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Abstract: Due to the spatiotemporal variations of complex optical characteristics, accurately 

estimating chlorophyll-a (Chl-a) concentrations in inland waters using remote sensing 

techniques remains challenging. In this study, a weighted algorithm was developed to 

estimate the Chl-a concentrations based on spectral classification and weighted matching 

using normalized mutual information (NMI). Based on the NMI algorithm, three water types 

(Class 1 to Class 3) were identified using the in situ normalized spectral reflectance data 

collected from Taihu Lake. Class-specific semi-analytic algorithms for the Chl-a 

concentrations were established based on the GOCI data. Next, weighted factors, which were 

used to determine the matching probabilities of different water types, were calculated 
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between the GOCI data and each water type using the NMI algorithm. Finally, Chl-a 

concentrations were estimated using the weighted factors and the class-specific inversion 

algorithms for the GOCI data. Compared to the non-classification and hard-classification 

algorithms, the accuracies of the weighted algorithms were higher. The mean absolute error and 

root mean square error of the NMI weighted algorithm decreased to 22.63% and 9.41 mg/m3, 

respectively. The results also indicated that the proposed algorithm could reduce 

discontinuous or jumping effects associated with the hard-classification algorithm. 

Keywords: normalized mutual information; chlorophyll-a; optical classification; weighted 

algorithm; GOCI  

 

1. Introduction 

Lake eutrophication, which is characterized by algal blooms, has become one of the most serious 

environmental issues around the world [1,2]. Not only do algal blooms cause the degradation of aquatic 

ecosystems, but the toxins produced by the algae also threaten human and animal health [3]. As a basic 

indicator of phytoplankton biomass, the chlorophyll-a concentration plays a significant role in indicating 

the status of algal pollution and the trophic condition of a water body [4,5]. 

The Chl-a concentration can be estimated using remote sensing data due to its unique spectral  

properties [4,6]. For Case I water (i.e., open oceans), algorithms based on blue and green spectral 

reflectances can be used due to the relatively simple optical properties [4,7]. However, optical properties 

of Case II waters (i.e., turbid coastal and inland waters) are influenced by complex optical components 

such as phytoplankton, total suspended matter (TSM) and colored, dissolved organic matter (CDOM); 

thus, the blue-green algorithms may not be suitable for this type of water [8]. Due to this problem, effective 

semi-empirical algorithms using the near-infrared-red (NIR) and red spectral reflectances have been 

established to estimate Chl-a in Case II waters. In addition, commonly used algorithms, such as two-band 

and three-band algorithms, have been widely used for Case II waters in different regions [8–11]. 

Although various studies have assessed the potential of NIR-red algorithms to estimate the Chl-a 

concentration using satellite images in Case II waters [8,12], the results are usually obtained from the 

universal models that are separately established for different study regions or different seasons. 

However, the distribution of the relevant optical components is heterogeneous, and the optical properties 

of water vary due to human influence, wind speed and direction or the topography of the bed in the same 

body of water [4,5,13]. Therefore, it is difficult to use a single model to estimate the Chl-a concentration 

in optically complex water [14]. Algorithms based on universal models are defined as non-classification 

algorithms in this study. To address this problem, approaches based on water optical classification that 

were independent of time and region were developed to improve the inversion accuracy of the water 

quality parameters [15,16]. 

In recent years, hard classification, which classified the matching spectral reflectance to one specific 

optical type of inland waters and applied the class-specific retrieval algorithm to that type, was used to 

estimate certain water quality parameters (i.e., Chl-a, TSM) [4,5,17]. The main procedure usually 

included the in situ reflectance classification and remote-sensing reflectance matching. In the first step, 
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a feature-based method based on the diagnosable spectral characteristics and a supervised or 

unsupervised method based on the optical properties and biogeochemical parameters of water are common 

approaches for in situ water optical classification [14,18,19]. Then, optimum estimation models were 

separately established for each optical type. In the next step, the remote-sensing reflectance was matched to 

one specific optical type based on the spectral properties of each in situ optical class or the distance functions 

between the remote-sensing reflectance and the optical classes identified from the in situ reflectance [4,13]. 

The class-specific inversion algorithm was subsequently applied for each remote-sensing reflectance. 

Previous studies indicated that the estimation accuracies of Chl-a or the TSM estimation could been 

improved based on the hard-classification approach in optically complex waters [4,15,18]. However, due 

to the fuzzy boundaries between the different classes, similar spectral reflectances might belong to different 

water types, or the spectral reflectance might not be completely consistent with the specific reflectance 

spectra of each type, resulting in different estimations of the Chl-a or TSM concentration [16]. The hard 

classification algorithm could produce discontinuous or jumping effects of the estimation results [15,16]. 

Although Moore applied blending algorithms to avoid discontinuities or the jumping effect in the coastal 

waters of a UNH lake, and Zhang showed that accuracies are improved based on a soft classification 

using the in situ data [15,20], further study of the classification, the weighted matching methods and the 

application results is still required. 

In this study, normalized mutual information was proposed for the in situ reflectance classification 

and the satellite remote-sensing reflectance class matching. NMI is an improvement of the mutual 

information (MI), which is used to measure the statistical dependence of random variables to avoid 

certain misclassifications [21,22]. Studies have shown that NMI can be applied as a similarity 

measurement to classify the spectral reflectance [21,23,24]. Thus, a procedure, which is based on the 

NMI criterion for the in situ reflectance classification, the GOCI reflectance weighted matching and the 

weighted inversion algorithms were developed to estimate the Chl-a concentration in inland waters. 

Therefore, in this study, a NMI weighting algorithm was proposed to estimate the Chl-a concentration 

based on the optical classification and weighted retrieval algorithms. The primary objectives of this study 

were: (1) to identify the optical water types using the criterion function NMI based on the in situ spectral 

reflectance; (2) to estimate the Chl-a concentration using a weighted algorithm based on weighting 

factors and to assess the accuracy of the proposed algorithm by comparison with the non-classification 

and hard classification algorithms; and (3) to demonstrate the potential of the proposed algorithm using 

GOCI data. 

2. Materials 

2.1. Study Area 

Taihu Lake is the third largest freshwater lake in China with a surface area of 2338 km2 and an average 

depth of 1.9 m [25]. The lake (30°55′–31°33′N, 119°54′–120°36′E), which is located in the Yangtze 

River Delta, is an important water source for Jiangsu, Zhejiang and Shanghai Provinces [4,5]. Due to its 

advantageous location, the Taihu Lake Basin has been one of the most developed areas in China [26]. 

However, with the rapid economic development occurring in China recently, a significant amount of 

nutrients from industrial wastewater, domestic wastewater and chemical fertilizers are being directly 
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transported into Taihu Lake, resulting in a water environment in the lake that is excellent for algae; the 

resulting spatial distribution of algae has been shown to be heterogeneous [4,27]. In recent years, algae 

blooms have occurred with increasing frequency and are distributed over larger areas. The lake has 

gradually become one of the three most eutrophic lakes in China. 

2.2. In Situ Data 

2.2.1. Samples Collection and Datasets Used 

Field surveys were performed in October and November 2010; March, September, and December 

2011; and May 2012. Surface water samples were recorded by a handheld Global Positioning System 

(GPS). At each sampling station, field spectra were measured and water samples were collected with 

Niskin sampling bottles. Then, all of the water samples were taken back to the laboratory under freezing 

conditions; Chl-a and TSM analyses were then conducted within one day. After deleting outliers, 30, 52, 

48, 31 and 71 samples were, respectively, obtained separately for research during the months mentioned 

above. To establish and assess the class-specific inversion algorithm of the Chl-a concentration, all of 

the samples were randomly divided into two parts. One fourth of the samples were used to validate the 

NMI weighted algorithm, while the other 170 samples were applied to the calibration of the Chl-a NIR-

red estimation models. 

2.2.2. Reflectance Measurements 

Measurements of the reflectance spectra (Rrs) were performed in the 350–1050 nm spectral range 

with a 1.5 nm spectral interval using an ASD FieldSpec spectroradiometer (Analytical Devices, Inc., 

Boulder, CO). Based on the method introduced in references [27,28], the instrument was positioned with 

restricted angles to minimize the effects of sunglint and the shading of ships. The azimuth view angle 

was between 90°–135°, and the zenith view angle was approximately 30°–40° [29]. After the 

measurement of the water radiance, the instrument was rotated upwards by 90°–120° to obtain the 

skylight radiance. During this measurement, the upwelling radiance from the water surface (Lsw), the 

standard gray reference board radiance (Lp) and the skylight radiance (Lsky) were recorded five times for 

each sample. Then, the remote sensing reflectances (Rrs) could be calculated as: 

( )p sw sky

rs

p

L rL
R

L






  (1)

 

where 𝜌𝑃 is the reflectance of the standard gray reference board and r represents the reflectance of the 

skylight at the air/water interface, which was assumed to be 0.026 [5].  

2.2.3. Laboratory Analysis 

Surface water samples were collected for the measurement of the Chl-a, TSM, ISM (inorganic 

suspended matter), OSM (organic suspended matter) concentrations and aCDOM(λ). Chl-a was extracted 

from the GF/C filters with ethanol (90%) at 80°C. Its concentration was then corrected for pheophytin 

pigments and determined spectrophotometrically [4,30,31]. The concentrations of TSM were determined 

by filtering the water samples on pre-combusted Whatman GF/F filters, which were then dried at 105 °C 
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for 4 h. The filters were then re-combusted and re-weighed to measure the ISM present. Then, the OSM 

was obtained based on the difference between the TSM and the OSM [4]. The aCDOM(λ) of each filtrate 

was measured by a spectrophotometer, and the procedure and calculation equation were detailed in [32] 

and [4]. 

2.3. Satellite Data 

GOCI images obtained on 3 September 2011 were used as the data sources in this study [33]. The 

geostationary satellite GOCI was launched in 2010 and provides images with a resolution of 500 m. The 

sensor includes 8 spectral bands, which are between 400 and 900 nm (Table 1), and the revisit period is 1 

hour (8:16 a.m. to 3:26 p.m.). Due to the high time resolution, GOCI data not only reduce the influence of 

clouds, but also provide data sources for short-term monitoring. To monitor dynamic variation of Chl-a 

concentration in inland waters, it is suitable to use GOCI data to study its spatial-diurnal distribution. 

Preliminary studies have shown significant potential for use in water quality parameters in turbid  

waters [8,34,35]. 

Table 1. Spectral bands of GOCI data. 

Band Central Wavelength (nm) Band Width (nm) SNR Type 

1 412 20 1000 Visible 

2 443 20 1090 Visible 

3 490 20 1170 Visible 

4 555 20 1070 Visible 

5 660 20 1010 Visible 

6 680 10 870 Visible 

7 745 20 860 NIR 

8 865 40 750 NIR 

Note: SNR indicates a signal-to-noise ratio. 

3. Methods 

The NMI weighted algorithm was developed to estimate the Chl-a concentration from GOCI data; 

Figure 1 shows the flowchart of the proposed algorithm. In the first step, the in situ Rrs were denoised 

and normalized before classification (Section 3.1). Next, the criterion function (NMI) was calculated 

between the pairwise normalized Rrs, and the 1-NMI was used as a distance function for Rrs classification 

(Section 3.2). Then, hierarchical clustering was applied to classify the in situ data (Class 1, Class 2, …, 

Class m) based on the distance function. The standard reflectance spectra of each class was calculated 

by the average of the spectra of Class i (i=1, 2, …, m ). After resampling the classified Rrs into the GOCI 

band, NIR-red models were established separately for the m types (Cchl-a,i,i=1, 2,…, m). Finally, 

weighting factors between the validation data and each class were calculated based on the NMI 

algorithm. The Chl-a concentration could be estimated by Cchl-a,i and the weighting factors of each type 

(Section 3.3). The accuracy of the NMI algorithm was assessed based on Section 3.4. 
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Figure 1. Flowchart of the estimation of Chl-a based on the NMI classification and the 

weighted algorithm. 

3.1. Pre-Treatment of Data  

3.1.1. Pre-Treatment of the In Situ Spectral Data 

Field measurements are often influenced by noise signals, which are primarily produced by 

environmental factors and instrument noise [36]. The noise may not only affect the features of the field 

spectra but may also cause errors in the results from the water quality parameters. Thus, to reduce the 

influence of noise, a wavelet analysis was implemented before the classification of the reflectance 

spectra [13,37]. The wavelet transform (WT) method is a popular denoising method that has been widely 

applied to spectral data [36,38]. This method, which represents the local characteristics of signals in both 

the time and frequency domains, allows functions to decompose raw data into different frequency 

components with different wavelet scales [38]. In addition, the target signal can be obtained from the 

raw spectra after wavelet decomposition and reconstruction. In this study, the raw spectra were smoothed 

using the db4 wavelet algorithm. 

Because the magnitude of the raw reflectance spectra is primarily related to the water clarity rather 

than the Chl-a and CDOM concentrations, and the measurement angles or the environment (e.g., 
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transient changes in the wind field) might also affect the absolute values of the reflectance during field 

measurements, spectral normalization was performed to reduce the internal spectral variation within 

each class and to realize the classification based on the optical quality. [4,13,37]. Consequently, each 

reflectance spectra, which were denoised using the db4 wavelet method, were normalized by its integral 

value prior to data classification [13,39]. 

3.1.2. Pre-Treatment of the GOCI Data 

The GOCI L1B images obtained on 3 September 2011 (images from 8:16 a.m. to 3:16 p.m.) were 

applied to map the spatial-diurnal distribution of the Chl-a concentration. The data were first processed 

using professional software (GDPS software: GOCI Data Processing System) for radiometric 

calibration. Then geometric calibration was performed using ENVI 5.0. Finally, the reflectance of GOCI 

was calculated using the 6S method (Second Simulation of a Satellite Signal in the Solar Spectrum) [8]. 

Atmospheric correction plays an important role in accurately estimating Chl-a concentration. 6S 

radiative transfer model is a simple and universal method for atmospheric correction. The method has 

been successfully applied to GOCI data for water quality parameters estimation in inland waters [8,17]. 

In this study, atmospheric correction was conducted by 6S method and in situ samples that were collected 

closest to the GOCI transit time were used for validation (Section 5.2). 

3.2. Spectra Classification and Matching Based on the NMI Algorithm 

MI is applied to measure the degree of dependence between two random variables and the information 

that one variable contains that is found in a second [24]. The basic property of MI is non-negativity, and 

higher values of MI always indicate dependent variables [21]. NMI is used in this study as the criterion 

function of the spectral classification and the weighted matching of remote-sensing images. The NMI 

value between each observed spectrum (or each pixel) and each water type is then assigned as a weighted 

factor of each Chl-a estimation algorithm. 

3.2.1. Normalized Mutual Information Theory 

In information theory and Shannon’s entropy theory, A={ak, k=1,..., n} and B={bk, k=1,..., n} are 

assumed to be two random variables. The MI of the variables can thus be expressed as [23,24]: 

( , ) ( ) ( / )I A B H B H B A   (2) 

where H(B) is the marginal entropy of variable B, which describes the uncertainty of variable B; H(B/A) 

is the conditional entropy, which measures the uncertainty of variable B when variable A is known; and 

I(A,B) is the MI of A and B: 

( ) ( ) log ( )B B

b B

H B p b p b


   (3) 

where 𝑝𝐵(𝑏) is the marginal probability density of b. The conditional entropy is: 

, ,( / ) ( , ) log ( / )A B A B

a A b B

H B A p a b p b a
 

   (4) 



Remote Sens. 2015, 7 11738 

 

where 𝑝𝐴,𝐵(𝑏) represents the joint probability density of the variables, and 𝑝𝐴,𝐵(𝑏 ∕ 𝑎) denotes the 

conditional probability of variables A and B. 

Based on the properties of entropy, the MI of variables A and B can also be expressed by the joint 

entropy H(A,B) and the probability density function: 

( , ) ( ) ( ) ( , )I A B H A H B H A B    (5) 

,

,

( , )
( , ) ( , ) log

( ) ( )

A B

A B

a A b B A B

p a b
I A B p a b

p a p b 




  (6)

 

In addition, two small values of the variable entropies and the independence of variables might lead 

to small values of MI; thus, an NMI that could avoid the influence of marginal entropies H(A) and H(B) 

was used as the similarity measure [21]: 

2 ,

( ) ( )

I A B
NMI

H A H B




（ ）
 (7) 

3.2.2. Classification and Matching Algorithms 

For the in situ Rrs classification, the NMI values that are used as similarity measurements are first 

calculated between pairwise normalized Rrs. The NMI value of “0” indicates that the pairwise Rrs is not 

similar, while the value of “1” represents complete similarity. Therefore, the value of 1-NMI can be 

applied as a distance function for Rrs classification. Subsequently, the normalized Rrs can be classified 

into homogeneous types (i.e., Class 1, Class 2, …., Class m) using hierarchical clustering with the 

distance function 𝐷𝑖𝑠(𝑖, 𝑗) [19]. 

The equation of the distance function is shown below: 

2 ( ), ( )
( , ) 1 ( , )  1-

( ( )) ( ( ))

nrs nrs

nrs nrs

I R i R j
Dis i j NMI i j

H R i H R j
  



（ ）
 (8) 

where 𝐷𝑖𝑠(𝑖, 𝑗) represents the distance function of Rrs; 𝑅𝑛𝑟𝑠(𝑖)
 
and 𝑅𝑛𝑟𝑠(𝑗) are the normalized Rrs of 

i and j; 𝐼(𝑅𝑛𝑟𝑠(𝑖), 𝑅𝑛𝑟𝑠(𝑗))  is the MI value of 𝑅𝑛𝑟𝑠(𝑖) ; and 𝐻(𝑅𝑛𝑟𝑠(𝑖))  and 𝐻(𝑅𝑛𝑟𝑠(𝑗))  are the 

marginal entropies of 𝑅𝑛𝑟𝑠(𝑖)
 
and 𝑅𝑛𝑟𝑠(𝑗). 

In addition, the criterion function NMI can also be applied to match the reflectance of the remote-

sensing images and the in situ Rrs. However, due to the complex optical properties of inland waters and the 

fuzzy boundaries between different water types, the observed spectra might not be completely consistent 

with the standard reflectance spectra of each type. Therefore, a weighted matching method based on NMI 

was developed in this study. The standard reflectance spectra of each type 𝑅𝑛𝑟𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅, 𝑖 ∈ [1, 𝑚] , which 

represent the average reflectance spectra of each type, can be acquired after classification of the 

normalized Rrs. To perform the matching algorithm on multi-spectral data, 𝑅𝑛𝑟𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅ are first resampled 

with the spectral response function for the GOCI spectral bands 𝑅𝑒 𝑅𝑛𝑟𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅. The similarity measure 

between 𝑅𝑒 𝑅𝑛𝑟𝑠,𝑖
̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ and the reflectance of the GOCI data S𝑅𝑛𝑟𝑠 are then calculated by Equation (9), 

and the weighted factors of each water type are determined with Equation (10): 



Remote Sens. 2015, 7 11739 

 

,

,

2 Re ,
( )

(Re ) ( )

nrs i nrs

nrs i nrs

I R SR
SatNMI i

H R H SR




（ ）
 (9) 

1

( )
( ) 100%

( )
m

j

SatNMI i
pNMI i

SatNMI j


 


 

(10) 

where 𝑆𝑎𝑡𝑁𝑀𝐼(𝑖) represents the similarity measure between the GOCI data and class i, 𝑝𝑁𝑀𝐼(𝑖) is 

the weighted factor (matching probability) for class i, and m is the classification number. 

3.3. NMI Weighted Algorithms for Chl-a Estimation 

A variety of models based on red and NIR spectral properties have been successfully developed and 

applied to the estimation of the Chl-a concentration in turbid productive waters [9,11,40]. Considering 

the spectral bands of GOCI images, a two-band algorithm was used to estimate the Chl-a concentration 

in inland waters. The two-band relationship between the Chl-a and the NIR-red spectrum can be 

expressed as [40–42]: 

2 1- ( ) / ( )Chl a Rrs Rrs   (11) 

where 𝑅𝑟𝑠(𝜆1)  and 𝑅𝑟𝑠(𝜆2)
 
are the remote-sensing reflectances at wavelengths 𝜆1  and 𝜆2 , 

respectively; and 𝜆1 is in the red region, in which is approximately the phytoplanktonic absorption peak 

(660–690 nm), while 𝜆2  is in the NIR region, where the reflection peaks of phytoplankton  

(700–730 nm) are typically found. Based on the semi-empirical algorithms and the central wavelengths 

of the remote sensing images, the corresponding bands of the expressions are bands 5, 6 and 7 for GOCI. 

Based on Equation (11), optimum NIR-red models were separately established for each optical type. 

Therefore, the weighted algorithm for the estimation of Chl-a is given by: 

,

1

( ( ) )
m

chl a chl a i

i

C pNMI i C 



   (12) 

where 𝐶𝑐ℎ𝑙−𝑎,𝑖  is the Chl-a estimated from algorithm i, 𝑝𝑁𝑀𝐼(𝑖) is the weighted factor (i.e., matching 

probability) for class i, and m is the classification number.
 

3.4. Accuracy Assessment  

To evaluate the NMI weighted algorithm, the mean absolute error (MAEmean-chla) and the root mean 

square error (RMSEchla) were calculated as follows: 

, ,

1 ,

1 n
mea i est i

mean chla

i mea i

C C
MAE

n C





   (13) 

2

, ,

1

1
( )

n

mea i est i

i

RMSE C C
n 

   (14) 

where Cmea,i is the measurement of Cchl-a; Cest,i is the estimated value of Cchl-a; and n is the number of samples. 
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4. Results 

4.1. Variations in the Optical Properties of Each Water Type 

After denoising and normalization, samples were classified into three types based on the NMI 

classification method (Figure 2). Figure 2a–c shows the normalized Rrs of each type; and Figure 2d–e 

shows the averaged normalized Rrs and the averaged raw Rrs of each type. In combination with  

Table 2, there were significant differences among the three types based on the spectral shape and the 

corresponding water parameters.  

Compared with Classes 2 and 3, Class 1 waters showed two significant peaks near 562 and 710 nm, 

and a distinct valley near 675 nm. The reflectance value was higher than the other types in the range of 

710 to 900 nm. The difference in the spectral shape was also displayed in bands 6 through 8 in the GOCI 

data between Class 1 and the other two classes. Class 1 waters showed the highest value of Cchl-a, and 

the averaged ratio of Cchl-a and CTSM of this class reached 1.95; therefore, Class 1 waters were primarily 

affected by the Chl-a concentration. 

   

(a) (b) (c) 

   

(d) (e) (f) 
  

Figure 2. Three types of normalized reflectance spectra based on NMI: (a) Class 1;  

(b) Class 2; (c) Class 3; (d) average normalized reflectance spectra of each type;  

(e) average raw reflectance spectra of each type; and (f) normalized spectra resampled to the 

GOCI bands. 

The peak and valley shown in Class 2 were not as significant as those in Class 1 in the NIR range, 

and the peak of Class 2 was near 700 nm. In this Class, the reflectance value was lower than Class 3 in 

the range of 400 to 600 nm, while the reflectance value was higher in the range of 600 to 900 nm. The 

peak around 700 nm in Class 2 was more significantly than that in Class 3. In the GOCI image, the 

spectral shape of Class 2 was dissimilar to that of Class 1 and Class 3. The slope from bands 6 to 7 in 
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Class 2 was larger than in Class 1. Moreover, the average values of Class 2 from bands 5 to 8 were 

higher than that of Class 3 and there was a small peak at band 6 in Class 2. Additionally, the average 

concentration of Chl-a was 22.61 mg/m3, while the average concentration of TSM was 36.31 mg/L; ISM 

was 29.64 mg/L and aCDOM(440) was 0.51 m−1. The averaged Cchl-a/CTSM ratio of Class 2 was 0.86 and 

most values of water parameters in Class 2 were between those in Class 1 and Class 3. Therefore, Class 2 

was commonly influenced by Chl-a, TSM and CDOM. 

Class 3 showed a significant peaks near 565nm in the average normalized reflectance spectra. 

Compared with Classes 1 and 2, Class 3 did not display the apparent peak or valley in the range of 565 

to 900 nm, which was also shown in the GOCI data. The average concentration of Chl-a, TSM and 

aCDOM(440) in Class 3 was much lower than in Class 1 and Class 2; thus, Class 3 was relatively less 

affected by Chl-a, TSM and CDOM than the other two classes. 

Table 2. Statistical values of water parameters for each type. 

Water Type Parameter Min Max Mean S.D. 

Class 1 

Chl-a(mg/m3) 

TSM(mg/L) 

ISM(mg/L) 

aCDOM(440)(m−1) 

Chl-a:TSM 

21.31 

10.50 

5.99 

0.13 

0.46 

201.30 

86.76 

67.31 

1.45 

6.35 

81.63 

42.72 

19.59 

0.61 

1.95 

42.81 

21.09 

15.91 

0.44 

1.66 

Class 2 

Chl-a(mg/m3) 

TSM(mg/L) 

ISM(mg/L) 

aCDOM(440)(m−1) 

Chl-a:TSM 

4.99 

12.15 

9.00 

0.17 

0.07 

82.65 

116.12 

106.12 

1.89 

1.86 

22.61 

36.31 

29.64 

0.51 

0.86 

13.60 

18.90 

17.29 

0.34 

0.41 

Class 3 

Chl-a(mg/m3) 

TSM(mg/L) 

ISM(mg/L) 

aCDOM(440)(m−1) 

Chl-a:TSM 

5.29 

4.63 

2.13 

0.16 

0.22 

36.45 

40.34 

30.46 

1.54 

2.57 

12.22 

8.54 

4.67 

0.46 

1.22 

4.71 

5.86 

3.42 

0.38 

0.62 

Note: S.D. indicates a standard deviation. 

4.2. Estimation of Chl-a Using the NMI Weighted Algorithm 

Based on Figure 1, the NIR-red models were first established for the three water types based on 

Equation (11). The models above, which were directly applied to estimate the Chl-a concentration, were 

called “hard classification” models in this study. All of the corresponding bands of the GOCI data were 

applied by the estimation models for each type. Compared to the coefficient of determination R2, the 

optimum algorithms were separately assigned to each class and unclassified dataset. The results showed 

that b7/b6 produced better correlation with Chl-a for Class 1, Class 2 and the overall data, while b7/b5 

was more suitable for Class 3. Figure 3 shows the models and scatterplot of the Chl-a estimation for the 

GOCI data. 

Subsequently, the simulated GOCI Rnrs (validation data) were applied to calculate the weighted factor 

(𝑝𝑁𝑀𝐼(𝑖)), which described the matching probability between the simulated GOCI Rnrs and the standard 
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classified reflectance spectra. Figure 4 shows the matching probabilities of each type for the validation 

data. The average matching probabilities of Class 1 were 0.20, while the average matching probabilities 

of Class 2 and Class 3 were 0.42 and 0.38. The results of the matching probabilities indicated that most 

validation data were difficult to assign to a class; therefore, most samples were dominated by two or 

three Chl-a estimation models. Finally, the NMI weighted algorithm was applied to estimate the Chl-a 

using the weighted factors of each type, the NIR-red models for each type and the simulated GOCI Rnrs 

as input (Equation (12)).  

4.3. Validation of the NMI Weighted Algorithm 

To evaluate the performance of the NMI weighted algorithm, we compared this method with the  

non-classification algorithm and hard classification algorithm. The accuracies of the overall validation 

data and the three types were separately calculated by Equations (13) and (14). Table 3 shows the MAE 

and RMSE of the above algorithms. 

  

(a) (b) 

  

(c) (d) 

 Figure 3. Scatterplot of the Chl-a estimation by the two-band model and the measured Chl-

a for GOCI data: (a) Class 1; (b) Class 2; (c) Class 3; and (d) overall data. 
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Figure 4. Weighted factors of each type for the validation data. 

The accuracy of the NMI weighted algorithm with an MAE of 22.63% and an RMSE of 9.41 mg/m3 

was generally higher than the results of the other two algorithms; the non-classification algorithm 

produced an MAE of 31.09% and an RMSE of 12.76 mg/m3, and the hard classification algorithm 

produced an MAE of 26.23% and an RMSE of 11.02 mg/m3. Thus, the NMI weighted algorithm was 

acceptable for Chl-a estimation in Taihu Lake. The accuracies of the NMI weighted algorithm for the 

different classes were also improved. Due to a wide range of Cchl-a values in Class 1 waters, the MAE 

and RMSE for Class 2 and 3 were better than for Class 1, and the improvement of the RMSE of the NMI 

weighted algorithm for Class 2 and 3 were relatively smaller than that of Class 1. 

Table 3. Comparison of the Chl-a estimation by different algorithms. 

GOCI Type Index 
Non-Classification  

Algorithm  

Hard-Classification 

Algorithm 

NMI Weighted 

Algorithm 

Class 1 
MAE 

RMSE(mg/m3) 

33.4% 

28.83 

30.06% 

25.40 

27.28% 

22.52 

Class 2 
MAE 

RMSE(mg/m3) 

28.40% 

8.15 

25.77% 

7.34 

21.56% 

6.64 

Class 3 
MAE 

RMSE(mg/m3) 

30.89% 

6.67 

22.45% 

5.98 

21.69% 

4.37 

All validation 

data 

MAE 

RMSE(mg/m3) 

31.09% 

12.76 

26.23% 

11.02 

22.63% 

9.41 

In addition, Figure 5 shows the scatterplot of the measured Chl-a and the estimated Chl-a in addition 

to the MAE and RMSE statistics in Table 3. Although the MAE and RMSE of the hard classification 

algorithm for each water type were higher than that of the non-classification algorithm, the estimated 

values were shown to exhibit the jumping effect between different water types (Figure 5b). Because 

different water types could show fuzzy boundaries, similar optical properties might be classified into 

different types based on the hard classification algorithm, or the observed spectra might not be 

completely consistent with the specific reflectance spectra of each type [15]. However, the NMI 
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weighted algorithm could reduce this effect (Figure 5c) because the values of Cchl-a were calculated using 

two or three Chl-a estimation models based on weighted factors. The results indicated that the NMI 

weighted algorithm not only increased the accuracy of the Chl-a estimation but also avoided the 

discontinuous or jumping results in different water types. 

  

(a) (b) 

 

(c) 

Figure 5. Scatter plot of the measured and estimated values of Chl-a: (a) non-classification 

algorithm; (b) hard-classification algorithm; and (c) NMI weighted algorithm. 

5. Discussion 

5.1. Assessment of Water Classification 

To study the results of the NMI classification, we compared this method to the Ward algorithm, which 

has been successfully applied for Rrs classification in inland waters [13]. In this study, cophenetic 

correlation coefficients, which represented the correlation between the clustering information and the 

distance of original data, were used to evaluate the clustering algorithms [43]. A higher value of the 

cophenetic correlation coefficient indicated a stronger clustering effect. After calculating the cophenetic 

correlation coefficient of the NMI classification algorithm and the Ward algorithm, the results showed 

that the cophenetic correlation coefficient of NMI with the value of 0.8618 was higher than that of the 

Ward algorithm, which was equal to 0.8056. Combined with Figure 2 and the cophenetic correlation 

coefficient, the classification algorithm based on NMI was shown to be suitable for Rrs classification, 

and the classification results produced by the proposed method were better than those of the Ward 

algorithm in this study. 
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In addition, the inner-class distance, which was calculated by 1-NMI, was applied to determine the 

optimum classification number. Because the maximum inner-class distance showed only small 

variations when the types were greater than 11, Figure 6 shows the relationship between the maximum 

inner-class distance and the classification number for the water types from 12 to two (12 water types to 

start with and then two in the end). When the classification number of the water types was from 12 to 

seven, the values of the distance showed a stable trend. However, the distance changed significantly 

when the classification number of the water types was less than seven, and the slope between 

classification number three and two reached a maximum. Therefore, the classification numbers from 12 

to seven had no characteristic distinction. In addition, three types were considered as suitable and 

reasonable results, which also agreed with the water parameters. 

5.2. Application of the NMI Weighted Algorithm to GOCI Images 

The above studies (Section 4) investigated the potential of the NMI weighting algorithm using GOCI 

data. Therefore, GOCI images with a spatial resolution of 500 m and a temporal resolution of 1 h were 

used to analyze the spatial-diurnal distribution of Chl-a in Taihu Lake. Because the images were influenced 

by scattered clouds at 8:16 a.m., 2:16 p.m. and 3:16 p.m. on 3 September 2011, the remainder of the five 

images were used to estimate Cchl-a using the NMI weighted algorithm after pre-processing.  

 

Figure 6. Relationship between the classification distance and the classification number. 

5.2.1. Assessment of Atmospheric Correction 

Because the revisit period of the GOCI data is one hour, the 10 samples that were collected closest to 

the GOCI transit time were used for validation. For each in situ validation dataset, the averaged value of 

a 3 × 3 pixel window centered at the corresponding location was used for comparison. Figure 7a shows 

one of the atmospheric correction results of the GOCI data at 11:00 a.m., 3 September 2011. Figure 7b 

displays the averaged relative error of each band for the GOCI data. The figure shows that the accuracies 

of bands 2, 3 and 5 with average relative errors of 9.13%, 7.40% and 9.14%, respectively, were higher 

than other bands. Band 8, with an average relative error of 22.9%, had the lowest accuracy. Bands 5, 6 

and 7, which were used to estimate CChl-a, were lower than 18%. The results indicated that the 

atmospheric correction results could be applied to estimate CChl-a. 
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(a) (b) 

Figure 7. Atmospheric correction results of GOCI data: (a) comparison of the in situ data 

and the atmospheric correction results at 11:00 a.m., 3 September 2011; and (b) statistics of 

the averaged relative error of each band of the GOCI data. 

5.2.2. Effect of Fuzzy Boundaries of Water Types in a GOCI Image 

Figure 8 shows the weighted-factor images of the GOCI data, which were acquired at 10:16 a.m.,  

3 September 2011. These images show the degree to which each pixel was classified into each type. For 

this case, most pixels could not be completely categorized as one type due to the fuzzy boundaries among 

the different water types present. In the western and southern regions, the weighted factor values of the 

Class 1 waters were significantly higher than the other two types, while the values of the Class 2 and 

Class 3 waters played a dominant role in the center of the lake. In Meiliang Bay, the average weighted 

factors of the three types were all higher than 0.28. Therefore, most regions of Taihu Lake were 

dominated by two or three Chl-a estimation models in the GOCI image. It was thus feasible to estimate 

CChl-a for the GOCI images using the NMI weighted algorithm. 

   

(a) (b) (c) 

Figure 8. Weighting-factor images of each type for GOCI data (10:16 am, 3 September 2011): 

(a) Class 1; (b) Class 2; and (c) Class 3. 

5.2.3. Spatial-Diurnal Distribution of Chl-a in Taihu Lake 

Figure 9 shows the spatial and diurnal distribution of Chl-a in Taihu Lake on 3 September 2011. In 

general, spatial and diurnal differences in Cchl-a existed in Taihu Lake. In the western and southern 

regions, Cchl-a was significantly higher than in other regions on 3 September 2011. The values of Cchl-a 

were more than 40 mg/m3 in the western and southern regions of the lake, and some regions were found 
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to exceed 100 mg/m3. However, Cchl-a was found to be distributed between 0 and 20 mg/m3 in other 

regions (e.g., the center of the lake, Gonghu Bay). The possible reasons for these results were that the 

runoff entering Taihu Lake was primarily distributed in Meiliang Bay, the western lakeshore and 

southern lakeshore, and wastewater from farmland, development and industry, which was directly 

discharged into the lake, provided a growth environment for algae in these regions. In addition, the wind 

could also bring algae to lakeshore regions [44].  

  

(a) (b) 

  

(c) (d) 

 

(e) 

Figure 9. Diurnal distribution of CChl-a on 3 September 2011 (9:16 a.m. to 1:16 p.m.). 
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The spatial distribution of Cchl-a changed from 9:16 a.m. to 1:16 p.m. In the red rectangular region 

(Figure 9a) and in the southern lakeshore, high values of Cchl-a were gradually aggregated from  

9:16 a.m. to 1:16 p.m.. The values of Cchl-a also increased in the center of the lake from 9:16 a.m. to 

1:16 p.m., while the values increased from 9:16 a.m. to 10:16 a.m. and then decreased from 11:16 a.m. 

to 1:16 p.m. in the western regions. Because Taihu Lake was influenced by northeaster winds during the 

day, high values of Cchl-a spread to the southwest regions of the lake. Then, the distribution changed in 

the southern and central regions (i.e., the open area of Taihu Lake). However, the vertical migration of 

phytoplankton might also have affected the diurnal change of Cchl-a, particularly along the western 

lakeshore [45,46]. Based on the research of Reynolds [46], blue-green algae could increase at the water 

surface from early morning to 10:00 a.m. due to the increased buoyancy force of algae cells after 

photosynthesis. Then, at noon, the algae descended due to the decreased buoyancy force. That study was 

also applicable to blue-green algae in Xihu Lake, China [47]. Therefore, the diurnal variation along the 

western lakeshore could be primarily influenced by the vertical migration of blue-green algae because 

this region had relatively less influence from wind. 

6. Conclusions 

In this study, the NMI weighted algorithm was proposed to estimate Cchl-a. Based on the in situ normalized 

reflectance spectra collected from Taihu Lake, three water types were identified by the clustering method, 

which was implemented by the similarity measure (NMI). Three types had significant differences based on 

the spectral shape and corresponding water parameters. Class 1 waters showed significant characteristics in 

the NIR bands and were primarily affected by the Chl-a concentration. Class 2 waters corresponded to the 

characteristics that were influenced by Chl-a and TSM, while Class 3 waters exhibited lower values of  

Chl-a and TSS. Based on the three water types, class-specific Chl-a estimation models were developed 

separately for GOCI data. The weighted factor of each GOCI reflectance was calculated by NMI. Finally, 

Cchl-a was obtained based on the framework of the NMI weighted algorithm for GOCI data. Compared to the 

non-classification and the hard-classification algorithms, the NMI weighted algorithm was shown to have a 

higher accuracy and reduced the discontinuous effect associated with the hard-classification algorithm. 

The framework of the NMI weighted algorithm effectively combined class-specific Cchl-a retrievals 

into a continuous mapping. The method can be applicable to different remote sensing images and Chl-a 

retrieval algorithms. In the future, the NMI weighted algorithm, which is constructed by other retrieval 

algorithms such as four-band algorithm [20], normalized difference chlorophyll index [48], and synthetic 

chlorophyll index [49], will be applied to different satellite images or will be tested in different inland 

waters. In addition, more in situ data from different regions will be required to completely identify the 

water types present and to improve the calibrated and validated accuracy. 
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