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Abstract: While the synergy between thermal, optical, and passive microwave 

observations is well known for the estimation of soil moisture and vegetation parameters, 

the use of remote sensing sources based on the Global Navigation Satellite Systems 

(GNSS) remains unexplored. During an airborne campaign performed in August 2014, 

over an agricultural area in the Duero basin (Spain), an innovative sensor developed by the 

Universitat Politècnica de Catalunya-Barcelona Tech based on GNSS Reflectometry 

(GNSS-R) was tested for soil moisture estimation. The objective was to evaluate the 

combined use of GNSS-R observations with a time-collocated Landsat 8 image for soil 

moisture retrieval under semi-arid climate conditions. As a ground reference dataset, an 

intensive field campaign was carried out. The Light Airborne Reflectometer for GNSS-R 

Observations (LARGO) observations, together with optical, infrared, and thermal bands 

from Landsat 8, were linked through a semi-empirical model to field soil moisture. 

Different combinations of vegetation and water indices with LARGO subsets were tested 

and compared to the in situ measurements. Results showed that the joint use of GNSS-R 

reflectivity, water/vegetation indices and thermal maps from Landsat 8 not only allows 

capturing soil moisture spatial gradients under very dry soil conditions, but also holds great 
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promise for accurate soil moisture estimation (correlation coefficients greater than 0.5 were 

obtained from comparison with in situ data). 

Keywords: GNSS-R; Landsat 8; airborne; soil moisture; reflectivity; temperature; synergy 

 

1. Introduction 

Recent studies have shown that the Global Navigation Satellite Systems Reflectometry (GNSS-R) 

signal has high sensitivity to the terrain dielectric constant, both from ground-based and airborne 

platforms [1–4]. This suggests that GNSS-R techniques could be potentially used to monitor 

vegetation and soil variables related to the water content. The most recent experiments are based on 

the attenuation and scattering that vegetation cover produces into the GNSS signal before it impinges 

on the ground and after it is reflected to the receiving antenna. Due to the novelty of this technique, the 

performance of airborne reflectometers for vegetation/soil applications needs further research, and 

remains a challenge of increasing interest, especially with the approval of a new dedicated GNSS-R 

space-borne mission such as the NASA CYGNSS [5] to be launched in October 2016 and the ESA 

GEROS-ISS [6], under phase A studies. 

The synergy between low-resolution passive microwave observations and optical data at higher 

spatial resolution is the basis of several proposed multi-resolution soil moisture retrieval approaches 

for the ESA SMOS mission [7,8]. In this regard, downscaling or fusing techniques are applied to 

combine L-band radiometric data with optical/infrared imagery from multispectral sensors (e.g., 

SMOS and MODIS). These disaggregation methods generally combine passive microwave 

observations with visible and near infrared (VNIR) indices, and little research has been done 

considering the use of alternative spectral bands, such as the short-wave infrared (SWIR) [9] or indices 

in the red, green, and blue (RGB) space [10]. Since green vegetation spectra in the SWIR region are 

dominated by water absorption effects, SWIR-based indices are sensitive to changes in leaf water 

content. The results of the research of [9] supported the use of MODIS-derived high resolution land 

surface temperature (LST) and SWIR-based vegetation indices to disaggregate SMOS observations. 

The use of RGB bands, in turn, was proposed early in the history of satellite remote sensing by 

Kanemasu [11], but abandoned after several studies which seemed to demonstrate that the 

combinations of near infrared (NIR) and red were far superior than the combinations of green and red. 

The VIS/IR spectral response of vegetated or soil areas shows a complex pattern due to soil brightness, 

environmental effects, shadow, soil color and moisture. Still, by calculating a vegetation index from 

the red, green, and blue bands of a digital image it is possible to track vegetation status, which may be 

useful information in VIS/IR and passive microwave data fusion or downscaling algorithms. 

The Light Airborne Reflectometer for GNSS-R Observations (LARGO) [12] is an innovative 

instrument, GNSS-R-based, designed and engineered by the Universitat Politècnica de Catalunya 

(UPC) for real-time measurements of the ground reflectivity. A new approach to enhance the 

information provided by LARGO reflectivity by using thermal and optical maps from Landsat 8 is 

presented. The aim of this work is to show how the combined use of optical and thermal data with the 

GNSS-R signal improves the sensitivity to soil moisture obtained with each of the sensors separately. 
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A total of two RGB-based indices and five NIR and SWIR-based indices were tested as proxies of 

vegetation and soil moisture status, together with the land temperature, all of them from Landsat 8. The 

optical and thermal datasets provide the spatial framework needed to adjust the multi-resolution GNSS-R 

observations and the resulting soil moisture estimates to a fixed grid of 30 m spatial resolution. Thus, the 

LARGO observations were converted into reflectivity maps matching the Landsat 8 spatial resolution 

which correspond to 30 m for VNIR/SWIR bands and native 100 m resampled to 30 m pixel size for 

TIR bands. This study provides new insight on the fusion of GNSS-R data with optical and infrared 

datasets, in an effort to obtain spatially coherent and accurate soil moisture estimates. 

2. Airborne GNSS-R Observations and Field Campaign 

The airborne field experiment took place in an agricultural area near the Guareña River, tributary of 

the Duero River in the center of the Iberian Peninsula (5.36°W; 41.30°N). The main land use is 

vineyard (100 ha), but some areas of pasture, fallow, irrigated crops, and forest are also present (Figure 1). 

The airborne campaign was carried out during the 6th August 2014. The flight height was between 500 

and 700 m, and lasted from 8 AM to 10:30 AM. During the flight, field measurements of soil moisture 

(0–6 cm) and surface temperature were taken at 119 ground points (Figure 1). ML3 Theta probes 

(Delta-T Devices Ltd., Burwell Cambridge, United Kingdom) were used, and after a laboratory test 

experiment using soil monoliths taken in the area, the manufacturer calibration equation for mineral 

soils was used. The probes were inserted vertically into the soil and the measurement integrates the 

soil water content of the first 6 cm of the top layer. The in situ measurement locations were randomly 

selected along the study area (Figure 1). Four measurements were acquired at each location within an 

area of 1 m2 and geolocated in the field using a differential Global Positioning System instrument. 

Surface soil temperature was also measured with an infrared thermometer TFA-ScantTemp 380. The 

in situ measurements were taken from 8 AM to 10:30 AM, at the same time of the flight. 

 

Figure 1. Location of the study area with the main land uses and the sampling layout. 

As it is usual under Mediterranean conditions in summer, the in situ observed soil moisture was 

very low in the top layer, ranging from up to 3% vol. in the vineyard, and up to 14% vol. in the wetter 
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areas such as the pasture field near the river. The field measurements were originally designed to 

characterize rainfed coverages, such as vineyard; thus, no data over well-watered soils (e.g., irrigated 

crops) were taken. 

The LARGO instrument used in this field campaign is an improved version of a previous LARGO 

used before in [12], containing an additional switching matrix for calibration purposes. The LARGO 

instrument is a dual-channel instrument that estimates in real-time the coherent reflectivity 

( 2| ( ) |inc RL  ) from transmitted RHCP (Right Hand Circular Polarization) GNSS signals and received 

LHCP (Left Hand Circular Polarization) reflected GNSS signals using 1 ms of coherent integration time 

and 1000 incoherent averages. The direct and reflected waveforms are computed by cross-correlating the 

sampled data with a clean replica of the satellite code, also known as conventional GNSS-R (cGNSS-R). 

The reflectivity is estimated by dividing the waveform peaks (after noise floor subtraction) of the 

reflected and direct signals, which are calculated independently. In this sense, the direct signal is used 

as a reference for estimating the satellite transmitted power. The calibration matrix allows changing 

which signal (direct or reflected) is sent to each GNSS-R receiver in order to characterize each of the 

receiving channels and take into account differences among them. The LARGO instrument includes an 

Inertial Measurement Unit (IMU) to measure the platform movements and to apply antenna pattern 

corrections in a post-processing stage. It also includes a GPS receiver to geo-locate the platform, 

compute the position of the specular reflection points, and aid the correlators to apply correlations only 

against the satellites under observation (not all satellites). The computation of the specular reflection 

point/area to generate the reflectivity is done by a geometrical approach. For each of the reflectivity 

measurements, the position of the corresponding satellite on the sky is known using its azimuth and 

elevation. As GNSS satellites are more than 20,000 km away from the Earth, the direct GNSS signal 

and the reflected one arrive to the Earth as a plane electromagnetic wave with the same 

incidence/elevation angle. So, by knowing the height of the platform (GPS data) and the satellite 

position, the reflection points can be geolocated assuming flat Earth approximation and the 

atmospheric path as a linear path [13]. The ground-resolution of the LARGO instrument depends on 

incidence angle and on the surface scattering conditions. In this work, for land observations and low 

roughness conditions, it is assumed that the main reflected power comes from the first Fresnel  

zone [14] under specular reflection conditions. Under flat surface conditions, the incidence angle of the 

GNSS-R data, which is an important parameter for the reflectivity estimation, is the complementary 

angle of the GNSS satellite elevation angle. The ground-projected first Fresnel zone is initially 

determined by an ellipse with semi-major and semi-minor axes of 16.5 m and 11.7 m respectively for 

an incidence angle of 45°, and of 10.1 m and 9.9 m, respectively, for an incidence angle of 10°. The 

platform movement should also be considered when calculating the Fresnel zone, since, for any given 

second, there is movement in the along-track direction and the covered area enlarges. Given the 

platform speed was about 10 m/s, an approximate ground-resolution of 30 × 20 m is obtained, which is 

comparable to the ground-resolution of LANDSAT images. 

When dealing with the terrain topography, the incidence angle must be corrected by the local 

incidence angle of the reflection area using a Digital Surface Model (DSM). In this case, for all 

possible reflection points, the conditions for specular scattering were applied using the DSM, and data 
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values were discarded when conditions were not accomplished [15]. Resulting geolocation corrections 

were of less than 10 m, therefore not affecting the collocation with Landsat (of 30 m resolution). 

3. Data and Methods 

3.1. LARGO Pre-Processing 

A preliminary reflectivity map is shown in Figure 2, where several distinctive regions can be 

identified, according to the power of the received GNSS-R signal. The higher the reflectivity, the 

higher the soil moisture, with the blue and red coloring depicting wet and dry conditions, respectively. 

On the northwestern part, there is a region where reflectivity ranges from −6 to −10 dB, coinciding 

with an irrigated plot. Nevertheless, on most areas reflectivity ranges from −12 to −18 dB, showing the 

extremely dry soil conditions observed during the experiment. 

 

Figure 2. (left) Orthophoto of the study area and (right) preliminary reflectivity (dB) map 

from the UPC LARGO GNSS-R instrument. 

The LARGO reflectivity retrieved at point scale was converted into a 30 m map following the 

inverse distance weighted (IDW) method in order to integrate it with Landsat 8 imagery (Figure 3). 

The IDW method was chosen since it assumes that each measured point has a local influence that 

diminishes with distance, therefore matching the high point density cloud obtained from LARGO 

(Figures 2 and 3). To obtain the maps, the LARGO reflectivity was binned between 40° and 60° 

elevation angles (hereafter LARGO 40-60) and between 60° and 80° (hereafter LARGO 60-80). The 

elevation angle results to be the complementary angle to the incidence one. The binning is done 

because, for the same roughness conditions, the surface appears rougher for lower incidence angles 

than for larger ones [15]. This leads to lower coherent reflectivity values for lower incidence angles 

(10°–30°) than for larger ones (30°–50°). Hence, for the same soil moisture and roughness conditions, 

reflectivity from larger incidence angles is higher than for lower ones, and consequently less affected 

by noise. Furthermore, it should be noted that the Fresnel reflection coefficients at circular polarization 

are practically flat in the 10°–50° incidence angle region (this is not the case in linear polarization). 
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Consequently, differences in the Fresnel reflection coefficients can be used to estimate the roughness 

conditions for that particular resolution cell. 

 

Figure 3. Results of the pre-treatment of the datasets: (a) Landsat 8 true-color composite, 

(b) Landsat 8 temperature, (c) LARGO observations binned between 40° and 60° 

incidence angles, (d) LARGO observations binned between 60° and 80° incidence angles, 

(e) reflectivity map from LARGO interpolation at 40°–60° incidence angles, (f) reflectivity 

map from LARGO interpolation at 60°–80°. 
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3.2. In situ Measurements Mapping 

A total of 119 in situ measurements of soil moisture were available (each one computed as the 

average of the four independent measurements taken at each location). In order to make a spatial 

comparison analysis with the remotely sensed soil moisture estimates, the in situ measurements were 

interpolated to a 30 m map covering the sampled area (Figure 4). The same interpolation method 

applied to the LARGO maps was chosen for a fair comparison between datasets. 

 

Figure 4. Field-based soil moisture map interpolated to 30 m. 

3.3. LANDSAT 8 Processing and Indices Retrieval 

A Landsat 8 scene (202 path-031 row) of 12 August 2014, was selected for this study. The scene 

was provided at Level 1T, geometrically and terrain corrected. Landsat 8 carries two instruments: the 

Operational Land Imager (OLI) sensor, including 8 multispectral bands at 30 m, and the Thermal 

Infrared Sensor (TIRS), providing two thermal bands at 100 m, resampled to the same spatial 

resolution of the multispectral bands. 

Bands blue (450 nm–510 nm), green (530 nm–590 nm), red (640 nm–670 nm), NIR (850 nm–880 nm), 

SWIR1 (1570 nm–1650 nm), and SWIR2 (2100 nm–2290 nm) from OLI were selected. Ground 

reflectance was retrieved using atmospheric correction with the module ATCOR of PCI Geomatics 

2013 [16], applying the file metadata. 

TIRS acquires data in two spectral channels covering 10.60–11.19 μm and 11.50–12.51 μm  

(bands 10 and 11). The results of vicarious calibrations of TIRS bands [17] suggested that Band 11 

data should not be used where absolute calibration is required, due to an out-of-field stray light in the 

telescope. Thus, only band 10 data was selected to convert from spectral radiance to brightness 

temperature and further LST. 
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A wide collection of vegetation water/drought indices have been obtained from different 

combinations of NIR and shortwave infrared (SWIR) bands and proposed as advanced and direct 

vegetation moisture indicators [18] from a suite of remote sensors such as Terra/Aqua, Landsat  

TM-ETM+, SPOT Vegetation, and AVHRR [19–21]. The use of SWIR bands as an indicator of 

vegetation water status builds from the work of [9], which demonstrated the feasibility of SWIR 

indices to disaggregate passive L-band observations owing the water absorption effects in this band. 

Likewise, taking advantage of the SWIR bands of Landsat 8, the so-called Normalized Difference 

Water Indices [22] were calculated as follows: 

NDWI1-NIR = (ρNIR − ρSWIR1)/(ρNIR + ρSWIR1) (1) 

NDWI2-NIR = (ρNIR − ρSWIR2)/(ρNIR + ρSWIR2) (2) 

where ρNIR, ρSWIR1, and ρSWIR2 refer to the reflectivity of bands NIR, SWIR1, and SWIR2 of Landsat 8, 

respectively. A high value of NDWI1 and NDWI2 is a consequence of a higher reflectance in the NIR 

band than in the SWIR1 and SWIR2 bands, regions of water absorption. Thus, this indicates sufficient 

quantities of water in the canopy for photosynthetic activity and, thus, green and healthy vegetation. 

Conversely, a negative value indicates canopy stress, dry vegetation or bare soil [9]. Whilst less 

frequent, the normalized ratios with respect to the red band were also calculated (Equations (3) and (4)). 

NDWI1-red = (ρred − ρSWIR1)/(ρred + ρSWIR1) (3) 

NDWI2-red = (ρred − ρSWIR2)/(ρred + ρSWIR2) (4) 

Whereas the SWIR-NIR-based indices are related to the vegetation water content, these SWIR-red 

indices are related to the soil water content, since the reflectance absorption in the red band from the 

soil water content is negligible, whereas a wet soil exhibits reflectance absorption in the SWIR bands. 

Thus, it is expected that the wetter the soil, the higher the absorption in SWIR bands, and the lower the 

reflectance. Accordingly, a positive value of NDWI-red indicates wet soil and, conversely, negative 

values denote dry soils. Nevertheless, one caveat that should be mentioned on the use of these  

red-based indices is that they require a prevalence of the bare soil response in comparison with the 

vegetation canopy response. Otherwise, the absorption both on the red and SWIR bands from  

well-watered vegetation can lead to the same results (negative values) than a dry soil. Therefore, this 

index seemed adequate for the vineyard plantation, i.e., since the vines are trellised and separated  

2.5 m, their spectral response is dominated by the soil. 

NDWI indices based in the SWIR region may be considered as water indices, depicting either the 

vegetation or the soil water status owing the implicit water absorption in this region. The difference 

between NDWI-NIR and NDWI-red is that the former refers to vegetation water content, and the latter 

to soil water content, given the distinctive response of the NIR-band to plants and of the red-band  

to soil. 

Finally, indices in the RGB region were also tested, as they have been widely used to monitor 

vegetation status. The ratio of the reflectance of green and red bands is sensitive to the ratio between 

chlorophyll and anthocyanin [11]. Its normalized version is known as the Green-Red Vegetation Index 

(GRVI) [23]: 

GRVI = (ρgreen − ρred)/(ρgreen + ρred) (5) 
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where ρgreen and ρred are the reflectance of visible green and red, respectively. The response of GRVI to 

various ground covers may be simple to interpret because, for dense vegetation, the reflectance in the 

green band is higher than in the red one, reaching high values. 

The Greenness index (Equation (6)) computes the proportion of green reflectance in the whole RGB 

space. Low index indicates barely vegetated covers. As a well-known and widely used index, the 

NDVI [24] was also used in the present study as a reference (Equation (7)). NDVI refers to the 

vegetation greenness and vigor. Green and dense vegetation has large NDVI, whereas it is null or 

negative for bare soil and water, respectively. 

Greenness = ρgreen/(ρgreen + ρred + ρblue) (6) 

NDVI = (ρNIR − ρred)/(ρNIR + ρred) (7) 

3.4. Statistical Analysis 

3.4.1. Correlations 

Spatial relationships between the LARGO reflectivity, the field-based interpolated soil moisture 

map, and the Landsat-derived indices were quantified via spatial correlations. Comparisons on a  

pixel-by-pixel basis were applied, then the correlation coefficient (R of Pearson) associated to the 

whole image was used as an indicator of the similarity of the spatial patterns between each pair of 

variables. In addition, the values from the imagery at the ground sampling locations were extracted and 

compared to the in situ soil moisture values. This analysis would reveal the indices that better correlate 

with soil moisture, surface temperature and LARGO reflectivity. 

3.4.2. Linking Model 

Several soil moisture retrieval algorithms have been developed based on the unique relationship 

between soil moisture, NDVI, and LST for a given region under specific climatic conditions and land 

surface types [25]. This relationship can be expressed through a regression formula that links soil 

moisture with vegetation indices and LST. In this work, LARGO reflectivity was also included in the 

multiple regression, following the approach of [7,26] who showed that adding L-band brightness 

temperatures to the NDVI/LST space was needed to capture soil moisture gradients at high resolution. 

Hence, the synergies of Landsat-derived LST, water and vegetation indices, LARGO reflectivity, and 

in situ soil moisture are expressed through a linear linking model as follows: 

Y = a0 + a1X1 + a2 X2 + a3 X3 (8) 

where the dependent variable Y represents soil moisture, and the independent variables X1, X2, and X3 

are the LST, the LARGO reflectivity and the corresponding index, respectively. a0, a1, a2, and a3 are 

the coefficients of the regression equation. All variables were normalized between their maximum and 

minimum values. 

The in situ sample was randomly divided into the training dataset and the validation dataset. The 

criteria for assigning points to each dataset were to have a balanced number of sampled points of each 

vegetation cover (i.e., vineyard, fallow, and pasture) both in the training and validation datasets. The 
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training subsample (one half of the total ground measurements, n = 60) was used to establish the 

coefficients of the regression in the linking model. Hence, a system of linear equations with an 

equation per location of in situ measurement was set up by extracting the different variable values 

from their corresponding image. The system was solved to obtain the regression coefficients. 

Statistical metrics of the regression analysis (multiple correlation, determination coefficient, 

coefficients of the polynomial fit at a p-value of 95% and root mean square error, RMSE), were used 

to evaluate the linking model fitting with the training sample and how well the set of variables can 

predict the soil moisture. 

The other half of the samples (validating subsample, n = 59) were used to validate the soil moisture 

maps obtained after applying the linking model. The statistics chosen for evaluate the comparison 

between the estimated soil moisture vs. in situ soil moisture were R, the bias or mean difference 

(observed-estimated), and the root mean square difference (RMSD). Note, that for validation, RMSD 

was chosen instead of the RMSE chosen for training since, after applying the model, the estimated soil 

moisture was compared to the independent validation sample. 

4. Results and Discussion 

4.1. Landsat Reflectance and Indices for the Main Land Covers 

Before the correlation analysis, both the spectral response and the indices behavior under different 

soil and vegetation cover conditions were explored (Figure 5). The reflectance curves (Figure 5a) 

showed a quite similar behavior for all the main land covers, except for the irrigated areas. The fallow 

land showed the typical bare soil response, exhibiting the highest reflectance in all bands. This is in 

agreement with its low water content and the absence of vegetated cover. As shown in the literature, a 

decrease in water content is reflected as a reflectance increase in the optical wavelength range  

(0.4–2.5 μm), especially for the red and SWIR spectrum [18]. Many research studies have proved that 

the whole soil reflectance spectrum diminishes with an increase in soil moisture, with soil reflectance 

being determined primarily by soil moisture, among other soil characteristics [27,28]. This feature was 

not easy to identify in this study, due to two main reasons. First, the generally dry conditions of soils 

during the field experiment (less than 14% vol. for the sampled areas), which were noticeable even for 

the typically-wet areas of pasture. Due to these conditions, the soil signal was mixed with senescence 

vegetation, which has similar spectra [29,30]. Second, is the inherently mixed response between soil 

and plants over the vegetated areas at the Landsat spatial resolution. This effect is especially noticeable 

in the presence of non-herbaceous plants, e.g., vineyard and forest, which have a sparse distribution. 

For example, the forested areas are actually scattered trees above a dry soil underneath. Even for the 

vineyard, which was at the growing season, the spectral response of the plants was mixed with the bare 

soil one, considering the particular geometry of vineyard plantations (Figure 5c). The vineyard and 

forested area responses were very similar in all bands (Figure 5a), excepting for those in the SWIR 

reflectance, where the vineyard registered slightly minor reflectance (higher water content and, thus, 

more absorption). The strongest relationship between reflectance and water content was observed in the 

irrigated areas. In this case, no mixed response between soil and plants occurred, owing a more 
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homogeneous growth and a more homogeneous distribution of vegetation, and the covers seemed  

well-watered according to the very small SWIR reflectance and high NIR reflectance exhibited (Figure 5a). 

 

Figure 5. Landsat 8 bands reflectance (a) and indices (b), both of them averaged for the 

main land covers in the study area. In (c), several examples of these land covers over a  

5-4-3 composite. 

The dominant dry conditions during the experiment are well-captured by all the indices (Figure 5b), 

each according to its particular behavior. Except for the irrigated areas, vegetation-related indices, such 

as GVRI, presented negative results, whereas NDVI and Greenness were very low indicating, in all 

cases, limited vegetation activity. 

Regarding the vegetation-water indices, the NDWI1-NIR and NDWI2-NIR reached very low 

values, close to zero in the first case, in contrast to the watered, canopy-dense irrigated areas. The  

water-soil related indices, NDWI1-red and NDWI2-red, were both negative, indicating poor water 

absorption in the SWIR bands and, thus, very dry soil conditions in the case of fallow, vineyard, forest, 

and pasture. However, as suggested by the rationale of this index, the index does not work properly for 

the irrigated cover, since it takes the red (i.e., the soil reflectance) as the reference band. For irrigated 

canopies, such as corn, the soil response is negligible as it remained covered up by the canopy. Thus, 

the difference between red (null reflectance) and SWIR (small reflectance due to the high water 

absorption) results were also negative, showing the same trend of the rest of categories. However, 

these values are actually not soil dryness-induced and hence not comparable to the rest of categories. 

4.2. Correlation between Datasets 

The relationships between these indices and the soil moisture, both at point scale and for the entire 

map (Table 1 and Figure 6), showed that indices, such as GVRI, NDWI2-red, and NDWI2-NIR, had 
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good correlations. It can be inferred, thus, that the SWIR2 band results better describe soil moisture 

content than the SWIR1. Regarding the correlation between indices and temperature, only NDWI1-NIR 

and NDWI2-NIR showed significant correlation with temperature higher than 0.4 (negative in all cases), 

both with the Landsat 8 TIR band (LST) and with direct measurements (T). Regarding the LARGO 

reflectivity, a significant correlation between LARGO 40-60 and soil moisture was found (0.30 < R < 

0.40), suggesting a certain potential of using LARGO reflectivities for soil moisture sensing. We 

hypothesize that the combined use of a water/vegetation index with LARGO reflectivity and LST 

improves the soil moisture estimation with respect to the use of these variables for independent 

estimation, as will be tested in the following sections. 

Table 1. Correlation coefficients (Pearson) between variables. * Non-significant correlation. 

R 
Image (30 m) In Situ (n = 119) 

Soil Moisture LST (L8) Soil Moisture T 

GVRI −0.41 0.06 −0.69 0.07 * 

Greenness −0.05 * 0.14 0.07 * 0.29 

NDVI 0.01 * −0.24 −0.26 −0.27 

NDWI1-red 0.20 −0.09 0.37 0.02 * 

NDWI2-red 0.58 −0.17 0.59 −0.06 * 

NDWI1-NIR 0.25 −0.49 0.06 −0.56 

NDWI2-NIR 0.55 −0.41 0.57 −0.48 

LARGO 40-60 0.34 −0.22 0.37 −0.28 

LARGO 60-80 0.25 −0.20 0.13 −0.05 * 

 

Figure 6. Relationship between the indices the best correlated with soil moisture and  

soil moisture. 

Other combinations of bands may be considered. Particularly, the blue band is considered by  

Zhang et al. [18] as a the band least sensitive to vegetation moisture variation compared to the other 

bands, hence the water-sensitive band (SWIR and red) and the less sensitive band (blue) may be used 

to maximize moisture variation. Furthermore, the combination SWIR-green has been used to separate 

built-up features from water bodies [31] and SWIR-red to delineate marsh areas [29], among others. In 
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this line, other combinations of SWIR-visible bands were tested with the current dataset. The 

combination SWIR-blue and SWIR-green, although plausible, exhibited worse results than those for 

the SWIR-NIR and SWIR-red combinations (R < 0.50). 

The reflectivity from LARGO generally showed low correlations with vegetation indices, probably 

due to the weak relationship between reflectivity and spectral-based indices. The spectral indices 

indicate plant and soil conditions (e.g., vigor, photosynthetic activity, water content) that seemed 

difficult to be tracked through the reflectivity along the entire area for all types of vegetation. 

However, for the category where the indices took extreme values, such as irrigated crops, some 

patterns were found. LARGO 60-80, more than LARGO 40-60, showed noteworthy correlations, with 

R~−0.60 for the vegetation indices NDVI, NDWI1-NIR, and NDWI2-NIR (for which the indices were 

positive and very high) and positive R~0.60 for the soil-water indices NDWI1-red and NDWI2-red 

(for which the indices were negative and very small). In other words, index values denoting dense 

vegetation (i.e., either positive and high NDVI and NDWI-NIR, or negative and small NDWI-red) 

reached high inverse correlation with the reflectivity, showing an influence of the vegetation on the 

signal: the denser and healthier the canopy, the smaller the reflectivity. The vegetation type and 

geometry also showed influence on the reflectivity, not through the index values, but considering the 

plant size. Indeed, the average LARGO reflectivity for woody-high plants (e.g., trees and vines) 

resulted ~25% smaller than for the small, mixed with soil, fallow, and pasture covers. In summary, the 

reflectivity decreases as the canopy height (i.e., vineyard and trees) and density (i.e., irrigated) 

increases, as it was also found in [32]. 

4.3. Linking Model Calculation and Validation 

The indices GVRI, NDWI2-red, NDVWI1-NIR, and NDWI2-NIR exhibit the best correlations with 

both soil moisture (Figure 6) and temperature and, to a lesser extent, with LARGO reflectivity. Thus, a 

linking model is built using each of these indices together with thermal and reflectivity data, and was 

adjusted to the soil moisture observations of the training subsample (Table 2). A good fit was found for 

all of them except for NDWI1-NIR with LARGO 60-80, a combination that seemed inadequate for the 

soil moisture estimation. LARGO 40-60 fit performs better than the LARGO 60-80 fit. This occurs 

because it is less sensitive to the presence of vegetation (as mentioned before) and more sensitive to 

the soil water content. This was an expected result as, for larger incidence angles, the surface appears 

to be smoother than for lower incidence angles and, consequently, coherent reflectivity increases [15]. 

When comparing the results of the linking model (Table 2) to the individual correlations with soil 

moisture (Table 1), it can be inferred that the integration of reflectivity, temperature and index 

drastically improved the results. To further analyze this point, an additional analysis of correlation was 

made (Table 3) in which, applying the training dataset, it can be seen that the R values improved by 

adding the reflectivity measurements into the linking model. Indeed, the correlation improves for all 

cases, even switching the non-significant correlation for the NDWI1-NIR into significant. However, as 

stated before, LARGO 40-60 inclusion in the model performs better than the LARGO 60-80 one. In 

other words, the synergy between GNSS-R and conventional multispectral VIS/IR sensors allows for 

soil moisture estimation at high spatial resolution scales, which opens new insights in this promising 

technique. However, these results must be carefully analyzed because of the large RMSD of the 
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estimation, close to 2% in a few cases. Taking into account the dry soil conditions during the 

experiment, this error surpasses in most cases the actual soil water content. In fact, the dry conditions 

during the field campaign hampered the soil moisture retrieval using only GNSS-R, as seen in Table 1. 

This is in line with the results obtained by Valencia et al. [33] with the Passive Advanced Unit (PAU) 

GNSS-R instrument in this area who found that, under very dry conditions (soil moisture below  

8% vol.), there is a low reflectivity sensitivity to soil moisture. This could explain the low correlation 

obtained for reflectivity maps and soil moisture in this study, where soil moisture is below 14% vol. 

The weight of each coefficient in Equation (8) was tested, resulting in a higher coefficient a3 in all 

cases. The higher weight associated with the index indicates the large influence of the vegetation/soil 

proxy, expressed as a spectral index, in the soil moisture estimation. 

Table 2. Statistical results of the linking model training for the two LARGO datasets and 

the chosen indices. Correlation coefficient (R), determination coefficient (R2), and root 

mean square error (RMSE). * Non-significant correlation. 

Model Training In Situ Soil Moisture (n = 60) 
LARGO 40-60 LARGO 60-80 

R R2 RMSE (%) R R2 RMSE (%) 

GVRI 0.69 0.48 1.60 0.69 0.48 1.60 

NDWI2-red 0.64 0.42 1.69 0.52 0.27 1.89 

NDWI1-NIR 0.51 0.27 1.90 0.12 * 0.01 2.20 

NDWI2-NIR 0.59 0.34 1.79 0.55 0.30 1.85 

Table 3. Results of correlation when adding consecutive parameters in the linking model (only 

the vegetation index; index and LST; index, LST, and reflectivity). * Non-significant correlation. 

 R with the Training Sample (n = 60) 

Model Options Only Index Index+LST Index+LST+ LARGO 40-60 (LARGO 60-80) 

GVRI −0.66 0.67 0.69 (0.69) 

NDWI2-red 0.52 0.52 0.64 (0.52) 

NDWI1-NIR −0.10 * 0.10 * 0.51 (0.11 *) 

NDWI2-NIR 0.43 0.52 0.59 (0.55) 

Once the best proxies for the linking model were determined, and the regression coefficients were 

retrieved using the training samples, maps of soil moisture at 30 m resolution were produced  

(Figure 7). These maps were validated at point scale through comparison with the validating 

subsample in situ measurements (Table 4 and Figure 8) and through comparison with the field-based 

interpolated soil moisture map described in Section 3.2 (Figure 4) using spatial correlation (Table 5). 

When comparing the remotely sensed maps in Figure 7 with the field-based soil moisture map in 

Figure 4, slightly higher soil moisture content is noticeable in the remotely-sensed maps. This is 

quantitatively confirmed by the negative bias resulting when comparing the field-sampled to the 

remotely-sensed soil moisture (Tables 4 and 5) for all the linking model alternatives. 

Considering the soil moisture spatial distribution, the wetter areas near the river are detected in all cases. 

The driest areas (e.g., buildings, roads), in turn, are also detected except for the case of using NDWI1-NIR, 

where the expected patterns of soil moisture seemed to be switched (dry to wet and vice-versa). Indeed, for 

this alternative R was non-significant, and the error and bias were the highest of all datasets. 
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Additionally, some artifacts were detected in the building area (northwestern part in Figure 7b–d) for 

the maps retrieved with GVRI and NDWI1-NIR, where this area was confusedly represented. In view 

of these results and the corresponding soil maps, more accurate soil moisture estimates can be obtained 

using the NDWI2-NIR index (SWIR2 band) in the linking model (Figure 7g,h). This is in agreement 

with the results of the correlation analysis on Table 1. Still, from the validation results at point and 

map scales (Tables 4 and 5), there are no substantial differences in the statistical scores obtained with 

the different proposed model alternatives, except for the above-mentioned NDWI1-NIR. This result 

confirms the hypothesis that the SWIR1 band is not adequate for soil moisture estimation. Regarding 

the reflectivity integration in the linking model, the LARGO 40-60 revealed slightly better results for 

the training dataset (Table 2), but the two selected ranges of incidence angles result in comparable 

results for the validating dataset and field-based interpolated soil moisture map. 

 

Figure 7. (a) Ground observations distribution. (b to h) Estimated soil moisture (% vol.) 

maps following the seven alternatives considered. 

Table 4. Statistics of estimated soil moisture resulting from the linking model vs. in situ 

soil moisture measurements: correlation coefficient (R), mean difference (bias), and root 

mean square difference (RMSD). * No-significant correlation. 

Model Validation In Situ Soil Moisture  

(Point Scale) 

LARGO 40-60 LARGO 60-80 

R bias (%) RMSD (%) R bias (%) RMSD (%) 

GVRI 0.67 −0.205 2.619 0.70 0.010 2.462 

NDWI2-red 0.67 −0.748 2.675 0.67 −0.753 2.650 

NDWI1-NIR 0.16 * −0.353 3.284 --- --- --- 

NDWI2-NIR 0.66 −0.801 2.894 0.68 −0.771 2.733 
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Figure 8. Relationship between the estimated soil moisture resulting from the linking model 

and the in situ soil moisture measurements using GVRI, NDWI2-red, and NDWI2-NIR. 

Table 5. Statistics of estimated soil moisture resulting from the linking model vs. the in 

situ soil moisture map: correlation coefficient (R), mean difference (bias), and root mean 

square difference (RMSD). * Non-significant correlation. 

Model Validation In situ Soil Moisture (Map) 
LARGO 40-60 LARGO 60-80 

R bias (%) RMSD (%) R bias (%) RMSD (%) 

GVRI 0.37 −0.046 1.632 0.28 0.107 1.844 

NDWI2-red 0.57 −0.571 1.394 0.57 −0.315 1.267 

NDWI1-NIR 0.23 * −0.475 1.696 --- --- --- 

NDWI2-NIR 0.45 −0.287 1.520 0.35 −0.150 1.839 
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The bias in Tables 4 and 5 is very large, particularly if considering the field point measurements, 

which led to an unacceptable RMSD. However, the correlation coefficients are encouraging  

(R > 0.66), slightly lower for the pixel-by-pixel comparison at the interpolated map (Table 5) than for 

the sampled locations (Table 4), where the soil moisture was directly observed. Again, it should be 

pointed out that we are considering very specific conditions to depict the relationships between 

vegetation and water soil status. Also, small variations in soil moisture led to a high standard deviation 

and RMSD owing the small dynamic range of this variable under those conditions. To illustrate this, 

the model validation was repeated removing just the four pasture points of the validation subsample. 

These four points had the highest soil moisture (~13% vol.) as compared to the remaining 55 points 

(~3% vol.), resulting in a reduction of the RMSD of 40% on average. 

The validation exercise compares the estimated soil moisture to the in situ measurement under the 

assumption that both data correspond to soil moisture within the same soil layer. However, the 

synoptic model considers LST (skin temperature), L-band reflectivity (5 cm), and a vegetation index 

(with vegetation status supposedly responding to root-zone water status). Thus, the resulting soil 

moisture can be considered as an integrated value of different soil depth responses. We hypothesize the 

mismatch in sensing depth between LST, L-band reflectivity, and in situ probes has a limited impact in 

the obtained results. However, given the important weight of the vegetation index in the model, the 

estimated soil moisture could be representative of a deeper soil layer than that sensed by the in situ soil 

moisture. This mismatch could partly explain the negative bias (overestimation) and the high values of 

errors resulting for the comparisons. Further research should be directed in determining the sensing 

depth of the synergistic soil moisture estimates. 

5. Conclusions 

The objective of this work was to test the capability of an airborne GNSS-R sensor (LARGO) to 

estimate and characterize both vegetation cover and soil moisture status. In view of the expected 

development of new GNSS-R-based missions, the potential interactions between soil moisture 

estimates and observations at high spatial resolution from airborne or satellite sensors allow for the 

development of synergistic approaches that can be later transferred to sensors on-board satellite 

platforms. New insight on the synergy between airborne GNSS-R reflectivity and satellite optical, 

infrared and thermal data is presented, using a multiple regression model that links the soil moisture to 

land surface temperature, vegetation/water indices and GNSS-R reflectivity altogether. Taken these 

datasets separately, and considering the particular weather and vegetation conditions of the 

experiment, LARGO reflectivity did not show distinctive sensitivity to the main vegetation covers 

present in the area. However, a noticeable relationship to soil moisture was detected. This relationship 

was strongly reinforced if the reflectivity was merged to the surface temperature and some 

vegetation/water indices, all of them retrieved from Landsat 8 bands. Indeed, encouraging correlations 

were found (R > 0.60) when applying a multiple regression model that linked the soil moisture to the 

temperature, the vegetation index, and the LARGO reflectivity binned by a certain range of incidence 

angles. These correlations were much higher than taking each variable separately. The remotely-sensed 

soil moisture maps obtained with the proposed linking model were highly correlated with the ground 

measurements, even though a high bias and RMSD were observed. Future campaigns, under diverse 
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environmental conditions, should be performed to further our understanding of the limitations and 

applicability of the proposed fusion scheme. The methodology developed has the advantage of being 

applicable at a variety of spatial scales, from several meters, using airborne platforms, to kilometers 

using space-borne observations. This versatility allowed exploring the optimal spatial resolution to 

transform the point scale GNSS-R observations into reflectivity maps suited for soil moisture 

information. In this case, the 30 m from Landsat results were adequate, but further analyses are needed 

to explore higher spatial resolution sensors. 
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