20% 

Absolute vertical accuracy ± 20 cm 

Absolute horizontal accuracy ± 30 cm 

Mean footprint diameter ~35 cm 

  

Instrument specifications  

Instrument Leica ALS50-II and ALS60 (Heerbrugg, Switzerland)  

Operating wavelength 1064 nm 

Max off-nadir scan angle ± 15° 

Outgoing pulse rate 36.4 Hz 

Square plots (50 m × 50 m) were extracted from the ALS dataset, after computation of canopy height 

plots were clipped to 30 m × 30 m to be consistent with Landsat TM pixel dimensions. Plots were 

initially extracted at larger plot dimensions to ensure points around the plot edge had a large enough 

neighborhood to create a representative ground surface model. Point height data was normalized to 

ground surface by first classifying points into either ground or non-ground, then using ground classified 

returns only, creating a triangulated irregular network (TIN) surface. Using the TIN, the ground 

normalized height for all points was then calculated. Point classification, TIN creation and height 

normalization were computed using LAStools (version 130225) [65]. The 95th percentile of return 

height for returns classified as non-ground was calculated for each plot as an analogue of dominant 

canopy height. 

2.2.3. Satellite Imagery and Ancillary Data  

A full list of predictor variables initially processed is presented in Table 2. A total of 10 Landsat 

Thematic Mapper (TM) images were acquired for two seasons; January–March 2009 (summer) and 

October–November 2009 (spring). Two seasons were acquired as different vegetation cover and 

composition characteristics are evident at different times of year. For example, imagery captured in 

summer maximizes the spectral difference between evergreen (overstorey) and cured grass whereas 

spring imagery captures the green flush [29]. Images were geo-rectified and corrected for atmospheric 

and bi-directional reflectance distribution function effects to obtain surface reflectance [66], before being 

mosaicked. Both image mosaics were captured at a time (pre- and post- summer equinox) when sun 

angle was relatively high to minimize shadow. Although the summer imagery was captured 

approximately one year prior to the start of the ALS acquisition, imagery from summer 2010 was 

significantly cloud affected and therefore unsuitable. 
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A Tasselled Cap (TC) transformation [67] was applied to the Landsat TM mosaics, reducing  

the 6 visible bands to 3 features: brightness, greenness and wetness [38,39,43]. From each TC feature, 2 first 

order texture metrics (mean and variance or contextual and textural metrics, respectively) were 

calculated using a range of kernel sizes (3, 5, 15, 33, 65 and 99 Landsat TM pixels). Maximum kernel 

size was determined using semivariance analysis of ALS derived canopy height models (30 m × 30 m 

resolution) captured over three representative forest areas in Victoria [68]. Smaller kernel sizes were used 

to capture forest structure variance for forests that have a shorter lag and also to characterize forest patches 

smaller than a continuous canopy e.g., fragmented forests or linear features such as riparian vegetation. 

Table 2. List of predictor variables with original image resolution in brackets (+kernel  

sizes: 3, 5, 15, 31, 65, and 99 pixels). 

Source 

Landsat TM (30 m) MOD13Q1 (NDVI) time series (2001–2010) (250 m) 

Tasselled Cap features and NDVI 

Summer brightness 

Summer greenness 

Summer wetness 

Spring brightness 

Spring greenness 

Spring wetness 

Summer NDVI 

Spring NDVI 

 

Image context/texture+ 

Summer mean brightness 

Summer mean greenness 

Summer mean wetness 

Spring mean brightness 

Spring mean greenness 

Spring mean wetness 

Summer brightness variance 

Summer greenness variance 

Summer wetness variance 

Spring brightness variance 

Spring greenness variance 

Spring wetness variance 

Summer mean 

Summer standard deviation 

Summer coefficient of variation 

Summer linear regression slope coefficient 

Spring mean 

Spring standard deviation 

Spring coefficient of variation 

Spring linear regression slope coefficient 

SRTM (~30 m) 

Elevation 

Aspect 

Slope 

Climatic (1 km) [66] 

Total annual precipitation 

Mean annual temperature 

Soils 

Soil moisture (1 km) [67] 

Major soil type (vector) [68] 

Coordinates (MGA zone 55) (30 m) 

X location 

Y location 

A time series of the Moderate Resolution Imaging Spectroradiometer (MODIS) Normalized 

Difference Vegetation Index (NDVI) product (MOD13Q1) was utilized to capture changes in vegetation 

structure in the decade prior to the study period. The MODIS NDVI product was chosen as it is highly 
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correlated with vegetation phenology [69] and also has the highest spatial resolution of MODIS products 

(250 m). Two scenes (summer and spring) were acquired for each year between 2000–2010, where 

images were captured at the same time each year (first week of February and first week of November, 

respectively). Images were subsequently ordered into a chronological stack (for each season) and four 

statistics were computed for each pixel stack: mean, standard deviation, coefficient of variation and the 

slope coefficient of a linear regression of NDVI with acquisition year. 

Site quality and climatological variables can constrain maximum canopy height, for example, a forest 

plots topographical position or air temperature [61,70]. To capture this within the predictive model, 

additional variables included elevation, slope and aspect derived from the Shuttle Radar Topography 

Mission (SRTM) 1 arc-second resolution (~30 m) dataset; mean annual temperature and mean total 

rainfall [71]; soil water balance [72] and major soil type [73]. Additionally Cartesian coordinate layers 

(X and Y location) were included [33]. All datasets were resampled to a 30 m resolution to match that 

of Landsat TM and reprojected to MGA zone 55. 

2.3. Canopy Height Estimation with Random Forest 

For the estimation of canopy height, random forest was run in ‘regression’ mode where canopy height 

was the response (dependent) variable and the satellite and ancillary data were the predictor (independent) 

variables. In order to preserve the spatial heterogeneity present in native forests managed for  

conservation [61,74,75], canopy height output is computed as a continuous surface i.e. not segmented into 

forest stands. Random forest models were constructed and validated over the entire study area by 

randomly sampling 5000 ALS plots from the global dataset in a bootstrap (N = 50). For each bootstrap 

iteration, the resulting random forest model was applied to a withheld random sample of 1000 ALS plots, 

from which Root Mean Squared Error (RMSE) was estimated. Outliers at the 95th percentile confidence 

interval were removed from RMSE calculations. To produce a wall-to-wall map of canopy height, 

individual random forest models from the bootstrapped cross-validation were combined, to improve 

generalization, and then applied to the synoptic datasets. A second validation was achieved by comparing 

forest inventory measured canopy height from outside ALS acquisition area with model output. 

Two further experiments were conducted to assess the suitability and applicability of random forest 

for estimating canopy height over large areas: (a) models were constructed and validated using ALS data 

within smaller geographic extents, and (b) models were constructed from smaller geographic subsets 

and validated using ALS data from the remaining portion of the study area. For experiment (a), the 

hypothesis was that improvements can be made in performance by constructing and validating models 

over smaller geographic areas owing to the reduced range and variability of the response and predictor 

variables. Experiment (a) was evaluated by dividing the study area into 24 grid squares  

(50 km × 50 km), then for each grid square a model was constructed using 75% of ALS plots as training 

data and the remainder for validation.  

LiDAR surveys usually cover a much smaller extent than the River Health capture. Experiment  

(b) therefore tested the possibility of combining disparate acquisitions to estimate canopy height over a 

larger area. This was achieved by randomly sampling the twenty-four 50 km × 50 km grid squares, 

where the number of squares included was iteratively increased from 2 to 23 (5%–95% of the ALS 

footprint or 1%–16% of the forested area). ALS plot data from the selected grids was combined and used 
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as a training sample, creating a non-random distribution of training samples. A random sample of 2000 

ALS plots from outside the selected grid squares were used as validation. An additional 18,000 ALS 

plots were randomly extracted from the River Health dataset (using the method described in Section 

2.2.2), and combined with 2000 from the original sample to create a randomly distributed dataset for the 

entire study area (i.e., not stratified by IBRA bioregion). 

2.3.1. Random Forest Implementation 

To facilitate the uptake of this method by land management agencies and forest scientists, computation 

was achieved using an open source framework [29]. ForestLAS [76] and LAStools [65] were used to 

extract and process ALS data; GRASS [77] and QGIS [78] software were used to extract and pre-process 

predictor variables; data management was achieved with Python [79]; and random forest was 

implemented in Python via RPy2 using the R [80] randomForest package [81]. 

The randomForest implementation has two primary user defined parameters; number of candidate 

variables selected at each node split (mtry) and the total number of trees constructed in each forest 

(ntree). The default mtry value was used, this is calculated as the total number of predictor variables 

divided by three [81]. Stabilization of out-of-bag error (the error calculated using the withheld sample 

from the construction of each regression tree) occurred at ~100 trees and was therefore used for ntree. 

Additionally, a sensitivity analysis of the number of training samples was undertaken, indicating an 

asymptote in achievable accuracy was reached at ~5000 plots. 

2.3.2. Selecting Predictor Variables 

A more parsimonious model can be obtained by removing highly collinear variables and variables 

that contribute least to the predictive capability of the model [82,83]. Variable collinearity was tested by 

constructing a coefficient of determination matrix for all combinations of variables. For each highly 

correlated pair (r2 > 0.9), correlation coefficients were calculated between the variables and canopy 

height, where the predictor variable with the highest coefficient of determination was kept. The second 

step followed the method of Murphy et al. [82] where cohorts of predictor variables were iteratively 

removed from model construction based on their importance within the model. After each iteration 

model performance was evaluated.  

A total of 19 variables were finally selected (Figure 2) from the original set of 97 (Table 2). Using 

the cohort of 19 variables resulted in a <1% decrease in model accuracy when compared to using the 

full set. The cohort consisted almost exclusively of reflectance variables, of which fifteen were derived 

from Landsat TM and 4 were derived from the Tasselled Cap wetness feature alone. Contextual predictor 

variables featured prominently and were more important than single pixel variables. Landsat TM 

imagery captured in the summer was more important than spring imagery. Ten year summer and spring 

mean NDVI was the only MODIS time series variable to feature prominently. Ancillary variables were 

of less importance, only the X and Y Cartesian coordinates featured significantly. The relatively small 

range of MSE values from the cross validation for each predictor variable (Figure 2) suggests that the 

order of the most significant variables was stable. 
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Figure 2. Relative importance of the 18 variables selected for the final random forest model. 

Confidence intervals (95th percentile) for variable importance were calculated in a bootstrap 

(N = 50). Increase mean square error (MSE) is the mean of the squared prediction error when 

the variable is permuted for a random variable [84]. Numbers in brackets indicate the kernel size. 

2.3.3. Systematic Error in Model Output 

Exploratory analysis suggested a systematic bias in modeled canopy height output, where the height of 

shorter and taller plots were over and underestimated, respectively. Spatially incorporating an estimate of 

error (e.g., kriging or cokriging of model residuals) has been utilized previously [20]. However, here this was 

inappropriate owing to the low spatial autocorrelation in model error (Moran’s I = 0.018, p < 0.001). 

Alternatively, two aspatial methods were tested to mitigate the systematic bias; (a) resampling of the 

response variable to a uniform distribution and (b) subtracting from model output a linear model that 

characterizes the systematic error component. When running random forest as a “classifier”, inequity in 

class representation can be addressed by either up-sampling or down-sampling the minority and majority 

classes, respectively [85]. Here a pseudo-uniform distribution for the response variable was computed 

by aggregating ALS plots into 10 m height cohorts, then using random sampling (with replacement), 

increasing or decreasing the number of plots in each class accordingly.  

For the second approach, a random forest model and a linear model of systematic error were derived 

from the training dataset, these were then applied to the withheld dataset or across the whole study area. 

To ensure independence of training and withheld datasets, the training dataset was divided into two 

halves. The first half of the training data was used to construct the random forest. Linear coefficients 

were then determined by regressing model residual error, derived from applying the random forest model 

to the second training dataset, with ALS estimated canopy height. To then estimate canopy height of the 

withheld dataset (HRF-SE), the random forest model was applied to the dataset (HRF) and the systematic 

component was subtracted as follows:  
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𝐻RF−SE =  𝐻RF − (𝛼𝐻RF + 𝛽 ) (1) 

where α and β are the regression coefficients. When applying the technique across the whole study area 

using the combined random forest model, mean α and β regression coefficients from the cross-validation 

were used. 

3. Results 

3.1. Canopy Height Estimation 

Cross-validation of random forest for estimating canopy height returned a mean RMSE of 31.3% 

(5.68 m) at the 95th percentile confidence interval, where the model explained 58% of variance in canopy 

height (p < 0.0001). Systematic error was apparent in the over and underestimation of shorter and taller 

canopy heights, respectively (Figure 3A), systematic error accounted for ~2 m of total error. This error 

was caused by forest plots located towards the tails of the response variable distribution having similar 

predictor variable values to plots closer to the mean (Figure 4). As a result, canopy height values closer 

to the mean were preferentially modeled to reduce overall prediction error. For example, plots with a 

canopy height < 10 m have a comparable spectral response to plots where canopy height is 10–20 m 

(Figure 4B). As plots in the 10–20 m cohort are more numerous, modeled canopy height for plots where 

ALS estimated canopy height is < 10 m are allocated to the 10–20 m cohort (Figure 4C). The systematic 

error resulted in additional kurtosis for modeled canopy height when compared to the distribution of the 

response variable (compare Figure 4A and C). This effectively reduced the range of canopy height  

from 1.4–71.9 m for ALS measured canopy height to 7.9–60.7 m for modeled canopy height.  

Training random forest with response data that had been resampled to a uniform distribution resulted 

in a marginal reduction in overall model performance (RMSE = 33% at the 95th percentile confidence 

interval), however the predicted range of canopy height values increased to 6.7–63.3 m (Figure 3B). 

When an estimate of systematic error was accounted for the distribution of canopy height closely 

represents ALS estimate height (Figure 4). Furthermore, the range of canopy height was more 

representative of the response variable (0.5–68.0 m) and mean error for plots where canopy height  

was > 50 m and < 10 m were reduced by 4.2 m and 1.2 m, respectively (Figure 4D). Although error 

became independent of the response variable (Figure 3C), overall model accuracy increased only 

marginally when compared to the original output (RMSE = 30.4% (6.46 m) at the 95th percentile 

confidence interval) owing to the rescaling of correctly modeled plots. 

A map of canopy height derived from random forest after correcting for the systematic error is 

presented in Figure 5A. When ALS plots are aggregated into 10 km × 10 km cohorts and compared to 

the ALS dataset, error was less than ± 15% of ALS derived canopy height for 74% of the study area, 

less than ± 10% for 57% and less than ± 5% for 33%. Larger errors occur in the taller (south east corner) 

and shorter (central strip) forests in the study area (Figure 5B and C), which was consistent with the tails 

of the canopy height distribution being under represented. 

Generating a continuous map of canopy height at a 30 m resolution allows for the identification of 

features in the landscape, for example, caused by land-use and disturbance history. An area of mixed-use 

forest is presented in Figure 6 where the location, extent and regeneration of (clear-felled) logging 
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coupes are clearly evident. A map generated at a coarser spatial resolution would not identify land-use 

history with such fidelity. In Figure 6 example A, the poorer model performance for estimating the tails 

of the canopy height distribution is evident, as it would be expected that canopy height for a recently 

logged coupe would be closer to 0 m. 

 

Figure 3. ALS derived canopy height (H95) compared to model residual error for random forest 

models (HRF); constructed using 5000 ALS plots of untransformed response data (A), 5000 ALS 

plots where the response variable was resampled to a uniform distribution (B), and subtraction 

of systematic error from modeled canopy height (C). The coefficient of determination values 

(r2) were calculated from a linear regression of measured canopy height and model residuals. 

 

Figure 4. A comparison of the response variable distribution (A), range of Tasselled Cap 

wetness values (3 × 3 pixels) (B) and the distributions of modeled canopy height (random 

forest (C) and random forest-systematic error (D)) for different height classes. The solid 

arrows indicate the direction in which the random forest model output was “squeezed” by 

inequity in response variable distribution; the dashed arrow indicates the direction canopy 

height values were rescaled after correcting for systematic error.  
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Figure 5. Canopy height at a 30 m resolution (clipped to forest extent) generated using 

random forest−systematic error (A). Model output when compared to ALS derived canopy 

height (10 km × 10 km resolution) where error is represented as height difference (B) and 

percentage of height (C). Coordinate system is the projected Map Grid of Australia (MGA) 

zone 55. 

3.2. Validation with Inventory Data 

Further validation of model output was provided by comparing random forest generated canopy height 

with forest inventory plots from outside the extent of the ALS capture (Figure 7), the random forest model 

and random forest minus systematic error returns a RMSE of 29% (5.5 m) and 32% (6.3 m), respectively, 

at the 95th percentile confidence interval. Although the model output from random forest produces a 

more accurate result (Figure 7A), correcting for systematic error improved estimates of taller forest 

inventory plots in particular (Figure 7B). Figure 8 compares ALS and random forest derived canopy 

height with inventory measurements from within the ALS capture extent. A good statistical association 

is evident between inventory and ALS measured canopy height where ALS estimates canopy height with 

a RMSE of 11% (2.9 m). This highlights the suitability of ALS for measuring canopy height over a large 

area using a single metric, even where forest type is heterogeneous. The association between random forest 

estimated and inventory measured canopy height is similar to the comparison with forest inventory plots 

outside the ALS acquisition extent (RMSE = 29% (6.0 m)). Interrogation of the outlier in Figure 8 indicates 

this was the result of a single emergent tree that was significantly taller than the other trees used to 

estimate dominant canopy height, thereby increasing the ALS estimate of canopy height. 

3.3. Training and Validation of Random Forest Using Smaller Geographic Areas 

There was generally no improvement in model performance for random forest trained and validated 

on smaller geographic areas, when compared to the same area trained using the complete dataset (paired 

t-test; p = 0.4766). As there is no increase in model performance, this would indicate there is no upper limit 
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to modeled area size, as long as training data captures the variance in canopy height and predictor variables. 

For some locations a large error (> 10%) was observed from a random forest model trained on a smaller area 

when compared to the whole area model, this is attributed to a small training dataset (N < 150). 

Improvements in model performance were seen for an area where mean ALS derived canopy height  

was 37 m. Taller forests were generally under represented in the study-area wide model (Figure 4), 

therefore for areas where canopy height was consistently taller a local model yielded improved results. 

3.4. Simulating Disparate ALS Capture for Training a Random Forest 

When training the model with non-randomly distributed sample points (e.g., simulating aggregation of 

smaller ALS acquisitions) achievable accuracy reaches an asymptote at ~6% of the total forest area (Figure 

9). RMSE and variance in estimates is greater than when compared to a stratified random sample approach. 

It is suggested that the ~3% increase in RMSE is caused by random forest over-fitting to the training data, 

therefore extrapolation beyond the training areas is impeded [33]. The large estimate variance is due to the 

training data either not capturing the variance in the withheld sample (larger error), or the training data and 

withheld samples having similar canopy height distributions (smaller error). This is exemplified by RMSE 

of > 40% for a training sample derived from > 90% of the acquisition area (Figure 9), in these instances areas 

of taller and shorter forest plots were not included in the training cohort. 

 

Figure 6. A map of canopy height (30 m resolution) for an area of 16.5 km × 16.5 km, 

highlighting the land use history of an area of mixed-use forest (left). Three logging coupes 

that were clear-felled between 2002 and 2009 (A–C) and an area that has never been logged 

(D) are singled out (coupe extents outlined in black) (center column). Transects of  

canopy height across each coupe indicating regrowth since logging, coupe boundaries  

are also identified (right). Coordinate system is the projected Map Grid of Australia (MGA) 

zone 55. 
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Figure 7. A comparison of inventory measured canopy height (Hinv) with random forest 

(HRF) (A) and random forest corrected for systematic error (HRF-SE) (B) estimated canopy 

height, at 108 forest inventory plots. 

 

Figure 8. A comparison of inventory (Hinv) measured canopy height and ALS (HALS) and 

random forest-systematic error (HRF-SE) estimated canopy height, for 22 plots from within  

the ALS capture area. Vertical dotted lines link the same plot estimated with ALS or  

random forest. 
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Figure 9. Error in canopy height estimates when constructing random forest models from 

ALS data selected to represent a combination of a number of disparate (non-random) 

acquisitions. Model output was validated with ALS plots from outside the training area. For 

comparison (see boxplot), the results from bootstrapping (N = 50) random forest trained with 

a random stratified (by IBRA bioregion) sample from across the whole study area (~18% of 

forested area) is included. 

4. Discussion 

This manuscript demonstrates a method for assessing canopy height, over a large area, where forest 

structure is heterogeneous and canopy height ranges from 0–70 m, using freely available predictor data 

and in an open source computing framework. Forest canopy height was modeled from satellite imagery 

and ancillary data with a two-stage approach, where ALS data captured over 18% of the study area was 

used to train the ensemble regression tree model, random forest. Two validation approaches were used, 

both of which indicate a good agreement between measured and modeled canopy height  

(RMSE ≤ 31% at the 95th percentile confidence interval). Model error is at the upper limit of acceptable 

error as stipulated by the European Space Agency (ESA) in the upcoming BIOMASS project when 

estimating forest biomass from canopy height [86]. However, the ESA target resolution for a canopy 

height product is much coarser (200 m) than the one presented in this study (30 m).  

Previous studies have used regression and machine learning techniques to model canopy height, however 

these studies have been limited to forests with a maximum canopy height < 30 m or plantations. For example, 

Mora et al. [19] used high spatial resolution imagery to estimate canopy height for a 7000 ha area of conifer 

forest, reporting errors of 21% using a k-Nearest Neighbor method. Using a segmented Landsat image to 

estimate height over 707,000 ha of coniferous forest, Wulder and Seemann [25] reported a standard error of 

3.3 m. Applying random forest, Ahmed et al. [38] and Cartus et al. [24] estimated canopy height with an 

RMSE of ≤ 3.5 m and < 1.7 m for managed coniferous and eucalyptus forests, respectively. When using 

regression tress to classify plots in height classes ranging from 0 to > 50 m, Peterson and Nelson [41] 
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significantly underestimated canopy height for plots > 50 m when compared to inventory data. A 

comparison of model output (resampled to 1 km) with the Simard et al. [26] global canopy height product 

reveals discrepancies between the two approaches of up to ± 20 m over tall and short forest. 

The capture or ALS over large areas is still uncommon and previous studies have shown that, over 

relatively homogeneously forested landscapes, acceptable results can be obtained from a capture of < 1% 

of the forest area [25]. If a wall-to-wall ALS acquisition is unrealistic, a sample cohort could be created 

by combining a number of smaller (existing) acquisitions. Results for this study area would suggest that 

RMSE reaches an asymptote when ALS is acquired over ~6% of forested area. However, a non-random 

sample returned a larger error when compared to a stratified random sample, even when comprised of 

plots from over a relatively large area. It is suggested that with a targeted ALS sampling strategy, total 

area acquired could be reduced. However, this would require detailed a priori knowledge of forest 

structure or segmentation of a synoptic predictor dataset to infer forest structure variability [87]. 

Systematic error was apparent in the tails of modeled canopy height distribution, a similar systematic error 

was evident in other studies that used random forest to model canopy height and biomass [28,39,41]. Two 

methods were tested to reduce the error; a resampling of the response variable to a uniform distribution 

and subtracting an estimate of the systematic error component from modeled output. The latter technique 

proved most successful in recreating the range of canopy heights evident in the training data. However, 

the transformation is non-discriminate when rescaling canopy height values and therefore inevitably 

introduced noise to the modeled output (e.g., rescaling values correctly modeled by random forest). This 

is evident from there being a minimal overall improvement in model performance after subtracting the 

modeled error component.  

Overall, reflectance predictor variables were far more important in the model than other data sources. This 

would suggest that disturbance has a far bigger influence on determining canopy height than underlying site 

condition or climatic processes that constrain maximum canopy height. Mascaro et al. [33] found the 

addition of coordinate variables within the model greatly improved accuracy when estimating biomass, 

however in this instance this was not the case. The preference of reflectance based model drivers may 

also indicate that the complex set of environmental variables that limit canopy height are not captured 

within the datasets used, although the low spatial autocorrelation of model error may suggest otherwise. 

Furthermore, the resolution of the ancillary datasets were generally much coarser and required resampling, 

therefore these variables would not have adequately captured the within pixel variance. It should be noted 

that the specific variables and their relative importance will not be universally applicable across all forests 

outside of the study area, or in previous or subsequent years [88]. For example, previous and subsequent 

years would have to be treated as independent and therefore new models created for each [89]. 

By far the most important variable was the Tasselled Cap (TC) wetness feature, in particular the mean 

value calculated for a kernel size of 3 × 3 Landsat TM pixels (90 m × 90 m). Calculating a mean value 

over a kernel, as opposed to individual pixel values, limits the impact of pixel level noise [7]. Variable 

importance calculated for 50 km × 50 km sub areas, across a wide range of forest types and 

environmental gradients, also consistently ranked TC wetness as the most important variable. The TC 

wetness feature is driven by contrast between the visible and infrared and short wave infrared 

wavelengths, highlighting moisture gradients in a scene [67]. This would indicate that the canopies of 

taller, denser forests contain more moisture (owing to decreased temperatures and increased 

evapotranspiration) and shorter forest canopies are more arid, a paradigm that fits the environmental 
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gradients of the study area [57,61]. Previous studies have highlighted the strong association between forest 

structure and the TC wetness feature [8,22] or middle and short wave infrared wavelengths [28,90]. 

However, a linear regression of TC wetness (3 × 3 pixels) and canopy height returns a fairly weak 

statistical association (r2 = 0.35), highlighting the requirement for a more complex statistical approach. 

Although successful results were obtained, there are a number of potential sources of error worthy of 

discussion. For example, there is up to two years between ALS and Landsat TM acquisition and up to five 

years between ALS capture and plot measurements. An assessment of forest inventory plots that have 

been revisited (a total of 60 state wide) reveals that absolute mean change in canopy height is ~0.5 m 

per annum. This would suggest that changes in canopy height are minimal at plots that have not been 

affected by fire or logging in the interim years. Another potential source of error is the limited extent of 

the ALS capture that was restricted to the riparian zone. Vegetation composition, and therefore structure, 

is known to differ from non-riparian areas, such as comprising a lower proportion of Eucalypt species [91]. 

However, ALS transects were the same width along the entire reach of the river and therefore the 

proportion of riparian vegetation within the sample decreased in the upper catchments. The strong 

statistical association of forest inventory data from outside the ALS acquisition extent (and therefore 

away from riparian vegetation) with modeled canopy height would indicate that the impact of the limited 

sample extent was negligible. The narrow transect width also reduces the number of ALS plots falling 

within logged coupes or managed plantations, this is a result of a 200 m wide riparian retention strip 

around all water courses [92]. These management practices are therefore potentially poorly represented 

in the model e.g., clear-felling in Figure 6. 

The analysis presented in this manuscript was achieved using an open source computing framework, 

in addition, model predictor variables are publically available with a global coverage. Therefore, if 

training data is available (e.g., canopy height measurements from ALS or forest inventory) the presented 

methodology could be easily adopted by scientists and land management agencies who wish to map 

canopy height over large areas. Furthermore, with the planned launch of the Global Ecosystem Dynamics 

Investigation (GEDI) space borne LiDAR mission in 2018, the opportunity to replace costly ALS or 

inventory acquisitions with a freely available and spatially continuous sampling method is presented 

(within the temperate and tropical latitudes) [93].  

5. Conclusions 

This study presents a method for estimating canopy height at a large-area (i.e., millions of hectares) 

scale at a 30 m resolution. Application of this method was demonstrated across 2.9 million hectares of 

heterogeneous forest, comprising a broad range of forest types from open woodland to temperate 

rainforest, where canopy height ranged from 0–70 m. Canopy height was estimated using a two-stage 

approach, firstly a random forest ensemble regression tree model was trained with ALS derived canopy 

height, canopy height estimates were then upscaled to the large area using the synoptic datasets. This 

was achieved utilizing existing ALS data (i.e., not a bespoke acquisition) in conjunction with synoptic 

medium resolution freely available satellite imagery (e.g., Landsat Thematic Mapper (TM) and 

Moderate Resolution Imaging Spectroradiometer). Root mean square error in estimated canopy height 

was ≤ 31% (~5.6 m) when validated with (a) cross-validation of ALS derived canopy height and  

(b) a network of forest inventory plots from outside the ALS extent.  
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Systematic error was evident in model output where taller and shorter forest plots were under and 

overestimated, respectively. This was corrected for by subtracting an estimate of systematic error, 

derived from a linear regression of model residuals, from model output. It should be noted that correcting 

for systematic error did not improve overall model estimates, as plots closer to the mean canopy height 

were incorrectly rescaled. It is a modelers prerogative whether to estimate broad trends (e.g., using the 

random forest output) or more accurately attribute outlier values (e.g., subtracting an estimate of 

systematic error). The model was predominantly driven by reflectance data, in particular the Landsat 

TM Tasselled Cap transformed wetness feature. This would suggest that in the study area disturbance is 

the primary constraint on canopy height. 

The method framework is designed to be easily adopted by land management agencies. It was shown 

that the combination of disparate ALS acquisitions (i.e., a non-random sample) covering ~6% of the 

forested area could be used to successfully estimate canopy height, although results were slightly worse 

than for a random stratified sample of the entire study area. In the absence of suitable ALS data, the use 

of forest inventory plot data to train the random forest model is suggested, if the inventory plot network 

is sufficiently representative. Alternatively, the planned Global Ecosystem Dynamics Investigation 

(GEDI) space borne LiDAR will offer a near global sampling of forest structure and furthermore will be 

freely available. This, coupled with the scalability of random forest, suggests application of the technique 

at a continental or global scale would be entirely feasible. 
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