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Abstract: Monitoring unstable slopes with terrestrial laser scanning (TLS) has been 

proven effective. However, end users still struggle immensely with the efficient 

processing, analysis, and interpretation of the massive and complex TLS datasets. Two 

recent advances described in this paper now improve the ability to work with TLS data 

acquired on steep slopes. The first is the improved processing of TLS data to model 

complex topography and fill holes. This processing step results in a continuous topographic 

surface model that seamlessly characterizes the rock and soil surface. The second is an 

advance in the automated interpretation of the surface model in such a way that a 

magnitude and frequency relationship of rockfall events can be quantified, which can be 

used to assess maintenance strategies and forecast costs. The approach is applied to 
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unstable highway slopes in the state of Alaska, U.S.A. to evaluate its effectiveness. 

Further, the influence of the selected model resolution and degree of hole filling on the 

derived slope metrics were analyzed. In general, model resolution plays a pivotal role in 

the ability to detect smaller rockfall events when developing magnitude-frequency 

relationships. The total volume estimates are also influenced by model resolution, but were 

comparatively less sensitive. In contrast, hole filling had a noticeable effect on magnitude-

frequency relationships but to a lesser extent than modeling resolution. However, hole 

filling yielded a modest increase in overall volumetric quantity estimates. Optimal analysis 

results occur when appropriately balancing high modeling resolution with an appropriate 

level of hole filling. 

Keywords: point cloud; surface modeling; laser scanning; lidar; change detection;  

rockfalls; geohazards 

 

1. Introduction 

The management of slope hazards (e.g., rockfalls, landslides) along transportation corridors and in 

metropolitan settings poses a significant challenge to public officials. Slope hazards are not only 

costly, but they present a significant threat to life in many parts of the world [1]. Remote sensing 

technologies such as terrestrial laser scanning (TLS, also known as terrestrial lidar) show promise for 

the rapid assessment of unstable cliffs. Several studies have successfully utilized TLS for slope 

stability assessments and monitoring. Jaboyedoff et al. [2] and Abellán et al. [3] provide a detailed 

review of applications, benefits and challenges of lidar for landslide and rock slope stability studies. 

Kemeny and Turner [4] evaluated the use of laser scanning for highway rock slope stability analysis 

and found that TLS offered several advantages compared with traditional techniques, including safety, 

accuracy, access, and analysis speed.  

Multi-temporal datasets acquired using TLS technology enable detailed change analyses through  

time [5–20]. These repeated surveys enable engineers and scientists to understand the progressive 

patterns of failures and discern the influence of environmental conditions [21–27], which lead to those 

failures. Comparisons of each TLS survey enable the quantification of erosion rates and surface 

deformation, which can be used to analyze the pattern and propagation of displacements that have 

taken place over the monitoring period. For example, Lato et al. [28] demonstrate how rockfall hazards 

along transportation corridors can be monitored using mobile laser scanning (MLS) on both  

railway- and roadway-based systems. In both situations, MLS provided increased efficiency, safety, 

and the ability to investigate hazards compared with TLS. 

Researchers such as [17,26,29–32] have then used these multi-temporal datasets in order to 

establish magnitude–frequency relationships to show the frequency distribution of large to small 

volumes of material release. Such distributions provide important information needed to support landslide 

hazard and risk assessment [31,32]. Tonini and Abellan [33] present a novel approach for rockfall detection 

from repeat lidar surveys by generating clusters based on a K-nearest neighbors algorithm with clutter 
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removal capabilities. The authors of [34] build on the process developed in [33] with a semi-automatic 

approach to calculate volumes of each rockfall cluster to generate magnitude–frequency relationships. 

To perform meaningful volumetric change analyses to develop these magnitude-frequency 

relationships, point clouds are commonly triangulated to produce continuous surface models. 

However, surface modeling methods can be difficult to employ on surfaces exhibiting high amounts of 

topographic variability and morphologic complexity. Further, the point sampling on the cliff surface is 

not uniformly distributed. Many modeling techniques (e.g., [35–39]) have been developed for artificial 

objects, which are generally smooth and transitions are well defined. Such approaches often do not 

translate well to creating topographic models where surface changes can vary significantly across 

small distances [40]. This, in turn, leads to topological artifacts. For accurate volumetric change 

analysis, surfaces must be free of intersecting triangles, have consistent facet normal orientations, and 

be free of data gaps (i.e., holes) in the areas to be analyzed. Processing procedures to generate such 

topologically correct models often require significant manual editing, which can be difficult and 

cumbersome. Moreover, while a variety of hole filling approaches exist, they are often dependent on 

the modeler’s interpretation, and thus include an element of subjectivity. The influence of these 

techniques on the resulting volumetric analyses is often not considered or clearly documented.  

Objectives  

This paper builds on previous work to present a new, fully automated approach to perform change 

detection and identify individual rockfalls on complex rock slopes. Specifically, the paper introduces: 

1. A streamlined approach to analyze time series point clouds to isolate individual failure clusters 

(i.e., rockfall events) on the rock slope, to quantify volumes of each cluster, and to generate 

magnitude–frequency relationships from those clusters.  

2. An evaluation of the influence of surface modeling parameters such as the degree of hole filling 

and modeling resolution on the resulting magnitude–frequency relationships, rockfall detection, 

and overall erosion volume computations. In this study, resolution is defined in terms of the 

model resolution, rather than actual sampling resolution. 

While an interesting, semi-automated approach for rockfall clustering [33,34] has recently been 

developed, the proposed approach is an alternative method of performing this analysis that is fully 

automated. Additionally, [33,34] do not consider the influence of hole filling and modeling resolution 

on the resulting magnitude-frequency relationships, but rather work directly on the point cloud.  

The proposed approach was applied to several study sites with active, unstable rock slopes in the 

State of Alaska, U.S.A. Results from three representative study sites are presented to demonstrate the 

effectiveness of this approach. However, it is worth noting that the level of automation developed by 

this study has enabled this procedure to efficiently evaluate rockfalls along much larger sections of 

highway than what can be presented in this paper.  

2. Methodology 

Figure 1 presents an overview of the methodology, and details for each step will be discussed 

briefly in this section. Figure 1A describes the process for model creation, and Figure 1B provides the 
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steps for the model analysis. For change analysis, the baseline surface model is created from a point 

cloud from a previous survey. However, this model is created simultaneously with the new model 

(following the same process) such that they are both generated in the same reference plane. When a 

corridor is highly sinuous, it must be tiled into smaller segments to apply this approach for optimal 

results since the data will no longer be reasonably projected to a plane. However, such tiling is 

common in most lidar processing over long distances.  

 

Figure 1. Flowchart of key steps of the methodology (BFP = Best Fit Plane). (A) Model 

creation; (B) Model analysis. 

2.1. Data Acquisition 

Figure 2 shows the location of the study sites within Alaska, U.S.A. Three surveys were completed 

at each site during the summers of 2012, 2013, and 2014. A summary of equipment used, estimated 

accuracies and typical point sampling intervals is provided in Table 1. This section will describe the 

details of each survey because the scope and equipment used varied between surveys. 

 

Figure 2. Topographic relief map showing the location of Study Sites A, B and C in Alaska, 

U.S.A. (Shaded relief map courtesy of the Earth Systems Research Institute, ESRI).  
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Table 1. Summary of survey data collected including typical accuracies and point sampling 

intervals on the cliff surface. 

Survey  

Date 
Equipment Used 

Site A Site B Site C 

Accuracy  

(3D-RMS, m) 

Typical Point 

Sampling  

(3D, m) 

Accuracy  

(3D-RMS, m) 

Typical Point 

Sampling  

(3D, m) 

Accuracy  

(3D-RMS, m) 

Typical Point 

Sampling  

(3D, m) 

September, 

2012 

Terrapoint Titan mobile 

laser scan system, Leica 

ScanStation 2, Leica 

GNSS1200 receivers, 

Leica 1201 total station 

0.10 0.05 0.10 0.05 0.09 0.08 

August, 2013 

Riegl VZ-400 TLS, Nikon 

D700 camera, and Trimble 

R8 GNSS receiver 

0.04 0.01 0.04 0.01 0.04 0.04 

July, 2014 

Riegl VZ-400 TLS, Nikon 

D700 camera, and Trimble 

R8 GNSS Receiver 

0.04 0.01 0.04 0.01 0.04 0.04 

The 2012 survey (Figure 3) was completed using a mobile laser scan system with a few 

supplemental TLS setups in locations with tall cliffs. The mobile scan surveys were completed for two 

major roadways in Alaska: a 16 km segment of Glenn Highway (State Route 1) and a second 16 km 

segment of Parks Highway (State Route 3). Multiple passes were completed to increase point density 

as well as verify the accuracy and consistency of each pass since the canyon limits the line of sight to 

GPS satellites.  

 

Figure 3. Perspective view of a sample point cloud for a 1 km section of the Parks 

Highway obtained with combined TLS and MLS data. The dashed line highlights Study 

Site C. 
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The 2013 and 2014 scan surveys were completed for relatively shorter segments each encompassing 

approximately 15 km in total for both Parks and Glenn Highway. These scans were obtained using a 

stop-and-go scanning approach utilizing field procedures very similar to those presented in [27] where 

the scanner is mounted on a wagon rather than a tripod for efficient data collection. Inclination sensors 

are also included in the scanner to correct for the scanner being out of plumb when conducted from the 

wagon platform. A digital SLR camera and a survey grade GPS receiver were mounted above the 

scanner with calibrated transformation offsets (translations and rotations) to the scanner origin. 

Atmospheric conditions (temperature, pressure, and relative humidity) were recorded and input into 

the laser scanner during data acquisition to correct distance measurements.  

During the 2013 and 2014 data acquisition, scan positions were typically spaced at 50–80 m apart 

along the highway and covered a 360 degree horizontal field of view and a 100 degree vertical view  

(−30 degrees to +70 degrees from the horizontal plane).The resolution of the scans varied between 

0.02 and 0.05 degree sampling increments. Each position was occupied for at least 20 min to enable 

sufficient time for Rapid Static GPS data logging. Six photographs encompassing a 360° view were 

acquired at each scan position.  

2.2. Processing 

Geo-referencing is a critical step to relate data from different dates, particularly in areas with active 

tectonic movement. Because each scan is normally recorded in its own coordinate system, one scan 

survey is not relatable to another unless it is transformed into a common coordinate system (Alaska State 

Plane Coordinate System Zone 4, North American Datum 1983 (2011) Epoch 2010.00, Geoid 12A). 

This process is generally accomplished through a least squares, rigid-body coordinate transformation, 

determining both rotations and translations along orthogonal axes, which results in the minimization of 

the sum of the square errors between point pairs (either from pre-marked targets or matching points in 

the point cloud).  

For the static scans collected in the 2012 survey, reflective targets were placed throughout the scan 

scene, which were linked with a total station to ground control points established with RTK GPS. The 

coordinates of the base station were established using the static processing through the National 

Geodetic Survey Online Positioning User Service, OPUS [41]. The mobile lidar data was processed 

using proprietary software with direct geo-referencing from the GPS, Inertial Navigation System 

(INS), and scanner sensors on the mobile lidar unit.  

For the 2013 and 2014 surveys, both the baseline and in-situ scans were geo-referenced following 

the methodology presented in [27,42] using the program PointReg. The methodology was developed 

for efficient surveying in dynamic environments (e.g., coastal areas, active landslides) where survey 

control can be difficult to establish and maintain. Although other geo-referencing procedures can be 

implemented, such as the approach implemented in the 2012 survey, the PointReg approach can 

minimize field time, since targets are not required [43].  

During the field data collection, the operator obtains most of the geo-referencing transformation 

parameters needed for scan alignment. Translation vectors (X, Y, Z) were obtained for the scanner 

origin using the co-acquired GPS data (20 min for each scan), which were processed in OPUS-RS. 



Remote Sens. 2015, 7 12109 

 

 

These coordinates were corrected both for offsets between the scanner origin and GPS antenna 

reference point and accounting for a slightly out of level setup, typically < 2°–3°.  

The leveling information (rotations about the X (roll) and Y (pitch) axes) is determined using 

internal inclination sensors in the scanner, avoiding the need to level the scanner. Silvia and Olsen [44] 

highlight the importance of these sensors and their ability to provide quality data for scan  

geo-referencing. The azimuthal values for scan positions are initially estimated using a digital compass 

and then converted into a rotation about the Z-axis (yaw). This angle is then improved using the least 

squares solution presented in Olsen et al. [42], which calculates the optimal rotation of a scan about the 

Z-axis (centered at the scan origin) to best fit with nearby points in neighboring scans.  

The methodology utilized does not require each epoch to be registered together since the each 

survey is independently georeferenced into the same coordinate system. [27,42] have shown that the 

methodology provides consistent results between multi-temporal surveys. In addition, the  

geo-referencing was validated by examining concrete structures, roadways, guardrails, and other 

objects present in the scene that were observed to be stable with time.  

Following geo-referencing, point cloud data is typically filtered [13] to eliminate unwanted features 

(e.g., passing vehicles, vegetation, reflections from wet surfaces, moisture in the air). Filtering 

processes vary substantially in the degree of user interaction required and the type and quantity of 

noise present. These data were all removed manually using Leica Cyclone and Maptek I-Site software 

by creating polygon windows around unwanted objects. Vegetation noise on the cliff face were also 

removed to the extent possible. Areas of dense vegetation with minimal ground points were simply 

removed entirely from the dataset. However, areas with sparse vegetation were carefully edited in 

smaller cross sections so that ground points were preserved. This editing results in a cleaned point 

cloud (P) with n points in the form:  

[ ] 1,2, ,P X Y Z for i n
i i i i
    

(1) 

Note that each point also has a mapped RGB color and Intensity (return signal strength) value as 

well; however, given that the majority of the analysis is focused on the geometric coordinates for 

change detection, these parameters will only be periodically discussed in this paper when relevant. 

2.3. Surface Generation 

Once a cleaned point cloud has been obtained, the next step is to determine the optimal plane for the 

triangulation, which is obtained by solving an eigenvalue problem to determine the best fit plane 

through the dataset (e.g., [45]). The plane is defined by a normal vector (N = {Nx, Ny, Nz}) and the 

centroid coordinates of the original dataset (Pc). (Note that for computational efficiency, one can use a 

fraction of the points in the dataset to estimate the normal of the plane, if desired).  

Next, the necessary transformation to align the best fit plane with the XY plane can be represented 

as rotation about a vector or a quaternion [46,47]. The orientation is established such that the Z′ axis is 

positive away from the rock slope so that erosion values will be negative. The vector ρ is first 

calculated by the cross product: 

N z   (2)  
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where z = {0,0,1}, represents a normalized vector for the Z axis (i.e., normal of the XY plane). The 

angle of rotation (α) can be found with the cross product, which can be simplified with z as: 

 1sin   (3)  

The resulting rotation vector and angle can then be represented as a quaternion [46] producing a 

rotation matrix, R, such that the transformed point coordinates can be calculated by: 

p RP P
ci i

   (4)  

Next, the minimum and maximum values for all points (p′) are found. The number of columns and 

rows for the grid structure with a cell size dimension of σ are calculated as: 

( (max p min p
x x
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(5)  

Each point (p′) is then subdivided into the square grid cells based on a spatial index IND: 

IND id id n
x yi colsi i

    
(6)  
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(7)  

Then, the centroid coordinates for each cell (j) are calculated from all m points within the cell: 

1

1

m
p p
c mj k

k
 



 
(8)  

Once centroids have been found for all cells, a hole filling operation can be completed to create 

interpolated points in cells with insufficient data. The specifics of the hole filling approach will be 

described in more detail in the next section. Following hole filling, the triangulation is then formed 

using the rules established in Olsen et al. [40] (Figure 4). In this approach, the positions of the 

centroids of four adjacent cells are evaluated to determine the appropriate connections to avoid 

intersections of triangles. Although there are five potential scenarios, only two triangulation patterns 

are needed, which can quickly be determined with a point in triangle test. This method proves to be 

very efficient because the cell centroids are structured and simple to connect with these rules.  

 

Figure 4. Triangulation scheme adopted from Olsen et al. [40]. 
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After triangulation, the centroids can then be transformed back to the original coordinate system: 

1
i

P R p Pc ci
    

(9)  

Similar to averaging the X, Y, Z coordinates to determine the centroid coordinates, RGB color or 

Intensity values can be averaged for all points in the cell for texture mapping and further analysis. 

2.4. Hole Filling 

Data gaps (holes) are inevitable in any laser scan data because of obstructions that block the line of 

sight to the objects of interest. In particular, for this study, scanning needed to be completed relatively 

close (approximately 20–40 m) from the cliff face so that the equipment could be set up adjacent to the 

highway for accessibility. This close proximity to the cliff results in several portions of each scan 

being oblique to the surface, which results in more holes from topographic obstructions compared to 

scanning from vantage points with a better view further back from the cliff surface [27]. (It is noted 

that this problem can be somewhat mitigated by spacing scans closer; however, the increased number 

of setups reduces the amount of coverage possible in a given time window). Passing vehicles also 

resulted in several holes on the cliff surface in each scan.  

Holes in the model were filled by generating a thin plate spline (TPS) from the cell centroid points 

in cells surrounding the holes (Figure 5). Because the TPS technique is computationally inefficient 

across large point cloud datasets, a TPS is computed for a small window of the dataset at a time. 

However, note that large holes require a larger window size to be filled. To avoid poor fits in areas 

with sparse data, 50% of the cells in the window were required to have data in order for holes within 

that window to be filled. Also, to minimize artifacts and edge effects, holes are only filled in the center 

cells of the window. For purposes of this study, the window size is defined as the number of pixels 

included in each direction outward from the center pixel that are included for the hole filling. For 

example, with a window size of 5 (11 × 11 cells), all cells with data in the 11 × 11 cells were used to 

compute the TPS, but cells with holes were only filled in the center 6 × 6 cells (Figure 5). Note that the 

interpolated points are not used in the next overlapping window to compute the TPS. 

 

Figure 5. Schematic illustrating the hole filling process using thin plate spline  

(TPS) interpolation. 

Legend
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The computation of TPS was adopted from [48,49]. The TPS can be calculated from the centroid 

points for each cell within the search window through a linear equation system based on minimizing 

bending energy in the TPS. A regularization parameter (β ≥ 0) can control how tightly the TPS fits the 

input points. The solution of this linear equation system results in local influence weights (w) and 

coefficients (a) that can be used in the following interpolation equation to determine the z′ coordinate 

for the cells without data:  

( , ) ' '
1 2 3

1

M
z x y a a x a y wU P P x y

yi xi
ii

 
 
 
 

          


 
(10)  

where x′ and y′ are the coordinates at the center of the cell without data in the transformed coordinate 

system. U is a weighting function based on the distance between the cell without data and each of the 

points in the subdatset that are used to compute the TPS. 

2 log( ) 0(r)
0 0

r r rU
r









 
(11) 

Figure 6 shows an example of hole filling in a surface model generated at Site A using the approach 

described above. In this example, both large and small holes can be filled across even larger data gaps 

by increasing the window size for visualization purposes; however, as with any technique, 

interpolation errors across these extents could generate significant problems for volumetric estimates, 

particularly on gradually eroding slopes. Hence, some judgment is necessary for implementation. 

 

Figure 6. Example of hole filling for the 2014 surface model for Site A using a grid cell 

size of 0.05 m and window size of 20 (i.e., TPS search window of 41 × 41 cells (2 × 2 m) 

but hole fill size of 21 × 21 cells (1 × 1 m)). Inserts B and C show more detail of the TPS 

effectively filling both large and small holes. The filled holes are shown in magenta while 

scan data are shown with the natural RGB color.  

~9 m 
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2.5. Change Detection and Individual Failure Isolation 

When a surface model for each epoch (e.g., epoch 1 and epoch 2) is generated, an estimated change 

grid can be computed simply by differencing the z′ values within each cell.  

' '
2 1

z z
j j j

D    
(12)  

where Δj is the 1D change in cell j orthogonal to the best fit plane of the data. Note that the baseline 

surface must be created using the same transformation as the new surface for this approach to work.  

Following creation of a change grid, the next step is to isolate individual failure clusters  

(i.e., rockfalls). The change grid itself contains some noise and can be somewhat difficult to interpret, 

especially for small failures. To improve the clustering of points, an averaging filter (e.g., [50]) is 

applied to smooth the change grid using a roving window (e.g., focal statistics) approach:  

Δj-ave = averagefilter(Δj, ε) (13) 

where ε is the smoothing window size, in cells. A value of ε = 2 (5 × 5 cell window) was used in this 

study. This filter reduces noise present in the change grid reducing spurious values. It also helps group 

smaller clusters that are adjacent to one another that otherwise might go undetected, especially when 

they are close to the threshold value.  

If a significant amount of geo-referencing errors relative to the change of interest are suspected, the 

average difference between all cells of the surface models can be subtracted from each cell to remove 

those potential biases. However, this adjustment should be used with caution because it can remove 

any indication of overall change at the site. Also, to account for potential geo-referencing errors, a 

significant change grid [51,52] is created where change below a threshold (γ) is ignored.  

1
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D



 

(14)  

A recommended value for γ is the estimated RMS geo-referencing error. For this study, we used  

γ = 0.05 m, which slightly overestimates the amount of error present in the scans. A smaller threshold, 

which would enable detection of smaller rockfall events, could be used if more labor-intensive  

geo-referencing techniques were implemented for small sites; however, given that the overarching 

study focuses on long segments of highway, such techniques are not practical and often result in 

propagated error of a similar or greater magnitude over such long distances [27]. 

A connected components algorithm [53,54] was then utilized on the significant change grid (δj) in 

order to isolate individual failure clusters and assign each cell to a cluster. For the erosional events, 

values of δj = 0 and 1 were considered as background. For accretion events, a second run was 

completed with values of δj = 0 and −1 considered as background.  

The connected components’ algorithm implements a two-pass method. The first pass iterates 

through the grid from left to right and top to bottom examining the four neighboring grid cells found to 

the left and above the current grid cell. A series of conditions are used to generate a preliminary cluster 

ID for each cell contingent on the values of the current and neighboring cells. Following the 

assignment of an ID for a given grid cell, the occurrence of any adjacent cells with differing IDs are 
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recorded in a lookup table for later use (second pass). The first pass results in all non-background cells 

receiving a label; however, contiguous regions might still contain multiple cluster IDs.  

After utilizing a convention that favors the minimum ID for a region, a second pass is conducted in 

which the lookup table is used to consolidate cluster IDs. The resulting connected components grid 

represents each contiguous cluster of cells with a unique cluster ID which can be queried for latter 

processing and analysis. A cluster ID of 0 was reserved for background points. Note that a cluster can 

still contain holes within it if they are not filled as long as the cluster is able to connect around the 

hole. However, if a cluster is completely divided by a hole, it will be separated into two clusters.  

Once the clusters are defined, the volume of each cluster,  , can be calculated as: 

1
3 1 1

T
V A

s t


 D 

 
(15)  

where At = the surface area of each triangle t connected to cell centroid point s, and Δs is the change in 

cell z. η is the total number of cells belonging to that cluster and T are the total number of triangles 

connected to each cell centroid. Note that the volumes are calculated based on the original change grid 

rather than the smoothed change grid, which is utilized solely to improve the results of the clustering.  

3. Results  

Change detection-derived magnitude–frequency relationships were developed for several rock slope 

study sites located in Alaska, USA. The selected study sites provide an ideal test-bed setting due to 

their high rates of rockfall activity, accessibility, and the relative absence of vegetation. The rock 

slopes at the study sites were created as part of construction for two major roadways: Glenn and Parks 

Highways. The extreme climate of the region (and associated freeze-thaw cycling), steep artificial cuts, 

and unfavorable structural controls within the rock masses together contribute to high rates of rockfall 

at the sites. Where employed, rock-fall mitigation measures at the sites consist of roadside catchments 

that are periodically cleared as part of maintenance operations. The rock slopes themselves are free of 

directional stabilization measures such as rock bolts or mesh drapery. Close to 20 sites were evaluated 

in this study; however, for brevity, the discussion below will focus on three rock slopes having 

different geologic characteristics. Table 2 summarizes general characteristics for each site. 

Table 2. Summary characteristics for each site. 

Site 
Geographic 

Coordinates 

Length 

(m) 

Typical Exposed 

Cliff Height (m) 

Typical 

Slope 
Geologic Description 

A 
61.805737°N 

148.228876°W 
90 8 >60° 

Fine- to medium-grained, moderately weathered grey 

and tan hard sandstone of the Chickaloon formation 

B 
61.809820°N 

148.193481°W 
110 11 50° 

Soft argillaceous rocks (carbonaceous siltstones) of 

the Chickaloon formation that have been intruded by 

hard, well-indurated mafic sills (basalt) 

C 
63.756959°N 

148.899051°W 
340 170 45° 

Heavily metamorphosed schists and phylittes, 

intruded by large volcanic dikes at some locations. 

Highly weathered, medium strong muscovite-quartz 

and micaceous-quartz schist.  
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3.1. Study Site A 

Study Site A is a 90 m section of steeply inclined (>60 degrees) road cut located along the Glenn 

Highway near milepost 85.5 (Figure 7). The exposed cliff is approximately 8 m in height, but ranges 

from 4–10 m in height. The southern portion of Alaska is located within an active subduction zone, 

and the geology of the state is largely a product of ongoing terrain accretion [55]. The Glenn Highway 

generally follows a glacially cut valley through the Matanuska and Chickaloon Formations, which 

consist of sedimentary materials of continental origin that were eroded during uplift of local  

mountain ranges and subsequently despotized in the region [56]. Rock at Site A consists of fine- to 

medium-grained, moderately weathered grey and tan hard sandstone of the Chickaloon formation. The 

rock mass includes three approximately orthogonal discontinuity sets that produce well-defined ~10 to 

~30 cm rock blocks. Seepage was not observed during the fieldwork. Mass wasting at the site occurs 

through release of these blocks, leading to numerous small rockfalls.  

 

Figure 7. Photograph of rock slope study Site A showing three well-defined  

discontinuity sets.  

 

Figure 8. Results from an approximately 35 m section of exposed rock at Site A (0.05 m 

cell size surface model from 2013).  

~3 m 

~4.5 m 
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Figure 8 shows a sample triangulated shaded relief surface model with all holes filled for Site A. 

This model was generated with a 0.05 m cell size and adequately preserves the blocky rock mass 

features present across the slope. Analysis indicated that 13% (2014) to 15% (2013 data) of rock slope 

surface area was comprised of filled holes. Figure 9 shows the rockfall clustering results with 

resolutions ranging from 0.01–0.50 m without hole filling. As expected, the size of the change clusters 

increases for the coarser resolution models. 

 

Figure 9. Rockfall clustering results between 2013 and 2014 with varying model 

resolution including (A) 0.01 m; (B), 0.05 m; (C) 0.10 m; (D) 0.20 m; and (E) 0.50 m for 

Site A (90 m). The grey indicates portions of the cliff that did not experience significant 

erosional change. (Note that these sections may have experienced accretion). Larger white 

sections indicate holes or spacing between centroid points. Other colors represent a rock 

cluster where material has dislodged from the cliff. Each cluster is given an ID and colored 

based on that ID with a repeating pattern so that they can be distinguished from one 

another. For simplicity of rendering, the point cloud was used rather than the surface model. 

~13 m 
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Figure 10 presents cumulative magnitude–frequency relationships derived from the clustering 

analysis of both the filled and unfilled models. The form of the magnitude–frequency relationships are 

similar to those derived for other rock slopes (e.g., [57,58]), and include characteristic “rollover” for 

small volumes as well as linearity in log-log space across several orders of magnitude of volume. The 

rollover phenomenon in landslide magnitude–frequency relationships has been attributed to data 

censuring that occurs when survey resolutions are approached [59]. The deviation from log-log 

linearity for large volumes has been noted by others (e.g., [57,58]) and attributed to the temporal 

censuring that occurs over relatively short monitoring time periods.  

  

(a) (b) 

Figure 10. Comparison of magnitude–frequency curves (plotted based on exceedance) for 

various resolutions and with hole filling (a, HF) and without hole filling (b, NHF) for Site 

A between 2013 and 2014. 

Figure 11a shows the estimated erosion volume calculated at different resolutions for models with 

and without hole filling. Note that for this analysis, hole filling window sizes varied with resolution 

and were selected such that small holes were filled, but larger holes that required excessive 

interpolation were not filled. The differences between erosion volumes calculated using models with 

holes filled versus those without hole filling generally increase as cell size decreases, and reach a 

maximum when the cell size equals ~0.025 m (the maximum feasible modeling resolution given the 

acquisition sampling of this dataset). The pronounced decrease in erosion volume (hole-filled model) 

that occurs for smaller cell sizes is attributed to survey resolution effects.  

Figure 11b compares the influence of the search window size on the computed volumes considering 

holes filled in both models as well as considering those fill in the baseline model only. At small 

window dimensions, the computed volumes are highly sensitive to the size of the search window.  
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(a) (b) 

Figure 11. (a) Comparison of calculated erosion volumes for various resolutions and with 

(HF) and without (NHF) hole filling for Site A between 2013 and 2014; (b) Comparison of 

rockfall volumes for Site A with varying hole filling search window size. Computations are 

based on a cell size of 0.05 m. The plateau indicates that the majority of the holes for Site 

A were small and filled with a window size of 15 cells (0.775 m). 

3.2. Study Site B 

Study Site B (Figure 12) is located along the Glenn Highway near milepost 87 and consists of an 

~11 m high road cut, inclined at approximately 50 degrees. The exposed rock slope is approximately 

110 m in length. The site includes soft argillaceous rocks (carbonaceous siltstones) of the Chickaloon 

formation that have been intruded by hard, well-indurated mafic sills (basalt) [56]. A major anti-dip 

(i.e., dipping into slope, with favorable structural control) discontinuity set is defined by the orientation 

of the contact with the intrusive basalt unit. This dominant set, along with other irregular joint sets in 

the sill material, produce rock fragments having maximum dimensions in the range of ~20 to ~200 cm. 

The significant contrast in strength between the siltstone and sill (basalt) materials has resulted in 

differential erosion features including cantilevered overhanging rocks. No seepage was observed 

during the fieldwork. Mass wasting along the lower portion of the slope occurs through erosion and 

raveling of the soft siltstone unit. Within the upper portion of the slope, mass wasting occurs both 

through release of rocks defined by discontinuities in the sill materials, as well as through tensile 

fracture and collapse of portions of the cantilevered sill rock. 

Figure 13a shows a sample triangulated surface model with all holes filled (window size = 50 cells, 

or 2.5 m) for Site B. The model was generated with a 0.05 m cell size and effectively captures various 

overhanging features as well as abrupt transitions across the slope. Analysis indicated that 11% (2014) 

to 15% (2013 data) of rock slope surface area was comprised of holes. Figure 14 shows the rockfall 

clustering results with different window sizes for hole filling ranging from no holes filled to a window 

size of 50 cells (2.5 m).  
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Figure 12.  Photograph of overhanging rock at Site B. The crest-to-toe vertical height of 

the slope is approximately 11 m.  

 

Figure 13. Cont. 

a) East Section 

b) West Section ~20m 

~3m 
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Figure 13. Sample results of surface modeling (0.05 m resolution) from the 2014 survey of 

the exposed rock at Site B with holes filled for the (a) west and (b) east portions of the site; 

(c) Close-up wireframe model of a section for detail.  

 

Figure 14. Evaluation of the influence of varying the hole filling window size (ws) on the 

resulting rockfall clusters (2013–2014). Note that the figure uses the same coloring scheme 

as described in Figure 9 with grey representing areas of no significant erosion and white 

indicating holes in the dataset. For reference, this section is 110 m long. (A) no holes filled; 

(B) holes filled (ws = 5); (C) holes filled (ws = 10); (D) holes filled (ws = 20); (E) holes 

filled (ws = 50); 

~16m 

c) Close-up 

o 
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(a) (b) 

Figure 15. Comparison of magnitude–frequency curves (plotted based on exceedance) for 

various resolutions and with (a, HF) and without (b, NHF) hole filling for Site B between 

2013 and 2014. 

  

(a) (b) 

Figure 16. (a) Comparison of calculated erosion volumes for various resolutions and with 

(HF) and without (NHF) hole filling for Site B between 2013 and 2014. Note that the hole 

filling window size was adjusted for each cell size analyzed such that it filled smaller 

holes, but did not fill excessively large holes; (b) Comparison of rockfall volumes for Site 

A with varying hole filling search window size. For this analysis, a constant cell size of 

0.05 m was used. Note that at a window size of 50 (2.5 m), all holes are filled so the 

volume does not vary significantly below that.  

Figure 15 shows the cumulative magnitude–frequency relationships derived from the clustering 

analysis of both filled and unfilled models. The form of the magnitude–frequency relationships are 
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similar to those presented earlier for Site A. Figure 16a shows the estimated erosion volume calculated 

at different resolutions for models with and without hole filling. As with Site A, differences in erosion 

volume generally increase as cell size decreases. Figure 16b compares the influence of the search 

window size on the computed volumes considering holes filled in both models as well as considering 

those fill in the baseline model only. 

3.3. Study Site C 

Study Site C (Figure 17) is 340 m in length and located along the Parks Highway near milepost 239. 

It consists of a ~125 m-high road cut inclined at approximately 45 degrees. The site is situated within 

the Alaska Range, a mountain chain that extends west-to-east across southern Alaska, which creates a 

drainage divide between the Cook Inlet and the Yukon lowlands [60]. The seismically active Denali 

fault is located approximately 30 km south of the site. Rocks in the area generally consist of heavily 

metamorphosed schists and phylittes that have been intruded by large volcanic dikes at some  

locations [61]. They are highly weathered, medium strong muscovite-quartz and micaceous-quartz 

schist. This strongly foliated schist is highly anisotropic and includes widely spaced (~2 m), irregular 

joint sets. At one location at the site, the slope has been intruded by a steep trending volcanic dike. 

Seepage was not observed during the fieldwork, although concentrated surface flow was witnessed at 

several locations on the rock slope immediately following a major precipitation event. Mass wasting at 

the site occurs through a combination of erosion and raveling of soft materials along the surface of the 

slope, as well as through release of small to intermediate sized rocks (~10 to ~70 cm) leading to 

numerous rockfalls.  

 

Figure 17. Photograph of Site C. This photograph captures approximately 0.5 km of the 

slope along the highway. The highway and river are obscured by the lower trees. 

~75 m 
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Several surface models were developed from the 2012 dataset (including both mobile and static 

lidar scans) and compared to reflectorless coordinates obtained across the slope using a total station. 

Table 3 summarizes the difference between total station coordinates and the derived surface models. 

Figure 18 shows the locations of those points as well as a sample model with 0.25 m resolution.  

Figure 19 shows the rockfall clustering results with different window sizes with no holes filled.  

Figure 20 presents cumulative magnitude–frequency relationships derived from the clustering 

analysis of both filled and unfilled models, while Figure 21 presents the estimated erosion volume 

calculated at different resolutions for models with and without hole filling. These figures indicate that 

Site C generally exhibits trends that are comparable to Sites A and B, however, at a much  

larger magnitude.  

Table 3 Comparison of surface models and reflectorless total station coordinates scattered 

across the cliff face for the 2012 dataset.  

3D Error Statistics (m) 
Model Resolution 

10 cm * 25 cm 50 cm 

Minimum −0.123 −0.156 −0.347 

Maximum 0.091 0.119 0.161 

Average −0.013 −0.009 −0.007 

Standard Deviation 0.035 0.044 0.073 

Root Mean Square (RMS) 0.037 0.045 0.074 

3D Accuracy (95% Conf.) 0.062 0.074 0.122 

Number of Samples 50 * 58 58 

* Note that for the 10 cm model, the point density was too low on the upper cliff 

section to produce a satisfactory model for comparison with those points. 

 

Figure 18. Perspective view of the distribution of comparison points obtained with a total 

station to the 2012 surface model (25 cm resolution). 

~50 m 
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Figure 19. Map of individual failure clusters between the 2013 and 2014 surveys at Site C 

(0.10 m resolution). These clusters are colored using the same scheme described in Figure 9 

where grey indicates no significant erosion and white represents holes.  

  

(a) (b) 

Figure 20. Comparison of magnitude–frequency curves for various resolutions and with  

(a, HF) and without (b, NHF) hole filling between 2013 and 2014. 
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3.4. Comparison of Sites 

Figure 22 compares magnitude–frequency relationships for Sites A, B, and C. In contrast to the 

previous plots, which are presented as the number of events exceeding volumetric thresholds  

(i.e., cumulative plots), the relationships in Figure 22 were created by binning rockfall events based on 

equal increments (on a log scale) of volume to determine the frequency. Inverse power-law regressions 

were completed for each site considering only rockfall events >0.001 m3 (Figure 22a) and rockfall 

events >0.01 m3 (Figure 22b).  

Because Site C is significantly longer than Sites A and B, the magnitude–frequency relationships 

for each site were normalized to an equivalent 1000 m2 section for the comparison. For this analysis, 

the 0.05 m resolution models with and without holes filled were utilized. The magnitude–frequency 

relationships shown in Figure 22 can be directly used in risk assessment of rock slopes (e.g., [57,58]). 

 

Figure 21. Comparison of calculated erosion volumes for various resolutions and with 

(HF) and without (NHF) hole filling at site GG239 between 2013 and 2014. 

  

(a) (b) 

Figure 22. Cont. 
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(c) (d) 

Figure 22. Comparison of magnitude-frequency relationships (2013 to 2014, 0.05 cm 

holes filled models) and power law regressions for each site, normalized to an equivalent 

1000 m2 area based on events >0.001 m3 (a) with and (b) without hole filling and events 

>0.01 m3 (c) with and (d) without hole filling. 

4. Discussion 

Sites A and B are located in a generally similar geologic setting, while Site C is located in distinctly 

different terrain. Despite the different settings, Figure 22 shows that, when normalized by area, all sites 

have similar magnitude–frequency relationships. Still, there is some variation observed between the 

sites. Perhaps most notably, Site C had significantly more events detected and a higher total volume of 

debris released during the observation period (~3 times higher debris volume when normalized by 

surface area). We attribute this to the marginal stability of Slope C, which was over-steepened during 

highway construction and today exhibits a very high rate of slope activity, evidenced by the need for 

frequent debris removal to maintain the catchment at the toe of the slope. In addition to generating a 

large volume of debris, Site C also produced a much wider range of rockfall fragment sizes, especially 

for larger volumes. We believe this is related to large slope height of the rock slope (~125 m), which 

allows large rock blocks to “daylight” and eventually fall from the slope. Sites A and B, in contrast, 

experienced fewer large volume failure events during the time period than expected based on the 

power law relationship. This may be a consequence of both the relatively short observation period  

(~1 year) and the relatively small slope heights (<10 m), which could impose kinematic constraints on 

large blocks within the rockmass. In either case, consideration of volume is important because rockfall 

runout distances generally increase with the mass of the debris being released [62]. Finally, it is worth 

noting that although the three sites exhibit generally similar normalized magnitude–frequency 

characteristics, from a practical perspective, Site C poses a much greater hazard to the highway simply 

because of its large rock face.  

Comparison and detection of very small failures (<0.01 m3) remains a challenging task unless 

modeled at very high resolutions (e.g., 0.025 cm). For example, Figure 22 shows weaker inverse power 

law relationships when considering failures with volumes between 0.001 and 0.01 m3 for a 0.05 m 

model. At Sites A and B, these smaller events were not detected resulting in significant differences in 
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power law regression fits. At Site C, in contrast, there is actually a slight improvement to the fit when 

considering these smaller events. This difficulty in detecting these small events occurs because: 

(1) Each scan is individually linked to GPS coordinates which have an accuracy of a few 

centimeters in ideal conditions,  

(2) Obtaining sufficient resolution and complete coverage across the entire cliff face to model such 

features is difficult, especially for tall or complex cliffs. While operators can control the desired 

angular resolution, there is always a tradeoff between the amount of coverage achievable and 

the desired level of detail (e.g., resolution). TLS systems do not capture resolution uniformly 

across the cliff surface due to the fact that it samples on angular increments, resulting in denser 

spacing close to the scanner and sparser further from the scanner. This wide distribution of 

sampling presents challenges when attempting to model the surface systematically for analysis. 

(3) There are noise present in each scan, which can be on the order of a few cm at oblique angles 

(e.g., [63]), or from small vegetation on the cliff surface that is difficult to remove, and  

(4) Holes will occur at different locations in the surveys at each epoch because it is very difficult to 

reoccupy the same positions when performing surveys of this scope.  

Fortunately, smaller failure volumes (<0.01 m3) correspond to surface erosion (e.g., raveling), 

which does not pose a significant slope hazard and is typically neglected when assessing rock slope 

hazards. More rigorous field procedures and dense networks of targets could be implemented to enable 

improved detection of these failures at smaller individual sites as has been conducted in other studies, 

if needed; however, these techniques are not practical for long sections such as these because they are 

laborious to employ and also suffer from significant error propagation over large distances.  

It also is difficult to isolate all individual rockfall events at highly active sites. For example,  

at Site C, many rockfall events were clustered together on some of the channel-like portions of the slope 

(i.e., “chutes,” Figure 19). To improve these results, surveys must be completed at higher  

temporal resolutions.  

Model resolution plays a pivotal role in the volumes calculated as well as the magnitude–frequency 

relationships. Recall that in this study, resolution is defined in terms of the model resolution, rather 

than actual sampling resolution. Figures 11 and 16 demonstrate that higher resolutions (lower cell size) 

are able to account for more erosion; however, the 0.01 m models underestimated the volume  

(Figures 11a and 16a). Even with hole filling, the volume estimates for the 0.01 m models were 

markedly low because it is right at the typical acquisition resolution for Sites A and B. Note that 

although 0.01 m represents a typical sample spacing, there is significant variability in the actual 

spacing of the points due to sensor noise and topographic effects. Hence, there were insufficient cells 

with sample points to produce a satisfactory TPS (e.g., more than 50% of the cells in the window were 

required to have data), unless that criteria was relaxed. The 0.01 m models could also underestimate 

the volume because holes can be created in the rockfall scars themselves. 

As the cell size increases, there are fewer holes and the volume estimates converge with those for 

the models where holes are not filled. Decreased resolution smoothes out smaller features on the 

surface (Figure 9), but also can help reduce noise in the surface that is present at higher resolutions due 

to the inability to remove short vegetation. This smoothing at lower resolution then effects the ability to 

detect change and results in smaller events being undetected (Figures 10a and 15a). In turn, this leads to a 
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lower estimated total volume at each site with decreased resolution (Figures 11a, 16a, and 21). Hence, 

the minimum detectable volume is primarily a function of resolution. 

Figures 10, 15 and 20 all show significantly different magnitude–frequency relationships with 

varied resolution, particularly for detecting smaller volumes. Generally, the relationships are fairly 

similar for events greater than 0.1 m3. However, at Site A (Figure 10), the 0.01 m model without hole 

filling was unable to detect those larger events unless holes were filled. The 0.01 m model with holes 

filled produced a very similar magnitude–frequency relationship to the lower resolution models for 

volumes >0.01 m3. The 0.01 m model at Site B performed much better.  

These smaller rockfall events cumulatively can be a significant portion of the total volumes. Sites A 

(Figure 11a) and C (Figure 21) were not very sensitive to model resolution for overall volume 

computations (except at high resolutions that resulted in significant data gaps). Site B, in contrast, 

showed higher dependence on resolution for the erosion volume computations (Figure 16a). This is 

because Site B contains several rock overhangs, which produce abrupt transitions in the terrain model. 

At this site, the resolution selected will significantly influence the ability to model those overhangs. 

Slight deviations in the models at rock overhangs between epochs result in overestimated change 

estimates because these overhangs are nearly perpendicular to the plane in which the data are modeled.  

An additional comparison was made in Figures 11b and 16b with filling holes in the baseline 

models only. There is a modest increase observed in volume estimates when holes are filled in the 

baseline surface as well as the model surface. While variance in the volumes is observed from the 

analysis based on modeling resolution, this variance is relatively small when considering the results 

from a highway risk assessment perspective (e.g., the difference between 20 and 28 m3 at Site A is 

insignificant when compared with the volume of 3900 m3 determined for Site C). Hence, the 

fluctuations in volume estimates across the resolution ranges are not as substantial as the natural 

variability that exists based on the rock structure across large spatial extents.  

Nonetheless, hole filling by TPS works well for creating realistic surface and the models proved to 

be consistent with the topography. As evidenced in Figures 10, 15, and 20, there are relatively similar 

magnitude–frequency relationships for a given resolution whether holes were filled or not. However, 

hole filling clearly improved the ability to capture larger events that were sometimes split in the 

models without hole filling. The search window size should be set sufficiently large to ensure most 

holes are filled to avoid underestimating volumes (Figures 11b and 16b); although, it should be 

recognized that a large search window will significantly increase computation time.  

Interestingly, in Figure 14 the rockfall clustering results are similar with different levels of hole 

filling. Even when large holes were filled (e.g., ws = 50), the 2014 data matched the 2013 data well, as 

evidenced by the fact that many of those holes did not result in new artificial clusters being identified. 

This indicates that the TPS is reasonably estimating the surface, even when interpolating across these 

large holes. Indeed, the hole filling was important to better define the shapes and sizes of the existing 

clusters, particularly for grouping smaller clusters that were likely part of the same event.  

In analyzing Figure 22, the power law magnitude–frequency relationships fit the data trends well 

across multiple orders of magnitude. However, the power law relationship tends to provide a weaker fit 

for smaller rockfalls (e.g., <0.01 m3 for sites A and B). Interestingly, for Site C, the predictive, power 

law magnitude–frequency relationship holds until considering volumes that are less than 0.0001 m3 

(beyond what is shown in Figure 22). This threshold volume is essentially at the practical limits of the 
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modeling (0.05 m) and survey techniques (0.05 m significant change threshold based on the estimated 

geo-referencing accuracy). In contrast, Sites A and B exhibit fewer small rockfalls than predicted 

based on the power law relationship. This may be due in part to censoring as survey resolutions are 

approached, but it also suggests that the hole filling method is not generating substantial artificial 

rockfalls. The correlation coefficients in Figure 22 indicate that hole filling generally leads to 

improved magnitude frequency fits as well (except for site B where hole filling reduces the 

effectiveness of capturing small failures). Still, it is possible that there may be some artificial rockfalls 

“detected” in the clustering analysis. Because of their small size, these smaller rockfalls are difficult to 

reliably verify with field or photographic techniques.  

Overall, the clustering results for larger events compare well with a qualitative analysis of  

high-resolution photographs between epochs. Additionally, at Site A more rockfalls were detected on 

the west portion of the site than the east portion. The west portion was observed to be more active in 

field visits and tended to have substantially larger talus piles in the toe region adjacent to the roadway 

compared to the east portion of the site. Moreover, it is clear that the west portion is more actively 

eroding, evidenced by the presence of large, unstable overhangs, and increased surface roughness.  

Change detection itself can be difficult when working with data sources of varying quality. For 

example, the 2012 mobile lidar dataset was coarser than the static TLS data, so it was difficult to 

compare. Reasonable models of a few centimeter resolutions were obtainable with TLS, but the MLS 

typically only supported models with resolutions coarser than 0.1 m. Within static scans, the change 

analysis results are improved if scans are acquired with similar resolutions and from similar vantage 

points as best as possible, so that holes occur on the same parts of the slope. Unfortunately, this can be 

difficult to do from a practical perspective for monitoring large sections, which was of interest in the 

overarching study.  

5. Conclusions  

Rock slopes pose costly and life threatening hazards in many parts of the world. TLS volumetric 

change analyses enables the development of relationships between rockfall volume (magnitude) and 

frequency of release (e.g., [57,58]) for risk assessment of these slopes. However, existing surface 

modeling methods can be difficult to employ, particularly on surfaces exhibiting significant 

morphologic complexity. In this paper, we present a new, fully automated approach to perform change 

detection and identify individual rockfalls on complex rock slopes. This new approach provides a 

streamlined method to analyze time series point clouds to isolate and quantify individual failure 

clusters (rockfall events) on the rock slope to generate magnitude–frequency relationships.  

The approach was applied to several highly active, rock slope study sites in Alaska, U.S.A., 

resulting in magnitude–frequency relationships consistent with established theory (R2 > 0.7) at each 

site. The effects of hole filling and model resolution on the analysis were also evaluated. The TPS hole 

filling technique successfully created complete surface models that are fully consistent with the 

topography. The hole filling technique was also effective in capturing larger rockfall events that were 

erroneously separated into several smaller events using the traditional approach of not filling holes. 

The combined hole-filling and change-detection compared well with field observations and high-

resolution photographic records from the study sites.  
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In general, model resolution plays a pivotal role in the ability to detect smaller rockfall events when 

developing magnitude–frequency relationships. The minimum detectable rockfall volume was found to 

be a function of the modeling resolution, assuming that sufficient resolution has been obtained during 

acquisition. The total volume estimates are also influenced by model resolution, but were 

comparatively less sensitive. In contrast, hole filling had a noticeable effect on magnitude–frequency 

relationships but to a lesser extent than modeling resolution. However, hole filling yielded a modest 

increase in overall volumetric quantity estimates.  

Hence, it can be concluded that optimal results in estimating both magnitude–frequency 

relationships and volumetric quantities occur when appropriately balancing high modeling resolution 

with an appropriate level of hole filling. 
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