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Abstract: Forest canopy leaf area index (LAI) inversion based on remote sensing data is 

an important method to obtain LAI. Currently, the most widely-used model to achieve 

forest canopy structure parameters is the Li-Strahler geometric-optical bidirectional 

reflectance model, by considering the effect of crown shape and mutual shadowing, which 

is referred to as the GOMS model. However, it is difficult to retrieve LAI through the 

GOMS model directly because LAI is not a fundamental parameter of the model. In this 

study, a gap probability model was used to obtain the relationship between the canopy 

structure parameter nR2 and LAI. Thus, LAI was introduced into the GOMS model as an 

independent variable by replacing nR2 The modified GOMS (MGOMS) model was 

validated by application to Dayekou in the Heihe River Basin of China. The LAI retrieved 

using the MGOMS model with optical multi-angle remote sensing data, high spatial 

resolution images and field-measured data was in good agreement with the field-measured 

LAI, with an R-square (R2) of 0.64, and an RMSE of 0.67. The results demonstrate that the 

MGOMS model obtained by replacing the canopy structure parameter nR2 of the GOMS 

model with LAI can be used to invert LAI directly and precisely. 

Keywords: leaf area index (LAI); forest canopy structure parameter; geometric-optical 

mutual shadowing (GOMS) model; bidirectional reflectance distribution function (BRDF); 

modified GOMS (MGOMS) model  
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1. Introduction 

Leaf Area Index (LAI) is defined as the one-sided green leaf area per unit of horizontal ground 

surface area [1]; it is an important botany parameter in the study of farming [2–7], forestry [8,9], climate of 

meteorology [10], and ecology [11]. Forest ecosystems are essential parts of the terrestrial ecosystem, 

and the LAI inversion of forest canopy is one of the main objects of forest ecosystem research [12–15]. 

Due to complex terrain, variable weather conditions, limited field-measured data, and uneven 

vegetation types, among other factors, the inversion and verification of forest LAI are usually difficult. 

Methods of obtaining LAI include field measurements, photography simulations [16,17], and model 

inversion using semi-empirical [8,18,19] or physical models; in particular, model inversion using 

physical models is the most widely-used method to achieve forest canopy LAI. The earliest practical 

canopy reflectance model was determined by Suits [20,21]. Verhoef [22] then extended the Suits 

model by considering the influence of the leaf-angle distribution, to create the SAIL model. The SAIL 

model can simplify the description of canopy structures. Reyna and Bhadwar [23] later considered the 

influence of specular reflection. Among all the canopy LAI inversion models, the canopy geometric-optical 

(GO) model has attracted a lot of interest. The earliest GO model was produced in the mid-1970s [24–26]. 

The GO model fully considers the macroscopic geometric structure of the objects and assumes that the 

objects are geometries with a specific arrangement and known geometric shapes and optical properties. 

According to the geometric optical principles, the GO model can analyze the influences of the 

interception, shielding of the incident light, and surface reflection, and determine the directional 

reflectance of the vegetation canopy. Based on the “scene synthesis model”, the GO model considers 

four components, including sunlit leaf or canopy, shaded leaf or canopy, sunlit background, and 

shaded background, and establishes the bidirectional reflectance distribution function (BRDF) model 

under different illumination and observation conditions. In 1985 and 1986, Li and Strahler applied the 

GO model to remote sensing data using a simple cone model instead of the tree canopy [27,28]. In the 

past, many attempts to optimize the GO model have been made. For example, Schaaf et al. [29] built a 

geometric optical model that considered terrain factors. Qi et al. [30] combined the statistical model 

with the optical model, which gives a more accurate estimation of LAI. In order to apply the model to 

the dense forest, earlier studies [31–33] proposed the geometric-optical mutual shadowing (GOMS) 

model which considers the effects of mutual shadowing and the radiation transfer process [34], and 

expanded it to the thermal radiation [35], making the GOMS model the most representative GO model.  

GO models considering the object and the atmospheric scattering are suitable for discontinuous 

vegetation (e.g., shrubbery, sparse forests, coniferous forests, and orchards) and rough surfaces for 

which the radiation transfer model is difficult to apply. The Li-Strahler GOMS model is a pixel-scale 

GO model which considers the effects of topographic factors. This model can successfully establish 

the relationship between forest structure parameters (e.g., average vegetation coverage, average tree 

height, crown size) and the canopy bidirectional reflection distribution function, giving the relationship 

between the canopy structure parameters (e.g., clear height, crown radius, forest canopy distribution) 

and the canopy reflection characteristics [28,31]. LAI is not an independent parameter in GOMS. 

Hence, in previous studies [36,37], crown center height (h), horizontal radius (R) or other parameters 

were firstly retrieved in the GOMS model. Then, canopy LAI was obtained by the statistical 

relationship between the field-measured h, R or other parameters and the field-measured LAI. 
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However, this calculated process is very complicated and the accuracy of the retrieved LAI depends on 

the precision of the field-measured parameters. To address this problem, the GOMS model was 

improved in the present study by introducing LAI into the model to enable direct inversion of LAI via 

the modified GOMS (i.e., MGOMS) model. The GOMS model consists of the canopy structure 

parameter nR2, a parameter that describes the crown coverage condition in the nadir observation. Since 

LAI and nR2 are both functions of area and are not dependent on the viewing angle, in this paper, the 

gap probability model is used to build the relationship between LAI and nR2. Then, LAI is introduced 

into the GOMS model by replacing nR2  with LAI. The accuracy of the MGOMS model is 

demonstrated using field-measured and remote sensing datasets.  

2. Data and Pre-Processing 

2.1. Study Area 

In our study, the study site Dayekou forest (100°E, 38.6°N) is located in the Qilian Mountain area, 

Gansu Province of China. The Heihe Basin is the second largest inland river basin of the arid region in 

Northwest China, the annual precipitation in the middle valley is 140 mm [38] and mainly occurs in 

the summer. Its ecological system is particularly fragile. Dayekou is located in the middle valley of the 

Heihe River basin and is mostly covered by forest and upland meadow. The main vegetation types in 

Dayekou are Picea crassifolia, shrubland, and upland meadow, and the dominant forest type is  

P. crassifolia. The MODIS land cover product (MCD12Q1) was used to select forest pixels. The forest 

pixels are indicated in green in Figure 1a. 

 

Figure 1. (a) Dayekou land-cover type from the MODIS land-cover product. The spatial 

resolution is 500 m. Pixels in green, pale yellow, pink, and red are forest pixels, grassland 

pixels, cropland pixels, and urban areas, respectively. Pixels in brown yellow represent 

land for other use; (b) Digital Elevation Map (DEM) map of Dayekou. The size of the map 

is the same as that in Figure 1a. The spatial resolution is 90 m. In this map, altitude 

generally increased with decreasing latitude and longitude. 

The locations of the field measurement sample plots are shown in Figure 2. There were 30 field 

measurement sample plots in the Dayekou site, including 15 sample plots “A” with a size of 20 m × 20 m 

and 16 sample plots “B” with a size of 25 m × 25 m. However, in Section 4.2.3, sample plot B10 is not 
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included because there was no field-measured LAI in this sample plot. The B sample plots were part of 

a super sample plot. The super sample plot was 100 m × 100 m in size located within the black line 

surrounding the pixels and was divided into 16 parts. In this super sample plot, all parameters related 

to trees were measured, including LAI and canopy structure parameters. The field-measured canopy 

structure parameters measured in these sample plots are described in Section 2.2.1. Both A and B 

sample plots are relatively homogeneous sample plots which can represent the real condition at the 

500-m pixel scale, and the dominant tree species in them is Picea crassifolia. 

 

Figure 2. Sample plot locations in our study area in the MODIS land-cover products. Pixels 

where the A sample plots were located are outlined in red, and the pixels where the B sample 

plots were located are outlined in black. B sample plots are the part of a super sample plot. 

2.2. Data Foundation 

All the data used in this article were obtained from the Heihe Watershed Allied Telemetry 

Experimental Research (HiWATER), the field-measured data in the B sample plots were collected at 

the Dayekou Guantan forest station (100°15′E, 38°32′N), Heihe river basin, China [39]. 

2.2.1. Field-Measured Data 

Field measurements were performed during June 2008 in the field measurement sample plots. 

Tracing Radiation and Architecture of Canopies (TRAC, Natural Resources Canada, Canada Centre 

for Remote Sensing, Saint-Hubert, QC, Canada) [40] and LAI-2000 Plant Canopy Analyzer  

(LAI-2000, LI-COR Inc, Lincoln, NE, USA) [41] were used to measure LAI of each sample plot [42]. 

LAI-2000 was used to measure the effective LAI (LAIe), and TRAC was used to measure both the 

effective LAI (LAIe) and the foliage clumping index (Ω). The true LAI of each sample plot was 

obtained through the equation LAIt = LAIe / Ω . The field-measured LAI was used to validate the 

inversion efficiency of the model. 

In addition, the forest canopy structural parameters of each tree were measured in the B sample 

plots. The measured geometrical structural parameters included tree horizontal radius of the tree crown 

(R), tree height (H), clear bole height (h), and the diameter at breast height (DBH). The tree height of 

each tree in the B sample plots was measured by laser altimeter (TruPulse 200, Laser Technology Inc. 
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(LTI), Norristown, PA, USA). The field-measured data was used to provide prior knowledge of the 

canopy structure parameters in the GOMS and MGOMS models.  

The protocols for each instrument used in the sample plots and the sample plot layouts were 

described in detail in a previous study [37]. 

2.2.2. MODIS, MISR, and SPOT Reflectance Data 

In the inversion process, optical multi-angle remote sensing data and high spatial resolution images 

were used to do the research. Moderate-resolution Imaging Spectro Radiometer (MODIS) and Multi-angle 

Imaging SpectroRadiometer (MISR) reflectance products were used to provide the multi-angle 

bidirectional reflectance datasets in this study. SPOT-5 data was used to provide the spectral information. 

Ten images of MODIS 500-m daily bidirectional surface reflectance data (MOD09GA) spanning a 

MODIS 16-day observation period (Figure 3), were selected in the validation process. MODIS 500-m 

8-day bidirectional surface reflectance data (MOD09A1) and MISR 1-km bidirectional surface 

reflectance data, spanning 1 May–28 July 2008, were selected to build the BRF datasets. The BRF 

datasets were constructed as follows. First, the MISR BRF and MODIS BRF data projections were 

transferred into UTM, WGS84. Second, the spatial resolutions of the MISR and MODIS data were 

normalized by dividing each of the MISR pixels into four 500 m pixels with the same BRF value and 

viewing direction. Third, the bidirectional reflectance and geometric information, including sun zenith 

angle and azimuth, viewing zenith angle and azimuth of each pixel, were extracted to build the BRF 

dataset both in the red and near-infrared (NIR) bands. The BRF datasets were used as the input 

parameters of the model inversion procedure. The main data processing procedures to construct the 

BRF dataset were explained in detail in a previous study [36]. 

 

Figure 3. Solar position and view position of the selected MOD09GA datasets in uncertainty 

and sensitivity analysis processes. The datasets span a MODIS 16-day observation period. 

The numbers 154–177 are the DOY of the MODIS BRF products in 2008.  

The SPOT-5 multi-band image obtained on 10 August 2008 that covers the study site was used to 

obtain information on the four component spectra (G, C, Z, T). The spatial resolution of this SPOT-5 

data was 10 m. The FLASSH model [43] was used for atmospheric correction of the SPOT-5 image. 

As noted by Fu et al. [37], the incident radiation was inconsistent during the measuring process. 
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Hence, we cannot obtain the available spectra of the components from field measurements. Using the 

four components spectra obtained from remote sensing data with high spatial resolution images can 

reduce the uncertainty due to scaling effects. Moreover, after the atmospheric correction of the SPOT-

5 remote sensing images, the incident radiation can be considered consistent within a MODIS pixel. 

Thus, we chose the SPOT-5 data instead of the field-measured radiation data to provide the required  

spectral information. 

2.2.3. Airborne LiDAR data 

LiDAR data were used to support the canopy height model (CHM) in our study. The LiDAR data 

we used were acquired on 28 June 2008, using a laser scanner (Riegl LMS-Q560, Riegl, Horn, 

Austria) with a maximum scan angle of ±0.5 mrad from nadir. The raw LiDAR data were processed 

using Terrasolid software (Terrasolid software (Version 007), Terrasolid Ltd., Helsinki, Finland) to 

classify the data into two types: ground points and non-ground points. The DEM was built from 

ground points, and the digital surface model (DSM) was produced from non-ground points. Then, the 

CHM was created with a resolution of 0.5 m by subtracting the DEM from the DSM. The CHM was 

used to provide b and nR2 in Section 4.2.3. 

3. Method 

3.1. Theoretical Foundation 

3.1.1. Geometric-Optic Mutual Shadowing Model 

The GOMS model is constructed based on the Li-Strahler geometric-optical model, which considers 

the mutual shadowing of crowns and makes the geometric optic model more suitable for highly dense 

canopy forests [31]. 

The assumption of the GOMS model is that the reflectance of a pixel can be modeled as a sum  

of the reflectances of its individual scene components as weighted by their respective areas within the 

pixel [28]. The model also assumes that the vegetation canopy BRDF characteristics at the pixel scale 

can be explained by geometric optical principle when the discontinuous three-dimensional geometry in 

a pixel is illuminated and observed in different directions. The reflections received by the sensors are 

the ground reflection and the crown reflection in the field of view A (“A” is only the assumption that 

the area of the field of view is A). Considering the three-dimensional canopy structure parameters, the 

influence of sky light and multiple scattering, the received signal can be defined as the combination of 

four area weighted components: 

S = Kg𝐺 + Kc𝐶 + Kz𝑍 + Kt𝑇 (1) 

where S is bidirectional reflectance; Kg, Kc, Kz, and Kt are the proportions of sunlit background, sunlit 

crown, shaded background, and shaded crown the GO modeled, respectively; and G, C, Z, and T are  

the contributions of the sunlit background, sunlit crown, shaded background, and shaded crown, 

respectively [27,44]. Kg, Kc, Kz, and Kt  can be expressed by a combination of the forest canopy 

structural parameters. We assume that the tree crown shape is ellipsoidal (Figure 4a) and that the forest 

canopy structure parameters include R (the horizontal radius of an ellipsoidal crown), b (the vertical 



Remote Sens. 2015, 7 11089 

 

 

half axis of an ellipsoidal crown), h (the height at which a crown center is located), and n (the number 

of crowns per unit area). 

 

Figure 4. (a) Forest canopy shape in ellipsoid. R is the horizontal radius of an ellipsoidal 

crown, b is the vertical half axis of an ellipsoidal crown, and h is the height at which a 

crown center is located; (b) Simplified schematic diagram of forest vegetation canopy in 

the GOMS model [31]. θi and θv are the revised solar zenith angle and view zenith angle, 

respectively. ∅i and ∅v are the solar azimuth and view azimuth, respectively. ∅i − ∅v is the 

azimuthal difference between the illumination and viewing directions. τi  and τv  are the 

sunlit shadow and viewed shadow, respectively. The shaded area is the mutual shadowing 

area of the sunlit shadow and viewed shadow. 

When the ellipsoid is stretched in the vertical direction and made b equal to R (Figure 4b), then 

Kg, Kc, Kz, and Kt can be expressed as: 

Kg = exp (−n ∗ [𝜏𝑖 + 𝜏𝑣 − O(θi, θv, ∅𝑖 − ∅𝑣)]) (2) 

where  

τi = 𝜋𝑅2 cos θi⁄  (3) 

τv = 𝜋𝑅2 cos θv⁄  (4) 

and where O(𝜃𝑖 , 𝜃𝑣, ∅𝑖 − ∅𝑣) is the shaded area in Figure 4b. ∅𝑖 and ∅𝑣 are the solar azimuth and view 

azimuth, but 𝜃𝑖 and 𝜃𝑣 are not the solar zenith angle and view zenith angle yet; they have been revised 

in the stretching process: 

θi = tan−1((𝑏 𝑅⁄ ) tan θi
′) (5) 

θv = tan−1((𝑏 𝑅⁄ ) tan θv
′) (6) 

where 𝜃𝑖
′
 and 𝜃𝑣

′
 are solar zenith angle and view zenith angle. 

Kc = 1 − exp (−n ∗ [
1

2
(1 + 〈i⃗, v⃗⃗〉)τv]) (7) 

Kt = exp (−n ∗ [
1

2
(1 + 〈i⃗, v⃗⃗〉)τv]) − exp (−n ∗ τv) (8) 

Kz = 1 − Kg − Kc − Kt (9) 
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We can simplify the expression of the GOMS model using the function below: 

S = f(𝜃𝑖 , ∅𝑖 , 𝜃𝑣, ∅𝑣, 𝜃𝑠, ∅𝑠, 𝑛𝑅2, 𝑏/𝑅, ℎ/𝑏, ∆ℎ/𝑏, 𝐺, 𝐶, 𝑍, 𝑇) (10) 

where S is bidirectional reflectance;  𝑛𝑅2  derived from  𝑛 ∗ 𝜋𝑅2  which contains the crown density 

information (n), that represents the crown coverage condition per unit area in the nadir observation; 

b/R is the crown shape parameter which significantly affects the crown coverage density in the non-

nadir direction; h/b is the parameter which represents the crown height from the ground and mainly 

affects the outward width of the hot spot; ∆h is the variance of the h distribution in one pixel; and 

∆ℎ/𝑏  is the parameter which describes the discrete degree of the crown height distribution and  

affects the bowl-shape of the BRDF. 𝜃𝑠 and ∅𝑠 are the local slope and aspect, respectively [36,37]. 

𝜃𝑖 , ∅𝑖 , 𝜃𝑣, and ∅𝑣 are the solar zenith angle, solar azimuth, view zenith angle, and view azimuth, respectively. 

In Equation (10), there are many input parameters in the GOMS model, but LAI is not an independent 

parameter in the model. We therefore attempt to modify the GOMS model by introducing LAI into 

Equation (10), that is, S = f(LAI, …), to allow LAI to be retrieved by the modified GOMS model directly. 

3.1.2. Gap Probability Model 

A gap probability model is a GO model that uses the average transmission theory or the simplified 

radiation transfer equation to simulate the distribution of the leaves by calculating radiation attenuation 

and consequently determining the radiation characteristics of the vegetation canopy. The most 

improved gap probability model is the Li-Strahler Gap probability model [45], in which LAI is an 

independent parameter.  

When considering a unique canopy: 

Pgap(θ) = exp(−K(θ) ∗ 𝐿𝐴𝐼 ∗ s/D) = exp(−τs) (11) 

where s is the distance traveled by a photon within the canopy; τ = K(θ) ∗ LAI/D mainly depends on 

the leaf density and the foliage angle distribution (FAD); K (θ)  is the coefficient of leaf angle 

distribution function; and D is the average depth of the canopy. 

Considering the gap probability within the canopy and among the canopies, and assuming that the 

canopies are non-overlapping, the gap probability of the canopies is: 

Pgap = P(0) + ∑ P(n) ∫ P(s|n)exp(−τs)ds
∞

0

∞

1

 (12) 

where P(n) is the probability that a photon will pass through n canopies, P(0) is the gap probability 

among the canopies, and P(s|n) represents the s-distribution for n canopies. 

3.2. Modifying GOMS Model Using the Gap Probability Model  

According to the descriptions above, both LAI and nR2 are closely related to area and, thus, we first 

propose that LAI and nR2  are closely related and then attempt to build the relationship function 

between them. We find that nR2 is similar to vegetation coverage (n ∗ πR2 is the vertical vegetation 

coverage)—the vegetation coverage is a function of area. Moreover, vegetation coverage and gap 

probability are intimately related such that their sum is equal to one. Furthermore, LAI is a parameter 
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in the gap probability model. Thus, it is possible to calculate the relationship between LAI and nR2 

using the gap probability model.  

LAI and nR2 are the parameters independent of the view angle. Hence, the function between LAI 

and nR2 when the view zenith angle is zero can be applied in all directions.  

Vertical gap probability [46] is the probability that considers the gap probability both within and 

among canopies when the view zenith angle is zero. 

In field of view A, when the forest canopy is non-overlapping, Pgap can be written as: 

Pgap = P(0) + ∑ P(n) (∫ P(s|1)exp(−τs)ds
∞

0

)

n∞

1

 (13) 

where P(s|1) represents the s-distribution for a single individual, and P(0) represents the gap 

probability when the crown canopy is completely opaque.  

When the view zenith angle is zero, the forest canopy is uniformly distributed, i.e., 

P(0) = 1 − n ∗ πR2 = 1 − π ∗ 𝑛𝑅2 (14) 

Assuming that: 

q = ∫ P(s|1)exp(−τs)ds
∞

0

 (15) 

where q is the proportion of the light striking the sphere that passes through the canopy [31,45]. 

Thus, the gap probability model is:  

Pgap = 1 − π ∗ 𝑛𝑅2 + 𝑛 ∗ 𝑞 (16) 

Based on Nilson’s [47] work, the directional gap fraction can be written as:  

Pgap(θ) = exp(−G(θ) ∗ Ω(θ) ∗ 𝐿𝐴𝐼/ cos θ) (17) 

where Ω(θ) is determined by the distribution of the leaves. When the space distribution of the forests 

is random, the clumping index is 1; when the space distribution is uniform, the clumping index is 

greater than 1; when the space distribution is clumped, the clumping index is less than 1. In practical 

situations, the space distribution is always clumped. Therefore, Ω(θ)  is usually defined as the 

clumping index [40]. G(θ)  is the foliage projection coefficient that describes the foliage angular 

distribution [48]. Miller [49] simplified G(θ) as: 

∫ G(θ) sin θdθ

π/2

0

= 0.5 (18) 

When the view zenith angle is zero, the vertical gap probability can be written as follows: 

Pgap = exp(−0.5 ∗ Ω ∗ 𝐿𝐴𝐼) (19) 

Then, the relationship between LAI and nR2 is established as the following: 

nR2 =
1 + 𝑛 ∗ 𝑞 − exp(−0.5 ∗ Ω ∗ 𝐿𝐴𝐼)

π
 (20) 

In Equation (20), LAI is the true LAI (LAIt ) and Ω ∗ LAIt  is the effective LAI (LAIe ). Thus,  

Equation (20) can be written as follows: 
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nR2 =
1 + 𝑛 ∗ 𝑞 − exp(−0.5 ∗ 𝐿𝐴𝐼𝑒)

π
 (21) 

Equation (21) successfully introduces LAI into the GOMS model by replacing the structure 

parameter nR2, to create the modified GOMS (MGOMS) model. 

3.3. LAI Inversion by the MGOMS Model 

3.3.1. Input Parameters in the Inversion Process of GOMS and MGOMS Models 

There are four canopy structural parameters ( nR2 , b/R, h/b, ∆h/b ), four spectral parameters  

(G, C, Z, T), and six angle parameters (θi, ∅i, θv, ∅v, θs, ∅s) in the GOMS model. In the MGOMS 

model, the parameter nR2 is replaced by LAI. In this study, we assume that the reflected intensity of 

the shadow on the ground and on the canopy are the same (i.e., Z equals T). Thus, the model is 

simplified with three area-weighting components.  

Table 1 presents the initial value of the parameters in the inversion process of GOMS and MGOMS 

models. The four structural parameters (nR2, b/R, h/b, ∆h/b) are obtained from the field-measured 

data, and the three spectral parameters (G, C, Z) are extracted from the atmosphere-corrected image 

SPOT-5. In B sample plots, we measured the tree crown (R), tree height (H), and clear bole height (h) 

of each tree. We also measured the number of trees in each sample plot to calculate n. We then 

obtained the datasets of nR2, b/R, h/b, and ∆h/b. The G, C, and Z datasets were derived from SPOT-5 

data. We resampled many pixels, and then built the datasets of these three parameters. We then used 

the mean values of nR2, b/R, h/b, ∆h/b , G, C, and Z as the initial values, and the maximum and 

minimum numbers as the upper and lower limits. We also calculated the weighted value of each 

parameter (the reciprocal of the variance).  

Table 1. Initial values of the input parameters *. 

Parameter Initial Value Lower Limit Upper Limit 

NIRG 0.4225 0 1 

NIRC 0.384 0 1 

NIRZ 0.146 0 0.3 

RG 0.12 0 1 

RC 0.09 0 1 

RZ 0.015 0 0.05 

𝑛𝑅2 0.25 0.1 0.8 

LAI 2.88 0 7 

n 0.15 0 1 

q 0.2 0 1 

b/R 1.9525 0.74 7.5 

h/b 2.049 1 10 

∆ℎ/𝑏 5.5766 0 50 

* RG, RC, and RZ are G, C, and Z in the red band, respectively, and NIRG, NIRC, and NIRZ are G, C, and Z 

in the near-infrared (NIR) band, respectively. The initial values are the mean values of the parameters; the 

lower and upper limit values are the thresholds of the parameters. 
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The input data in the inversion process also include the multi-angle reflectance datasets constructed 

in Section 2.2.2 and the terrain information (slope and aspect of each pixel) extracted from the DEM.  

3.3.2. Model Inversion Strategy 

The goal of our research is to invert LAI by GOMS model directly. We thus modified the GOMS 

model to the MGOMS model by introducing LAI into it. The MGOMS model has many parameters. 

For a given observation period, the MODIS or MISR BRF products only include limited bidirectional 

reflectance factor data in the model inversion process. In this study, the Multi-stage, Sample-direction 

Dependent, Target-decisions (MSDT) inversion method [50] was adopted to segment invert the 

observation data and the parameters. The main objective of the iterative inversion process is to adjust 

the model parameters to make the model output reflectance as close as possible to the input 

observation reflectance data. The most sensitive observation data are used to invert the most sensitive 

parameters, and the previous results are used as the prior knowledge in the next inversion stage. The 

MSDT inversion method is based on the uncertainty and sensitive matrix (USM), which presents the 

sensitivity of the model parameters to the observational data in different viewing directions, and then 

determines the parameter inversion order in the inversion strategy. The USM can be expressed as an 

objective expression of the prior knowledge. Each element of the USM can be expressed as 

USM(p, q) =
∆BRF(p, q)

BRFexp(p)
 (22) 

where ∆BRF(p, q) is the maximum difference of BRF calculated by the model under the circumstance 

that only the parameter q is changed with its uncertainty and the other parameters are fixed at their 

expected values; and BRFexp(p)  is the BRF computed by the model at the pth geometry of 

illumination and viewed with all parameters at their expected values. 

The inversion process in this study was performed according to a previous study [37] (see  

Section 4.2.1). The cost function [51] shown below was adopted  

J(X) =
1

2
{∑

[fn(X) − yn
obs]

2

σn
2

N

n=1

+ ∑
[xl − xl

prior]
2

σl
2

L

l=0

} (23) 

where yn
obs  and fn(X)  are the observational reflectance value and the corresponding modeled 

reflectance value, respectively. The variables σn
2 and σl

2 are the variances of the observational data 

and the prior distribution of parameters, respectively. The variables xl and xl
prior are the parameter 

values and the initial values in the model, respectively. N is the number of observation samples, and L 

is the number of parameters. Sequential quadratic programming (SQP), which is an excellent 

optimization algorithm for solving nonlinear programming problems [52], was adopted to search for 

the cost function minimum. Such methods can be interpreted as Newton methods for the problem of 

finding a constrained saddle-point to the Lagrangian function. These methods solve a non-linear 

programming problem through the solution of a sequence of approximating QP subproblems. The 

optimal solution of each subproblem is used to define a search direction in which a line search is made; 

its solution gives the new iteration point [53]. 
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4. Results 

4.1. MGOMS Model Accuracy Validation 

4.1.1. Tendency of the BRF Simulated by MGOMS Model along with the Variation of LAI 

The GOMS model can be used to simulate BRF, and the simulation results can accurately reflect the 

hotspot and bowl-shape effect of the canopy’s BRDF. The MGOMS model derived from the GOMS 

model must possess the same properties as the GOMS model. When calculating BRF using the 

MGOMS model, all the input parameters (G, C, Z, LAI, b/R, h/b, ∆h/b , θi, ∅i, θv, ∅v , n, q) are 

constant as in Table 1, except for LAI, and the influence of the slope and aspect are neglected. In this 

part, forest canopy reflectance in the principle plane is simulated with gradually increasing LAI in both 

the red and NIR bands by MGOMS model (Figure 5) (we regard viewing positions near the principal 

plane on the hotspot side as the “backward observation” and viewing positions near the principal plane 

opposite the hotspot as the “forward observation”). The results show that BRFs decreased with 

increasing LAI in the red band and increased with rising LAI in the NIR band. The simulated BRFs 

reveal the hotspot effect of BRDF in the red and NIR bands and the bowl-shape effect in the NIR band. 

Additionally, the variation of BRFs with gradually increasing LAI also appropriately reflects the 

optical characteristics of the vegetation spectral curve.  

 

Figure 5. BRF estimated by MGOMS along with the increased LAI against the view zenith 

angle in the principal plane with a solar zenith angle of 45° in the (a) NIR band and (b) red 

band. LAI was gradually increased from 2 to 5 with a data change interval of 0.5. Other 

parameters in MGOMS were fixed. Negative view zenith angle means the forward observation. 

The results demonstrate that the MGOMS model is consistent with the GOMS model and can be 

used to calculate BRFs. Due to the fact that LAI and other canopy structure parameters are not 

independent in the model, the results only indicate that the MGOMS model has the same 

characteristics as the GOMS model in the threshold range of the input parameters.  

4.1.2. Comparison of the Simulated BRF and MOD09GA BRF 

We compared the BRF simulated by the MGOMS model with the MOD09GA BRF products at the 

500-m pixel scale (the compared pixels are the pixels where the sample plots located); the solar 
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position, view position, and DOY of the selected MOD09GA BRF data are shown in Figure 3, and the 

initial data for the model are shown in Table 1. 

Figure 6a presents the results of the comparison of the simulated BRF and MOD09GA BRF in the 

NIR band with an RMSE of 0.0124 and an R2 of 0.62. Figure 6c presents the results of the comparison 

of the simulated BRF and MOD09GA BRF in the red band with an RMSE of 0.0016 and an R2 of 

0.75. Figure 6b,d present the results of the comparison of the simulated BRF and MOD09GA BRF 

along with the view zenith angle in the NIR and red bands, respectively. The comparison results reveal 

that the MGOMS model can be used to simulate the BRF precisely (Figure 6a,c). The results presented 

in Figure 6b,d clearly indicate that the GOMS and MGOMS models have a high consistency in simulating 

BRF. However, the simulated BRFs were higher than the MOD09GA BRFs in the NIR band and lower 

than the MOD09GA BRFs in the red band. This is mainly because the simulated BRFs are closely 

related to the initial values, and the initial values of the model are set according to the field-measured 

data, which only represent the sample plot of 25 m × 25 m. However, at the 500-m spatial resolution of 

the MOD09GA BRF products, the unmatched pixel size scale would cause some error; for example, 

the field-measured LAI of the A sample plots was higher than the LAI of a 500 m × 500 m pixel (the 

sub-pixel coverage is higher than the pixel coverage of the A sample plot, derived from Section 4.2), 

which lead to overestimation of the simulated BRFs in the NIR band and underestimation in the red band. 

 

Figure 6. BRF comparison results for simulated BRFs and MOD09GA BRFs. Comparison 

of the simulated BRF by the MGOMS model and MOD09GA BRF in the (a) NIR band 

and (c) red band; Comparison of the simulated BRF (simulated by the GOMS and 

MGOMS models) and MOD09GA BRF along with the view zenith angle in the (b) NIR 

band and (d) red band. (Negative view zenith angles means the foreward observation). 
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4.2. MGOMS Model Application Validation 

4.2.1. Uncertainty and Sensitivity Analysis of the Parameters in MGOMS Model  

BRFs in the NIR band can well reflect the vegetation coverage features. In our research, BRFs in 

the NIR band were used to invert LAI. Table 2 presents the first USM matrix (USM0) in the NIR band. 

The solar zenith angle, solar azimuth, view zenith angle, and view azimuth were derived from the 

selected MOD09GA data shown in Figure 5. On these days, the solar positions were nearly identical 

and, thus, we set the solar zenith angle equal to 23° and the solar azimuth equal to 143°. Figure 7 

shows the first uncertainty and sensitivity analysis results in the NIR band in all directions, the solar 

zenith and solar azimuths are 23° and 0°, respectively, in this analysis process. The results indicate that 

NIRC was the most sensitive parameter, and the USM0 data of NIRC were the highest. The results 

also demonstrate that the uncertainty of NIRC is more sensitive in the backward observation than in 

the forward observation. Hence, we first invert NIRC to reduce the uncertainty of the parameter NIRC, 

and then calculate the average NIRC as the initial value for the second uncertainty and sensitivity 

analysis to determine the second most sensitive parameter, etc. Based on the results of these analyses, 

LAI was the third most sensitive parameter and was in the third order in the inversion process. When 

the sensitivities of the parameters are similar, the parameters are always inverted simultaneously. As 

our main purpose was to invert LAI, we did not assess whether the sensitivities of the other parameters 

were similar to that of LAI.  

Table 2. The first uncertainty and sensitivity analyses matrix (USM0) results in the NIR 

band (the solar zenith angle was 23°, and the solar azimuth was 143°). The multi-angles 

were derived from the MODIS BRF datasets, the DOY of which are shown in Figure 3. (A 

higher data value indicates a higher sensitivity of the parameter in the model.) 

VZA 

(°) 

VAA 

(°) 
NIRG NIRC NIRZ LAI n q b/R h/b Δh/b 

27.88 282.92 0.81  0.96  0.59  0.58  0.05  0.04  0.59  0.02  0.03  

6.39 276.92 0.95  1.00  0.44  0.48  0.05  0.04  0.54  0.04  0.07  

17.22 99.05 0.86  1.27  0.31  0.35  0.04  0.03  0.38  0.07  0.14  

50.74 95.61 0.50  1.64  0.28  0.33  0.00  −0.01  0.25  0.04  0.12  

27.58 99.47 0.72  1.44  0.29  0.33  0.03  0.03  0.31  0.07  0.17  

44.27 284.89 0.58  1.08  0.70  0.63  0.04  0.03  0.61  0.01  0.08  

36.65 98.06 0.59  1.56  0.31  0.34  0.03  0.02  0.25  0.06  0.14  

36.86 283.61 0.70  1.02  0.65  0.61  0.05  0.04  0.60  0.01  0.06  

According to the sensitivity analysis results, the steps for inversion and segmentation of the BRF 

data were as follows: 

(1) Invert NIRC using the NIR band reflectance datasets with backward-viewing directions and 

large viewing zenith angles; 

(2) Invert NIRG using the NIR band reflectance datasets with small viewing zenith angles; 

(3) Invert LAI (LAIJune) using the reflectance datasets for June with forward-viewing directions 

and large viewing zenith angles. 
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Figure 7. Polar coordinate graph of the first uncertainty and sensitivity analyses matrix 

results in the NIR band in all view directions. The solar zenith and solar azimuth were 23° 

and 0°, respectively. The data values have no unit. A higher data value indicates a higher 

sensitivity of the parameter in the model. 

4.2.2. LAI Inversion Based on Retrieved Parameters by MGOMS Model 

The results of the parameter uncertainty and sensitivity analysis indicated that LAI was the third 

most sensitive parameter in the NIR band of the MGOMS model. Thus, we first inverted NIRC, then 

used the inversion results as the prior knowledge to invert NIRG, and finally obtained the inversion 

results of LAI. Compared with the GOMS model, the MGOMS model can effectively abridge the LAI 

inversion process. The input parameters were described in Section 3.3.1.  

Figure 8 shows the LAI inversion results for June 2008 obtained using the MGOMS model; the 

pixel scale is 500 m with 300 × 380 pixels. Considering the real surface condition in the Dayekou 

forest, the density of the trees decreases and the shape of the tree canopy becomes smaller with 

increasing altitude, indicating that LAI will decrease with increasing altitude. From the DEM map of 

Dayekou shown in Figure 1b, the altitude increases with decreasing latitude and longitude. Therefore, 

in Dayekou forest, the LAI should show a decrease with decreasing latitude and longitude. As shown 

in Figure 8, LAI decreases with decreasing latitude and longitude on the whole. The change of the 

retrieved LAI with decreasing latitude and longitude is approximately in agreement with the real 

condition in Dayekou forest. This result shows that the MGOMS model can be used to invert LAI in 

large areas. 

4.2.3. Precision of the Retrieved LAI by MGOMS Model  

In order to validate the LAI inversion efficiency of the MGOMS model, the retrieved LAI was 

compared with the field-measured LAI in situ. As described in Section 2.2.1, the forest LAI was 
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measured using LAI-2000 and TRAC in the A (20 m × 20 m) and B (25 m × 25 m) sample plots. The 

retrieved LAI must be adjusted to the in situ scale to enable a robust validation. The LAIe at different 

scales (subpixel and pixel) has the relationship shown below [36] 

LAIsubpixel

LAIpixel
=

(b ∗ nR2)subpixel

(b ∗ nR2)pixel
 (24) 

where LAIsubpixel is the field-measured LAI and LAIpixel is the retrieved LAI. The parameters on the 

right side can be obtained from the LiDAR image. b can be calculated from H. H can be derived from 

the LiDAR data (CHM), and the statistical relationship between b and H can be built using  

field-measured b and H. nR2 is considered to be approximately equal to the canopy cover factor, which 

can be calculated as the ratio between the number of canopy pixels and the number of corresponding 

CHM pixels classified with a zero threshold.  

 

Figure 8. LAI inversion results of Dayekou forest in June 2008. The retrieved LAI data 

value is 0 to 6. The size of the map is identical to that in Figure 1a. The pixels in the 

inversion process are only the forest pixels, and the others are set to zero and colored white in 

this map. 

Due to the sample plots A5-9 not being forest pixels in the MODIS land-cover product, there were 

only 24 field-measured LAIe validation data points in this part. We also compared the LAI retrieved by  

Ma et al. [36], i.e., LAI retrieved by the GOMS model (which cannot be directly inverted by the 

GOMS model, by using the structure parameter retrieved by the GOMS model and other statistical 

relationships to calculate LAI), with the LAI retrieved by the MGOMS model. Figure 9 shows the 

validation results. 

Figure 9a–c show the effective LAI measured by LAI-2000 and TRAC versus LAI retrieved by the 

GOMS model, LAI retrieved by the MGOMS model and MODIS LAI, respectively. Figure 9d shows 

the results of the comparison of LAIe  retrieved by the GOMS model and LAIe  retrieved by the 

MGOMS model. Both the GOMS and MGOMS models can achieve high accuracy in calculating LAI 
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and were in good agreement with the field-measured LAI, with R2 of 0.71 and 0.64, respectively. 

However, MODIS LAI produced much lower R2  values compared with the field-measured LAI 

(Figure 9d). The RMSE value between the field-measured LAI and the MODIS LAI (3.25) is much 

higher than that between the field-measured LAI and the GOMS and MGOMS LAI (0.71 and 0.67). 

Figure 9d compares the LAIe retrieved by the MGOMS model and the LAIe retrieved by the GOMS 

model. The high R2  (0.96) and low RMSE (0.5243) indicate that the MGOMS model was very 

consistent with the GOMS model, combined with other statistical relationships, for calculating LAI. 

The LAIe retrieved by the MGOMS model was higher than the LAIe calculated by the GOMS model, 

but the LAIe retrieved by the MGOMS model was closer to the field-measured LAIe, with a lower 

RMSE (0.67).  

 

Figure 9. Comparison between the retrieved LAI and field-measured LAIe of the sample 

plots: (a) LAIe retrieved by the GOMS model compared with field-measured LAIe, with R2 

of 0.71 and RMSE of 0.72; (b) LAIe  retrieved by the MGOMS model compared with  

field-measured LAIe, with R2 of 0.64 and RMSE of 0.67; (c) MODIS LAI compared with 

field-measured LAIe , with R2  of 0.26 and RMSE of 3.25; (d) LAIe  retrieved by the 

MGOMS model compared with LAIe retrieved by the GOMS model, with R2 of 0.96 and 

RMSE of 0.52. 

5. Discussions 

The MGOMS model, which is derived from the GOMS model, has the same characteristics in 

modeling BRF as the GOMS model. In Figure 6a,c, the results suggest that the BRF simulated by 

MGOMS model is closely related to the MODIS BRF data. In the NIR band, the R2 and RMSE are 
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0.62 and 0.0124, respectively, and in the red band, the R2  and RMSE are 0.75 and 0.0016. The 

relatively high R2 and low RMSE indicate that the MGOMS model can be used to simulate BRF. In 

Figure 6b,d, it is clear that the BRF datasets simulated by the GOMS and MGOMS models are nearly 

equivalent when the field-measured data are used as the initial value. This result further demonstrates 

that MGOMS model is consistent with GOMS model. 

The GOMS model is the most widely-used physical model to invert LAI because the model builds 

the canopy structure parameters and BRF together. With the multi-angle BRF datasets, such as the 

MODIS and MISR datasets, it is easy to build the invert function and retrieve all parameters belonging 

to the GOMS model. The MGOMS model is derived from the GOMS model and, thus, shares this 

advantage. Previous studies [36,37] of LAI inversion using the GOMS model have inverted the canopy 

structure parameters (e.g., b/R, h/b, nR2) first and then used the statistical model to calculate LAI. By 

contrast, the MGOMS model can retrieve LAI directly. The USM results indicated that LAI is  

in the third order of the MSDT inversion process, and using the MGOMS model abridges the LAI 

inversion process. 

Compared with the field-measured LAI, the LAIe values retrieved by both the MGOMS and GOMS 

models are in good agreement with the field-measured LAI, with R2 of 0.64 and 0.71, respectively. 

Although the R2 of LAIe retrieved by the MGOMS model is slightly lower than that of LAIe retrieved 

by the GOMS model, the RMSE of LAIe  retrieved by MGOMS (0.67) is lower than that of LAIe 

retrieved by GOMS (0.72). These results all demonstrate that the MGOMS model can be used to  

invert LAI. 

However, the GOMS model was constructed based on the Li-Strahler geometric-optical model, 

which considers the mutual shadowing of crowns and makes the geometric optic model more suitable 

for highly-dense canopy forests. However, in our modified process, when considering the mutual 

shadowing of crowns, the P(s|n) function is difficult to build, and the Pgap  function will be very 

complex. In order to make the function between LAI and nR2 laconic, we assumed that the crowns are 

non-overlapping and that the crowns in the field of view are uniformly distributed. Based on this 

assumption, the MGOMS model may be less precise than the GOMS model in dense forest, with a 

smaller applicable scope than the GOMS model. Thus, further research must address the development 

of the LAI and nR2 relationship function when the crowns are non-overlapping and the crowns are 

Poisson-distributed.  

6. Conclusions  

In this study, the GOMS model was modified by using LAI to replace nR2. The modified GOMS 

(MGOMS) model enabled the direct inversion of LAI, and LAI is a relatively highly-sensitive 

parameter in the MGOMS model. By using the MGOMS model, the LAI inversion process was 

effectively reduced. When comparing the retrieved LAIe with the field-measured LAIe, though the LAI 

retrieved by the MGOMS model had a slightly lower R2 (0.64) than the LAI retrieved by the GOMS 

model (0.71), the LAI retrieved by the MGOMS model was closer to the field-measured LAI (with an 

RMSE of 0.67) than the LAI retrieved by the GOMS model (with an RMSE of 0.72). All of these 

results indicate that the MGOMS model can be used to invert LAI effectively and precisely. However, 

many problems remain to be addressed in the future, such as, in the modeling process, we make the 
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assumption that the canopies are non-overlapping and uniformly distributed. We also assume that the 

view zenith angle is zero. Moreover, we set the parameter G to a constant value of 0.5. All of these 

assumptions can affect the accuracy of the model. In addition, the precision of the prior information 

also influences the calculated results of the MGOMS model. Therefore, in a forthcoming study, we 

will focus on how to expand the applicability of the MGOMS model and how to solve the uncertainty of 

the input parameters.  
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