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Abstract: Reconstructing three-dimensional model of the pylon from LiDAR (Light 

Detection And Ranging) point clouds automatically is one of the key techniques for 

facilities management GIS system of high-voltage nationwide transmission smart grid. 

This paper presents a model-driven three-dimensional pylon modeling (MD3DM) method 

using airborne LiDAR data. We start with constructing a parametric model of pylon, based 

on its actual structure and the characteristics of point clouds data. In this model, a pylon is 

divided into three parts: pylon legs, pylon body and pylon head. The modeling approach 

mainly consists of four steps. Firstly, point clouds of individual pylon are detected and 

segmented from massive high-voltage transmission corridor point clouds automatically. 

Secondly, an individual pylon is divided into three relatively simple parts in order to 

reconstruct different parts with different strategies. Its position and direction are extracted 

by contour analysis of the pylon body in this stage. Thirdly, the geometric features of the 

pylon head are extracted, from which the head type is derived with a SVM (Support Vector 

Machine) classifier. After that, the head is constructed by seeking corresponding model 
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from pre-build model library. Finally, the body is modeled by fitting the point cloud to 

planes. Experiment results on several point clouds data sets from China Southern  

high-voltage nationwide transmission grid from Yunnan Province to Guangdong Province 

show that the proposed approach can achieve the goal of automatic three-dimensional 

modeling of the pylon effectively. 

Keywords: airborne LiDAR; model-driven three-dimensional modeling; pylon modeling; 

smart grid 

 

1. Introduction 

Recently, a rapid development of smart grid has come to the electric power industry, which needs  

the support of highly accurate, fine and visual three-dimensional geospatial information of the power 

grid, especially for the high-voltage transmission grid crossing mountains and forests. Pylons are the 

elementary facility in the power grid and are directly related to security of high-voltage transmission 

grid. A 3D vector model of pylons is needed for 3D transmission corridors visualization, delivery and 

storage application. Additionally, the important parameters of pylons can be quickly measured in fine 

3D vector model, which can support the numerical simulation analysis on force, weather, tree growth 

etc., so as to guarantee the security of the high-voltage transmission corridors. 

The LiDAR system can quickly obtain dense 3D laser point clouds of high-voltage transmission 

corridor with high precision. It is widely applied in the power industry throughout the construction and 

operational period of the grid [1–3]. In regard to pylon modeling, the popular solution in production 

often falls into manual operation with CAD software. Due to the complex structure and the high 

accuracy, such human interactions become a heavy and difficult work. The automatic method, 

however, has rarely been reported according to our knowledge. Using these data for rapid, accurate and 

fine three-dimensional modeling of grid facilities of high-voltage transmission is one of the key 

techniques for digitization and visualization of smart grid facilities. 

1.1. Related Works 

Over the past decades, 3D reconstruction from airborne LiDAR has achieved a bundle of works on 

both natural features (such as terrain, forests, trees, canopy, etc.) and man-made features (e.g., 

buildings, roads, cars, etc.). Since building reconstruction is the most-studied topic, the methodology 

can represent that of man-made features reconstruction. Methods reconstructing building purely from 

LiDAR data can be divided into two categories: model-driven and data-driven [4,5]. 

Model-Driven Method: In the model-driven method, models of typical buildings are predefined. 

The modeling is a process of searching the best model and solving parameters of that model. It is 

effective for low-density point clouds data and guarantee correct topology of the model [6]. Several 

approaches for model estimation and selection have been proposed. Maas and Vosselman [4] give a 

closed form solution for estimating gabled roof from laser points by invariant moments. Kada and 

McKinley [7] select the model whose corresponding point normal fit to most of the directions of the 
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primitive as the best model. Huang et al. [8] construct the target roof by a generative modeling method 

that fit the data with a predefined primitive library. The Reversible Jump Markov Chain Monte Carlo 

technique is applied for roof primitives’ selection and the sampling of their parameters. Henn et al. [9] 

derives simple building primitives from sparse LiDAR data using RANSAC (Random Sample 

Consensus) [10] and a supervised classification method. To ensure the topological correctness, 

geometrical constraints such as rectangularity, parallelism on the roof geometry are taken into 

consideration while estimating its geometric parameters. Due to the model assumption on buildings, the 

types of reconstructed buildings are limited to those fit with the predefined models. Additionally, it is 

hard to fully express the true shape of complicated buildings and small component such as chimney, 

windows, etc. 

Data-Driven Method: In the data-driven method, a building is assumed to be unstructured objects 

and reconstructed by combining and intersecting the split roof planes [11]. It is applicable to complex 

roofs. It mainly consists of two steps: roof plane segmentation and topology reconstruction. Several 

approaches are proposed for roof planes segmentation, such as 3D Hough transform [12,13],  

RANSAC [10,14], region growing [15], classification or clustering [16]. The neighborhood 

relationships of the roof planes are inferred from the intersections of segmented planes. Elberink [17] 

reconstructed roof topology through graph matching. Sampath and Shan [18] determined the topology 

through an adjacency matrix that represents the connectivity of the segmented planar segments. However, 

the roof topology graph may contain mistakes because of point cloud segmentation failures caused by 

outliers or low point densities. So a high point density and quality data are required. The key issues of 

these methods lie on detection of building point clouds, segmentation of roof surface, and determination 

of topological connection relationship between facades. 

As the point cloud quality improves and the demand for detailed model increases, methods that 

combine data driven with model constrains are developed. Lafarge et al. [19,20] combine geometric  

3D-primitives with mesh patches to achieve semantic, compact and generative models. Martin and 

Andreas [21,22] used planar half-space combination to form a semantic part of building model as a 

mathematical inequality equation. Xiong et al. use graph to represent the topology of roof planes and 

sub graph to represent roof primitives [23,24]. Based on these model presentations, constrains derived 

from prior knowledge such as symmetries, co-planarity, parallelism, and orthogonality are used for 

model refinement [22,23]. Xiong et al. [24] apply a graph edit dictionary to correct the errors of roof 

topology effectively. Although it is effective to improve the final result, knowledge constrains are still 

challenging to detect automatically and reliability. 

Works On Power Industry: In the application of power line inspection based on ALS (Airborne 

LiDAR System), related studies mainly focus on automatic extraction of power lines and  

three-dimensional reconstruction. Most of these works consist of two steps: First, power lines points 

are extracted from the corridor scene point clouds. Second, power line is fitted to a certain geometry 

model for which a catenary model is chosen. McLaughlin [25] proposed a supervised  

knowledge-based classification method for differentiating transmission lines from their surroundings. 

The corridor point clouds are labeled into three categories: transmission lines, vegetation, or surfaces. 

The algorithm correctly identified 86.9% of those data points that lay on transmission lines, and 

extracted 72.1% of the individual transmission line spans. Jwa et al. [26] introduce a Voxel-based 

Piece-wise Line Detector (VPLD) method that detects power line by grouping similar features at 
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different levels of information (i.e., points, segments and lines) based on well-known perceptual 

grouping framework. The final reconstruction of single power line models is accomplished by 

applying a non-linear least square regression for estimating catenary line parameters to a piece-wisely 

segmented voxel space. Kim and Sohn [27] start with extract 21 features from voxel space of different 

scales as well as its embedded points, then apply the Random Forest as an ensemble decision classifier 

to classify power-line scenes into ground, vegetation, power lines, electricity pylons and buildings with 

these extracted features, and finally achieved an optimized classification performance of 96% success 

rate. Sohn et al. [28] proposed a method base on Markov Random Field (MRF) to classify key features 

(power lines, pylons, and buildings) that comprising utility corridor scene using airborne LiDAR data 

and model power lines in 3D object space. Since the geometry model of power line is relatively 

simple, the first step, separating power line points from background point clouds correctly, is the most 

significant issue in the power line reconstruction. 

Generally, most of the existing 3D modeling methods based on point clouds is designed for specific 

modeling object. Due to the different distribution characteristics of different modeling target point 

clouds, these methods are difficult to be applied directly on the automatic three-dimensional reconstruction 

of pylon.  

1.2. Our Contribution 

In this paper, we promote a solution that reconstructs the pylon model of high-voltage transmission 

for smart grid safety and 3D visualization application. We first define a general parametric pylon 

model based on some observations of the point clouds and existing vector models of several types of 

pylon. A practical segmentation method is used to detect the pylon points for further individual pylon 

modeling. We use a height histogram method that decomposes a pylon into three simple parts. The 

head of pylon is reconstructed through a pre-build library if the type is determined. Furthermore, the 

body of pylon is reconstructed by least square fitting with additional constrains. 

In the rest of this paper, Section 2 defines the pylon parametric model and describes the modeling 

workflow. Section 3 discusses the pylon segmentation, orientation and position method, modeling of 

pylon head and body. Experiments and results are discussed in Section 4. Finally, Section 5 gives the 

conclusions of the proposed approach and future work. 

2. Overview of Our Approach 

Due to some intrinsic imperfections (e.g., uneven distribution, incompleteness and noise) in ALS 

point clouds, model-drive method is preferred for pylon reconstruction. As the pylon is a complicated 

truss construction (Figure 1), a variety of actual pylon structures as well as characteristics of point 

clouds data are reviewed to derive a practical parametric model. Then a model-driven method is 

applied to the three-dimensional reconstruction of the specific self-supporting pylon. First, the 

complex power pylon is segmented into several simple parts. Then each part is reconstructed with 

different strategies. At last, they are assembled according to position and direction information.  
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(a) (b) (c) 

Figure 1. Pylon model and point cloud: (a) Pylon model, (b) pylon point cloud, and (c) 

noisy points. 

2.1. Pylon Parametric Model 

Pylons in China can be divided into self-supporting pylon and guyed pylon according to their  

structure [29]. This paper mainly studies the most commonly applied self-support pylon with four legs 

(Figure 1), which has the following characteristics: 

(1) There are four legs in a pylon. Each of them is an inverted three-pyramids and their size may 

vary from terrain to terrain.  

(2) The pylon body is a simple quadrangular frustum pyramid.  

(3) The structure of pylon head is more complicated. There exist distinguishing features between 

different types of pylons, while structures of pylon heads with the same type are strictly 

consistent. So a pylon can be classified into a certain class according to its head type. 

Based on these characteristics, a self-supporting pylon is described as an integrated model which is 

composed of: pylon legs, pylon body and pylon head determined by four remarkable structure heights: 

the foot height, the body height, the shoulder height and the head height. A local right hand reference 

frame attached to the pylon is built with its origin in the center of pylon top, x axis pointing to 

direction of pylon cross arm and z axis vertical (Figure 2a). Therefore its origin (𝑥0, 𝑦0, 𝑧0) represents 

the pylon’s position and x axis indicates the pylon’s orientation (φ). The head is decided by its type 𝑇𝑐. 

The body can be depicted by intersecting four planes𝑃𝑖, and two stricter heights, 𝐻𝑠 and 𝐻𝑏. The legs 

can be decided by four points𝑃𝑡𝑖. So a pylon can be determined by a parameter Equation (1). 

𝑝𝑦𝑙𝑜𝑛 = [𝑥0 𝑦0 𝑧0 𝜑 𝑇𝑐 𝐻𝑠 𝐻𝑏 𝑃𝑖 𝑃𝑡𝑖] (1) 

where i = 1,2,3,4. 

Corresponding to the actual structure, pylon point clouds have the following distribution characteristics: 

(1) Distribution of the head points is quite complicated due to the complexity of the head 

structure. There are power lines points distributed close to the head points. In addition, the 

point cloud of the head may be incomplete during data acquisition. 
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(2) There are some power line points near the body and points of it may be incomplete due to 

occlusion and a low scan frequency of LiDAR. 

(3) Usually, noisy points, such as terrain points and plant points, among the pylon  

leg points exist. 

(4) The pylon structure can be clearly presented in the front and side view of the point cloud  

(Figure 2b).  

  

(a) (b) (c) (d) 

Figure 2. Pylon parametric model. (a) 3D view, (b) Front view, (c) Side view,  

(d) Vertical view 

2.2. Workflow for Pylon Modeling 

Based on the characteristics of pylon structure and coresponding point cloud, the modeling 

procedure is presented. Pylons are detected and segmented from the corridor point cloud first, then an 

individual pylon is reconstructed. Noting that the point density and shape of pylon is distinct from that 

of power line, it can be detected by a practical segment process of the point clouds. When it comes to 

an individual pylon, for the complicated structure of its head, it is challenging to infer the topological 

relationship between the surfaces and lines using a data driven method. However, the structure of the 

pylon head with the same type is strictly consistent. Therefore, it can be modeled with a pre-build head 

model library if the head type is known, which can be determined by a classifier. The structure of pylon 

body is a regular quadrangular frustum pyramid. It is easy to infer the position and orientation and the 

model of the body by combining the four planar surfaces on its side. The scene of point clouds of 

pylon leg is quite complex due to the noisy points of terrain, plants, etc. Thus, an interactive modeling 

method may be preferred for it. This will not be discussed in this paper. The proposed modeling 

method consists of several steps, as follows (Figure 3). 

(1) Pylon detection: Pylons are detected from transmission corridor point clouds. 

(2) Pylon segmentation, positioning and orientation: A pylon is decomposed into head, body and 

legs by its structure height. After that, the position and orientation are derived from the body. 
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(3) Modeling of pylon head: Pattern features of head are extracted from height histogram and 

front projection of the pylon head points, its type is decided by SVM (Support Vector 

Machine) classification method. The head is modeled once through matching with the head 

model library. 

(4) Modeling of pylon body: The pylon body is modeled by intersecting the adjacent body side 

planes that derived from a constrained plane fitting process. 

(5) Modeling of pylon legs: The rest of the pylon is modeled manually with the aid of previous 

modeling results. 

In this paper, only Steps 1–4 are discussed in detail. 

3D model library
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classification

Head model
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modeling

Legs Body Head

Segmentation

 Legs model Body model

Priori 

knowledge

Pylon model
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Aid 

information
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Figure 3. Workflow of pylon modeling. 

3. Methodology 

3.1. Pylon Detection 

The raw data we used in this paper is corridor point clouds in which terrain points have been filtered 

out in advance by software. It contains power line points, pylon points and a small quantity of noisy 

points such as terrain, plants and so on. It is necessary to separate the points of an individual pylon 

before modeling. Power line points appear as thin lines, while the pylon appears as blocks in the 

vertical projection (Figure 4). The heights of power line points in the same projection grid vary in a 

small range while those of pylons vary in a greater range. Based on these findings, a practical 

algorithm (Algorithm 1) is proposed to detect pylons through the density projection image and height 

variance image of corridor point clouds. These parameters involved in Algorithm 1 all have an explicit 

physical meaning, based on which the empirical values are set (Table 1). 
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(a) (b) 

Figure 4. Point cloud projection images: (a) point density projection image; and (b) point 

height variance image. 

Algorithm 1 Pylon detection 

Input: corridor point clouds 𝑃𝑐𝑜𝑟 = {(𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖)|i = 1,2, … n , n is the number of points; 

Output: Individual pylon points 𝑃𝑝𝑦𝑙𝑜𝑛 = {𝑃𝑗|𝑗 = 1,2…𝑚}, m is the number of pylons. 

1: Generate the point density projection image 𝐼1 (Figure 4a) and point height variance image  𝐼2 

(Figure 4b) of corridor point clouds with grid size 𝑔𝑑. The pixel values of  𝐼1 equal the counts of 

points in the corresponding grids. The pixel value of 𝐼2 is height variance of points of each grid. 

2: Use a window with a disk kernel of size 𝑆 to slide along the nonzero pixels on image 𝐼1. The 

response image 𝐼3 is the total number of points within the slide window. 

3: Select the local maximum pixel with a suppression range 𝑟𝑠 as the candidate center of pylons. 

4: Count the number of high value (greater than 𝑡𝑣) pixels in image 𝐼2 in the disk kernel of the each 

candidate centers and donate them as 𝑁. The centers whose 𝑁 value is greater than 𝑡𝑎 are regard 

as the final pylon centers. 

5: Return: Points 𝑃𝑗 in the circle range with a radius 𝑟𝑝 of pylon centers. 

Table 1. Physical meaning and empirical values of parameters in Algorithm 1. 

Parameters Physical Meaning Empirical Value 

𝑔𝑑  The ground distance of one pixel 0.5 m 

𝑟𝑠  The smallest distance between two nearby pylons  20 m 

𝑡𝑣  

The threshold to judge if a grid is a pylon grid or a power 

line grid since pylon grid have greater height variance. 
3 m 

S The size of a pylon 11 m 

𝑡𝑎  

The ratio of high variance pixels count to the sum of disk 

kernel pixels 
0.2 

𝑟𝑝 The range of possible pylon points 𝑟𝑝 = 1.5 ∗ 𝑠 

3.2. Pylon Segmentation, Position and Orientation 

A robust method for pylon decomposition should follow a noise filtering process and one of the 

decomposed parts, known as pylon body, will be used to derive the position and orientation. 
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3.2.1. Filtering 

There usually exist several kinds of noisy points in the auto-detected pylon points (Figure 1) as we 

have mentioned in Section 2.1. Their distribution characteristics are summarized below: 

(i) Terrain and plants points often aggregate near the pylon legs.  

(ii) Power line points around the body are usually relatively far from the pylon horizontal center.  

(iii) Power line points close to the head are hard to separate. However, this has little effect on the 

pylon head modeling result due to the model driven method we take. 

A progressive filtering strategy is applied in this paper: using the extracted information, exclude the 

noise step-by-step during the whole modeling process until the modeling process finishes. On the basis 

of case (i), we filter out points under a height threshold 𝑇ℎ  (where  𝑇ℎ = 𝐻𝑟 + 𝐶, 𝐻𝑟 stands for the lowest 

elevation of pylon points, 𝐶 is a constant which is decided by the pylon structure empirically). As for 

power line points in case (ii), they are removed according to the horizontal distance to the pylon center. 

3.2.2. Decomposition 

The horizontal component of a pylon distributed appears as high amount of points at a height 

interval (Figure 5). The plane of the horizontal component is called feature plane and its height is 

defined as feature height. When the histogram is counted against the height level, the local maximums 

probably correspond to feature heights (Figure 5c). 

   

(a) (b) (c) (d) 

Figure 5. Segmentation based on feature heights histogram: (a) pylon model; (b) constrain 

length; (c) height histogram; and (d) point cloud and feature heights. Horizontal members 

are high lightened with magenta color in (a,b). Height histogram is shown in (c). Feature 

heights are marked with short lines. 

In the height histogram, not all local maximums correspond to pylon feature height, and the 

distribution of them are irregular (Figure 5c). What is more, the values of them vary with the density  

of point cloud. Therefore, it is hard to extract these heights by simple local extreme value analysis or 

threshold methods. The interval between neighboring feature height is greater than a certain threshold 

value (Figure 5b). A detailed extraction algorithm is presented as follow: 
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Algorithm 2 Feature heights extraction 

Input: pylon point clouds 𝑃𝑝𝑦𝑙𝑜𝑛 = {𝑃𝑖|𝑖 = 1,2…𝑛}, 𝑛 is the count of points; 

Output: pylon feature heights 𝐻𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = {𝐻𝑗|𝑗 = 1,2, … ,𝑚}, 𝑚 is the count of feature heights 

1: Generate the histogram of height of 𝑃𝑖 with a certain bin width ∆H. 

2: Seek 𝑁𝑡 largest heights with the histogram values as candidate feature heights (Figure 6a) 

3: use a window with size of 𝐿𝑐  to move forward and backward to extract the local maximums  

(Figure 6b,c). Select the consistent local maximums in two processes as the initial feature heights 

𝐻𝑗
𝑖𝑛𝑖𝑡  (Figure 6d). 

4: Select points p = {𝑝𝑖|𝑧𝑖 ∈ [ 𝐻𝑗
𝑖𝑛𝑖𝑡 − ε,𝐻𝑗

𝑖𝑛𝑖𝑡 + ε]}, calculate the mean value of {𝑧𝑖} iteratively and 

eliminate gross errors and yield the refined feature heights {𝐻𝑗} . 

5: Return: {𝐻𝑗}. 

It is assumed that the feature height below tower top in a certain range with the most points 

correspond to the shoulder height, i.e., the height where the body and head join. The head and body 

can be separated by this height (Figure 5c). Since the shoulder height value equals the top height minus 

the height of head, it can be calculate and validated once the type of pylon head is determined. 

  

(a) (b) 

  

(c) (d) 

Figure 6. Extracting local maximums from height histogram with constraint (Lc = 6):  

(a) points elevation histogram; (b) forward extracted local maximums; (c) backward 

extracted local maximums; and (d) final extracted local maximums. 

3.2.3. Extraction of Orientation and Position 

The feature planes on pylon body are a group of vertically distributed rectangles with an approximately 

consistent horizontal center (Figure 7a). These rectangles shrink from the bottom to the top. That helps 

to obtain a robust estimation of orientation and position of the pylon. 
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(a) (b) (c) (d) 

Figure 7. Contours analysis: (a) feature plane; (b) circumcircles; (c) α-shapes contour;  

and (d) simplified contour. 

For points on each feature plane, the α-shapes algorithm [30] is applied to generate the convex 

contour of each, then the plane center coincides with the center of its circumcircle. The horizontal 

position of pylon is derived from the average center of each circumcircle (Figure 7b). 

Short line segments in the primitive contours, which appear to zigzag, are merged into long ones  

(Figure 7c) to infer the pylon orientation. This is achieved by the pipe algorithm [31]. Direction of the 

longest line segment in each merged contour is treated as the pylon orientation (Figure 7d). Again, the 

averaging operation is conducted to obtain the orientation of the whole pylon. During estimation of the 

position and orientation, gross errors derived from each contour are removed using RANSAC. Finally, 

the average values are regarded as accurate position and orientation. 

Suspension power line points would disturb the contour generation if not eliminated (Figure 8a). 

Noticing that rectangles at lower heights are larger than those at higher heights, we first extract 

contours from the bottom. The smallest extracted contour is used to limit the scope of the next feature 

plane to eliminate power line points before α-shapes algorithm process (Figure 8b). 

  

(a) (b) 

Figure 8. Power line noise’s influence on α-Shapes results: (a) before eliminating noise;  

and (b) after eliminating noise. 

3.3. Pylon Head Modeling Method 

Due to the consistence of pylon heads with the same type, the key issue in reconstructing this 

component is determination of its type, position and orientation. 
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3.3.1. Features of Head 

In order to decide the type of a given head, pattern features that describe the type are extracted first. 

Then the type can be judged automatically by classification technic. Two kinds of features are 

designed for the pylon head, which are based on the point height histogram and front projection image. 

Features based on point height histogram: There are some interesting characteristics in the point 

height histogram of a pylon head. Firstly, pylon heads of the same type present similar feature heights 

in the histogram (Figure 9). Another stable characteristic is the maximum value, which corresponds to 

the horizontal component with the most steel of the head. On the basis of these, three robust features 

can be extracted by calculating the differences between some semantic feature heights and the 

mentioned stable height. Thus, a feature vector 𝐹1 = [𝐻1 − 𝐻𝑠, 𝐻2 − 𝐻𝑠, 𝐻3 − 𝐻𝑠] is generated. Table 2 

gives the semantics of these feature heights in detail. 

Table 2. Feature heights derived from the histogram. 

Feature Elevation Semantics 

𝐻𝑠 height of the most points  

𝐻1 first feature height above 𝐻𝑠 

𝐻2 feature height of the most points above 𝐻𝑠 

𝐻3 feature height closest to pylon top 

 

Figure 9. Point cloud height histograms of the same type pylons. 

Features based on front projection image: Pylon is a symmetrical truss artificial construction. 

When rotating to the front or side view (Figure 2b), its dimension is reduced from 3D to 2D and the 

feature extraction can be simplified. The front view image contains the most information including the 

vertical and horizontal structure variable of a pylon. Thus, it can be used to extract features of the head. 

Before further processing, the point clouds are rotated by the extracted pylon orientation ϕ, making the 

pylon cross arm pointing to the y-axis of world coordinate system. 
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After that, points on a feature height are project into a line image. Adjacent lines on this image are 

merged and short lines are removed on each feature height. The feature lengths and difference of their 

corresponding heights are taken as features (Figure 10). Two kinds of feature lengths of each feature 

height are defined: the one is span length, i.e., the span of all horizontal members; the other is physical 

length, i.e., the actual length of all horizontal members. The detail algorithm is shown below: 

Algorithm 3 Feature length extraction based on front projection 

Input: pylon point clouds 𝑃𝑖 = {𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖}, extracted feature height 𝐻𝑓𝑒𝑎𝑡𝑢𝑟𝑒 = {𝐻𝑗}; 

Output: pylon head features 𝐹2 

1: project points at a certain feature height p = {𝑝𝑖|𝑧𝑖 ∈ [ 𝐻𝑗
𝑖𝑛𝑖𝑡 − ε, 𝐻𝑗

𝑖𝑛𝑖𝑡 + ε]}), to a line array 

according to the x coordinate value. If there are no points in a grid, the value of the grid is 0 , 

otherwise it is 1  (Figure 11).  

2: Merge adjacent non-empty grids if the gaps between them are less than a certain threshold 𝑡𝑔𝑎𝑝 

(Figure 11b). Right after that, eliminate continuous non-empty grid sequences with length less 

than a certain threshold 𝑡𝑙𝑒𝑛𝑔𝑡ℎ (Figure 11c). 

3: Calculate the span length and physical length on each feature height. The span length 𝐿𝑠 equals to 

the distance of the leftmost non-empty grid to the rightmost one. The physical length  𝐿𝑝 equals to 

the summed length of all non-empty grids at one feature height, i.e., 𝐿𝑝 = ∑𝐿𝑝𝑖 (Figure 11c). 

4: Find the largest and second largest span length  𝐿𝑠1 , 𝐿𝑠2and heights 𝐻𝐿𝑠1 , 𝐻𝐿𝑠2corresponding  

to them, the largest and second largest physical length and corresponding heights. Take 𝐹2 =

[ 𝐿𝑠1,  𝐿𝑠2,  𝐿𝑝1,  𝐿𝑝2, ∆𝐻𝑠, ∆𝐻𝑝] as the features of pylon head , where ∆𝐻𝑠 = | 𝐿𝑠1 −  𝐿𝑠2|, ∆𝐻𝑝 =

| 𝐿𝑝1 −  𝐿𝑝2| 

5: Return: 𝐹2. 

 

(a) (b) 

Figure 10. Result of feature length extraction: (a) front view; and (b) result of  

feature lengths. 
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(b) 

 

(c) 

Figure 11. Extract feature length based on front projection. (a) Point cloud projection;  

(b) line connection; and (c) eliminate short lines. 

3.3.2. Classify Pylon Head with SVM 

By combining the previously derived features together, the unique descriptor for a pylon head  

is obtained. Taking the consistency of head type into account, the classification method can achieve an 

efficient 3-dimensional reconstruction. Once the type is determined, the shape model is selected from a 

prior library and fitted to the point cloud. Support vector machines, proposed by Cortes and Vapnik [32], 

initially aim to make a small training set classifier that can be applied in large-scale data classification, 

which means strong generalization ability. That property accords with the requirement for pylon 

reconstruction since the number of samples is relatively limited. A model library of some typical heads 

and a classifier trained with some head samples is constructed first. Once the type is determined for a 

new head, the previously derived orientation and horizontal position and its own height is used to fit 

the final shape for the particular point cloud. 

In this paper, the LibSVM package of SVM algorithm [33] is used to classify the extracted pylon. 

The kernel function of the classifier is radial basis function (RBF). In the RBF−SVM model, index 

parameter λ and the penalty factor C in objective function is decided through the grid parameter search 

during the training stage, it selects the best cross-validation accuracy corresponding the λ and C 

parameters in order to make the classifier to obtain the best generalization ability, i.e., classifier with 

less training data but better generalization ability. Therefore workload of classifier training in the pylon 

head modeling process is reduced. 

3.4. Reconstruction of Pylon Body 

Pylon body is a regular quadrangular frustum pyramid (Figure 12a). For a robust body framework 

model, a fitting method is employed for the modeling process. At first, the pylon body is segmented 

into four side planes. Next, it is fitted to a whole quadrangular frustum pyramid, i.e., fit the plane 

considering the symmetrical and perpendicular relationship of the body sides. Finally, the body 

framework is generated by intersecting the adjacent side planes. 
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(a) (b) (c) (d) 

Figure 12. Pylon body fitting: (a) feature planes; (b) segmentation; (c) vertical view of 

segmentation; and (d) body framework. 

3.4.1. Body Side Plane Segmentation 

When the point cloud is sufficiently dense, we assume that points in the body feature plane contours 

extracted by α-shapes algorithm can represent the body. In order to identify points belong to which 

side, we need to identify its corresponding contour edge belong to which side. This is achieved by 

classifying the edges of α-shapes contour into four groups according to their orientation. If the orientation 

of a contour edge is close enough to one of the four orientations of body sides, the two endpoints of the 

edge are classified to the corresponding side (Figure 12b,c) otherwise they will be removed. 

3.4.2. Pylon Body Fitting 

The body is fitted to a quadrangular frustum pyramid whose center axis is vertical (Figure 12d). 

This problem can be modeled as a least squares fitting with additional parameters. That means the four 

sides are fitted to planes considering that the XOY projection of adjacent side normal vectors are 

perpendicular and the sides opposite to each other are symmetrical with the center axis. These 

constraints are added into the adjustment model. That will overcome the adverse impact caused by 

sparseness or incompleteness of points on body sides. 

The general function model of the least squares fitting with additional parameters can be express as 

Equation (2), where 𝐿̃ refers to the observation values, and 𝑋̃ refers to the additional parameters. 

𝐹(𝐿̃, 𝑋̃) = 0 (2) 

There are two types of error equations for this fitting problem: the ones are equations where the 

observations meet, the others are equations where the plane parameter meet. Observations satisfy the 

conditional equation, i.e., plane condition equations. Each point can form one equation. The 12 

coefficients of the four planes are additional parameters. The number of additional parameter 

conditions is five in total. Total number of equations is N + 5, where N is the points of pylon body side 

planes. The unknown value to solve is plane parameters corrections. 

The planar conditional equations that points on the four body side satisfy, as Equation (3): 
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𝐴𝑖𝑥𝑖𝑗 + 𝐵𝑖𝑥𝑖𝑗 + 𝐶𝑖𝑧𝑖𝑗 + 1 = 0 (3) 

The constrain equations that plane coefficients satisfy: 

Perpendicular constrains of adjacent side, as Equation (4): 

{

𝐴1 × 𝐴2 + 𝐵1 × 𝐵2 = 0
𝐴2 × 𝐴3 + 𝐵2 × 𝐵3 = 0
𝐴3 × 𝐴4 + 𝐵3 × 𝐵4 = 0

 (4) 

Symmetrical constrains of opposite side, as Equation (5): 

{
 

 𝐶1/√𝐴1
2 + 𝐵1

2 − 𝐶3/√𝐴3
2 + 𝐵3

2 = 0

𝐶2/√𝐴2
2 + 𝐵2

2 − 𝐶4/√𝐴4
2 + 𝐵4

2 = 0

 (5) 

Linearization and iterative solution are needed to solve these nonlinear error equations. The initial 

values of side planes parameters are set by plane fitting. Since noise points on the contours may disturb 

the final result seriously, RANSAC method is used in plane fitting to eliminate gross errors before 

global adjustment. Finally, fit four planes intersection lines to obtain the framework of the pylon 

(Figure 12d). 

4. Experiments and Result 

4.1. Dataset 

For verifying the effectiveness of the proposed method, several experiments are conducted on the 

airborne LiDAR data of transmission corridors from China Southern Power Grid. The raw data is 

collected by a Harris 56 laser scanner attached to a helicopter. The flight height is about 300~400 m. 

The density of points is about 40/m2 on average. Six transmission lines point cloud data are used for 

pylon detection and six types of 157 pylon samples whose types have been labeled manually are used 

for individual pylon modeling.  

4.2. Result and Discussion 

4.2.1. Pylon Detection 

In this experiment, pylons are automatically detected and extracted from six transmission lines  

point cloud data. The correctness and completeness of the result (Table 3) are evaluated according to 

the Equation (6), where 𝑇𝑃 is the number of correctly extracted pylon, 𝐹𝑃 refers to the number of 

pylon mistakenly extracted, and 𝐹𝑁 refers to the number of missing power towers. The missing 

extracted pylons are mainly guyed style (Figure 13b), not the four-leg style that is studied in this paper, 

because they were filtered out by a high value area threshold 𝑡𝑎. The experimental results show that the 

proposed algorithm is effective at separating a single pylon from massive point clouds. 
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(a) (b) 

Figure 13. Missing detected guyed pylons: (a) point cloud; and (b) vertical view. 

{
𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒𝑛𝑒𝑠𝑠 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑛𝑒𝑠𝑠 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)

 (6) 

Table 3. Pylon detection result. Note: N is the umber of points. 

Dataset 𝑵 𝑻𝑷 𝑭𝑷 𝑭𝑵 Correctness Completeness 

1 1,321,541 48 0 0 100% 100% 

2 665,583 38 0 4 90% 100% 

3 642,154 13 0 0 100% 100% 

4 1,219,018 41 0 2 95% 100% 

5 1,884,065 66 0 0 100% 100% 

6 1,326,539 54 2 0 100% 96% 

Sum 7,058,900 260 2 6 98% 99% 

4.2.2. Structure Heights of Different Types of Pylon 

The structure height of pylon is a significant parameter of pylon model. The difference of pylon top 

height and shoulder height of different types of pylons are measured, and the standard deviations are 

calculated (Table 4). The result indicated that the differences are almost identical if the pylon types are 

the same. Hence the differences of structure height can be features that characterize pylon head. 

Table 4. The top height and shoulder height difference of pylons with different types. 

Index Type 1 Type 2 Type 3 Type 4 Type 5 Type 6 

1 14.075 17.010 18.518 13.781 12.984 8.627 

2 14.097 17.003 18.540 13.798 12.990 8.612 

3 14.091 17.002 18.542 13.768 12.980 8.624 

4 14.084 17.012 18.532 13.747 12.995 8.599 

5 14.090 17.012 18.542 13.786 12.976 8.595 

6 14.084 17.000 18.527 13.757 13.009 8.612 

7 14.097 16.998 18.512 13.749 12.995 8.601 

8 14.087 17.003 18.546 13.740 12.989 8.594 

Standard deviation 0.007 0.006 0.012 0.021 0.010 0.013 



Remote Sens. 2015, 7 11518 

 

 

4.2.3. Precision of Pylon Horizontal Position and Orientation 

In this experimentation, the proposed modeling method is applied on the 157 pylon samples.  

Table 5 shows the precision of automatically extracted horizontal center position and orientation from 

each pylon on average as well as their standard deviation. δ𝑥, δ𝑦 stand for the average precision of x 

position and y position, respectively; and 𝛿𝑑 represents the average precision of orientation. They are 

defined by Equation (7): 

{

δ𝑥 = δ𝑥𝑖/𝑛
δ𝑦 = δ𝑦𝑖/𝑛

δ𝑑 = δ𝑑𝑖/𝑛

 (7) 

where n is the total number of pylons, 𝑖 = 1,2,3,4 , δ𝑥𝑖 , δ𝑦𝑖 , δφ𝑖 stand for the position and orientation 

precision of pylon i, which are standard deviations of (𝑥𝑖𝑗 , 𝑦𝑖𝑗) and φ𝑖𝑗of pylon body feature contours 

after removing the gross errors; j is the number of body feature contours those without gross errors. 

The result indicated that the precision of pylon horizontal position reached 0.03 m and that of the 

pylon orientation reached 0.99°. They are both accurate enough for pylon visualization application. 

Table 5. Precision of pylon horizontal position and orientation. Note: N is the point 

number of pylon, H is the height of pylon. 

Pylon Index 𝑁  𝑁/𝐻(m) δ𝑥(m) δ𝑦(m) δd(°) 

1 6349 155.0 0.046 0.040 0.418 

2 13,050 291.7 0.011 0.023 0.287 

3 9873 224.2 0.043 0.016 1.317 

4 11,132 268.3 0.021 0.008 0.208 

5 5291 118.4 0.026 0.044 2.280 

6 11,859 260.5 0.020 0.019 0.853 

7 3621 97.9 0.026 0.027 0.709 

8 4786 92.6 0.049 0.041 1.397 

9 2163 47.2 0.047 0.049 0.772 

10 54,183 1191.6 0.011 0.015 0.599 

11 8053 189.6 0.030 0.030 2.118 

12 16,003 393.0 0.022 0.015 0.587 

13 6739 157.0 0.042 0.029 0.427 

14 2656 51.1 0.047 0.049 1.608 

15 3823 77.0 0.045 0.031 0.910 

16 13,298 315.0 0.013 0.013 0.309 

17 27,082 594.0 0.016 0.019 0.680 

18 54,183 1191.6 0.011 0.015 0.599 

Mean 14119 317.5 0.029 0.027 0.893 

4.2.4. Accuracy of SVM Classification 

In this experiment, 157 pylon samples are grouped with five kinds of proportions randomly (1:1, 

1:3, 1:5, 1:7, 1:9) for training and testing. Classifications based on two kinds of features combination 

are tested in this experiment. The three features combination is extracted based on the point height 
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histogram and the six features combination is extracted based on the front projection image. The SVM 

with a RBF as basic function implemented by LibSVM is utilized for the training and testing. The test 

accuracy values based on different feature combinations are presented in Table 6. 

Table 6. Classification accuracy. Note: Ns: number of all samples Ntr: number of train 

samples, Nte: number of test samples, Accuracy1: accuracy based on three features; 

Accuracy2: accuracy based on six features. 

Ntr;Nte Ns Ntr Nte Accuracy 1 (%) Accuracy 2 (%) 

1:1 157 78 79 97.47 98.73 

1:3 157 39 118 98.31 99.15 

1:5 157 26 131 95.42 98.47 

1:7 157 19 138 93.48 95.65 

1:9 157 15 142 86.62 95.77 

The result of experiment suggests: 

(a) The classification accuracy of the test sample decreases as the ratio of training samples to test 

samples decreases. Dirty samples may have greater impact on the training results in the case 

of too few training samples, while too many training samples will make it inefficient. 

Therefore, an appropriate number of power tower samples data set for training is significant to 

promote the generalization ability and outreach capacity of classifier in the modeling process. 

(b) Comparing the classification accuracy of different features combinations, it is obvious that 

feature extraction method based on front projection image performs better, because this 

method extracts not only elevation features but also length features. What is more, the 

elevations are determined by the length features so that it can avoid the effect caused by noisy 

and result in robust features. 

In conclusion, when taking proper feature extraction method and quantity of training samples, the 

proposed method can classify the head with accuracy higher than 95%. 

4.2.5. Result of Pylon Body Fitting Accuracy 

Results of 157 pylon body fitting accuracy are evaluated by the average distance of points to  

the corresponding side plane. Table 7 gives the result of six randomly selected types of 18 pylons.  

It demonstrates that the average distance of points to the side planes is about 0.05 m. Bad fitting results 

are usually caused by the sparseness, incompleteness of point cloud, so it is necessary to improve the 

density of raw data for more accuracy modeling result.  

This paper has modeled the heads and bodies of 157 pylons with known types automatically using 

the proposed method. To visually check the result of the model, the pylon points and model are 

registered. Figure 14 shows the result of six different typical types of pylon and it can be seen that the 

models fit the points quite well, and this model can be applied in the digital power gird for 

visualization and some simple digital management. 
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Figure 14. Samples of six types of pylon modeling result. 

Table 7. Precision of body side planes fitting. 

Pylon 

Type 
Np1 Residuals1 Np2 Residuals2 Np3 Residuals3 Np4 Residuals4 

1 16 0.034 22 0.041 19 0.036 18 0.034 

1 40 0.044 39 0.041 27 0.075 36 0.042 

1 21 0.043 34 0.048 39 0.039 23 0.040 

2 13 0.084 14 0.068 31 0.056 13 0.054 

2 19 0.056 8 0.030 17 0.037 22 0.034 

2 11 0.096 4 0.067 29 0.038 20 0.029 

3 29 0.044 20 0.028 36 0.033 25 0.026 

3 34 0.063 26 0.041 22 0.086 24 0.064 

3 71 0.167 53 0.127 100 0.056 48 0.034 

4 43 0.054 31 0.040 27 0.041 22 0.047 

4 63 0.047 30 0.024 33 0.042 27 0.034 

4 54 0.046 27 0.031 32 0.036 16 0.044 

5 33 0.027 16 0.061 26 0.034 33 0.027 

5 29 0.027 21 0.045 29 0.031 28 0.025 

5 22 0.027 24 0.029 34 0.029 20 0.043 

6 58 0.048 35 0.053 45 0.152 30 0.070 

6 26 0.052 38 0.042 48 0.051 31 0.057 

6 58 0.046 63 0.051 51 0.056 42 0.047 

Mean 35.6 0.056 28.1 0.048 35.8 0.051 26.6 0.042 
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5. Conclusions 

In this paper, a parametric pylon model of high-voltage transmission is first constructed. A model 

driven 3D pylon reconstruction method is proposed based on this model. Pylons are detected and 

segmented from the transmission corridor point clouds by a practical segment process before 

modeling. For single pylon modeling, a complex pylon is first segmented into several simple parts. 

Then each part is reconstructed with different strategies and, finally, assembled according to position 

and orientation in consistent reference frame. 

Noting that the point density and shape of pylon is distinct from that of power line, horizontal scope 

can be detected by a practical segment process of the point clouds, the completeness and correctness of 

the detection result are both higher than 90%. Local maximums in pylon point clouds height histogram 

can well reflect the structure of pylon. Segmentation of pylon points and extraction of the feature 

planes are achieved using the height histogram local maximums. Pylon position and orientation are 

derived by contour analyzing of the feature planes. The dimension of raw 3D data are reduced to  

2 dimensions and 1 dimension though height histogram and front projection, which helps to mitigate 

the adverse impact of sparseness, incompleteness and noisy of raw data. This makes the process easier 

and more robust features with semantics. In order to evade the complexity of the head, the 

reconstruction method based on SVM classification is utilized. This method can determine the pylon type 

with accuracy higher than 95%. The body is reconstructed by least square fitting with additional constrains. 

The edges of body are precisely reconstructed by intersecting the side planes. Experiments on data sets 

from the South China Grid suggest that the proposed method can reconstruct the pylon get the head 

and body model automatically. 

However, there are also several limitations in this method. Due to the conceptual pylon model, it is 

only applicable for pylons that fit the parametric model (i.e., pylons with four legs) of high-voltage 

transmission. Another limitation is the need for pre-build head model library, which is also the one 

limitation in most model driven methods. Additionally, the body reconstruction result would be 

susceptible to extreme sparseness of points on pylon body sides.  

For higher accuracy applications, such as pylon force analysis, deformation monitoring and so on, it 

demands finer and more accurate pylon model. In addition, for pylon modeling of regional networks, 

the LiDAR data quality and complex pylon model library are the new challenge for the proposed 

approach. With the development of Airborne Lidar technique, high precision and density point clouds 

are available. Therefore, study of fine pylon modeling with high-density point clouds based on LiDAR 

techniques will be the future work. 
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