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Abstract: On-board the Landsat-8 satellite, the Thermal Infrared Sensor (TIRS), which  

has two adjacent thermal channels centered roughly at 10.9 and 12.0 μm, has a great 

benefit for the land surface temperature (LST) retrieval. The single-channel algorithm (SC) 

and split-window algorithm (SW) have been applied to retrieve the LST from TIRS data, 

which need the land surface emissivity (LSE) as prior knowledge. Due to the big challenge 

of determining the LSE, this study develops a temperature and emissivity separation 

algorithm which can simultaneously retrieve the LST and LSE. Based on the laboratory 

emissivity spectrum data, the minimum-maximum emissivity difference module (MMD 

module) for TIRS data is developed. Then, an emissivity log difference method (ELD 

method) is developed to maintain the emissivity spectrum shape in the iterative process, which 

is based on the modified Wien’s approximation. Simulation results show that the root-mean-

square-errors (RMSEs) are below 0.7 K for the LST and below 0.015 for the LSE. Based on 

the SURFRAD ground measurements, further evaluation demonstrates that the average 

absolute error of the LST is about 1.7 K, which indicated that the algorithm is capable of 

retrieving the LST and LSE simultaneously from TIRS data with fairly good results. 
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1. Introduction 

As the result of all surface–atmosphere interactions, land surface temperature (LST) is often 

regarded as an indicator of the equilibrium thermodynamic state and the driving force of long-wave 

radiation exchange. Therefore, the LST is especially important for lots of studies, including climate 

change, evapotranspiration evaluation, hydrologic cycle, urban heat island, vegetation monitoring and 

environmental studies [1–10]. Additionally, the land surface emissivity (LSE) is also an important 

factor of the thermally emitted radiance from the surface, which depends on the material composition, 

surface roughness, wavelength, viewing angle and moisture [11–14]. 

Due to the complexity of the land surface, ground measurements cannot provide realistic large-scale 

and continuous LST and LSE information. However, the developments of remote sensing technology 

offer an effective approach to retrieve the LST and LSE over large spatial and temporal scales. 

Numerous studies have been conducted to retrieve the LST from the Advanced Very High Resolution 

Radiometer (AVHRR), Moderate Resolution Imaging Spectroradiometer (MODIS), Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) and Landsat Thematic Mapper 

(TM)/Enhanced Thematic Mapper Plus (ETM+) data. Meanwhile, a variety of algorithms have been 

developed, such as single-channel methods, split-window methods, multi-angle methods, physics-based 

day/night methods, two-temperature methods, artificial neural network methods, temperatures and 

emissivity separation methods, etc. [15–24]. 

Landsat-8 (also known as the Landsat Data Continuity Mission, LDCM) was successfully launched 

in February 2013, which extends the Landsat archives with high spatial resolution remote sensing data 

of a global coverage. Landsat-8 carries two instruments, i.e., the Operational Land Imager (OLI) and 

Thermal Infrared Sensor (TIRS). Among them, TIRS measures the thermal radiation at 100 m spatial 

resolution, which can provide finer land surface information [25,26]. Moreover, TIRS has two infrared 

bands and narrower bandwidths, which is of great benefit to the LST and LSE inversion. The  

noise-equivalent delta temperature (NEΔT) of the two thermal infrared bands onboard Landsat-8 

should be ≤0.4 K at 300 K (prelaunch values). Later studies demonstrate that the NEΔT at 300 K is 

approximately 0.05 K for both channels, which is better than the TM/ETM+ [27,28]. 

One objective of the Landsat-8 mission is to collect and archive moderate-resolution, thermal 

multispectral image data affording seasonal coverage of the global land mass for a period of no less than 

three years [25]. Retrieving the LST/LSE from Landsat-8 TIRS can ensure that the data are sufficiently 

consistent with data from the earlier Landsat missions. This will permit studies of climate change and 

environmental research over multi-decadal periods. Besides, there are plenty of LST/LSE products 

already, such as the LST/LSE products from MODIS and ASTER data. However, the spatial resolutions 

of the products are relatively low (MODIS products) or they are not free to users (ASTER products). The 

products from Landsat-8 TIRS could distribute data with moderate-resolution and at no cost to users. 
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Given TM/ETM+ only have one infrared band, the single-channel algorithm (SC) is the only method 

that can be applied to retrieve the LST. Based on the radiative transfer model (RTM), SC algorithms 

calculate the atmospheric attenuation and emitted radiance in a given band, and thus to obtain the LST 

from the surface emitted radiances. On the basis of the known LSE and water vapor content, several  

single-channel methods have been developed in the past decade, which are also suitable for  

Landsat-8 [16,29,30]. However, the LSE is rarely known and an uncertainty of 1% in the LSE would 

lead to an error in the LST ranges from 0.3 K to 0.7 K depending on the atmospheric condition [31]. 

Moreover, owing to the unstable empirical relationship, the SC algorithms provide poor results for 

high atmospheric water vapor content [32,33], including the Landsat-8 TIRS data [34]. 

Since the TIRS have two infrared bands, split-window algorithms (SW), which correct the atmospheric 

effects based on the differential absorption in two adjacent infrared bands, can be used to retrieve the 

LST. Several SW techniques have been developed for remote sensing data with two infrared bands, 

which have been successfully applied to the TIRS data [34–37]. The accuracy of the SW algorithms 

depend on the accuracy of parameters, including the LSE, the atmospheric water vapor content, air 

temperature and the coefficients. The coefficients are always calculated by statistical fit from a simulated 

database. Simulation tests show that the RMSE of different SW algorithms for TIRS data is about 1 K, 

on the assumption that the parameters have no errors [34,35]. However, a 1% error in LSE would result 

in about 1 K error of the LST, in particular for dry atmospheric conditions [35], and an extensive 

validation with in situ measurements needs to be conducted rather than with the simulated data. 

On account of the high heterogeneity of the surface and the spectral variation of the LSE; it is a big 

challenge to determine the LSE when the satellite passes. As a result, the extensive application of SC 

and SW algorithms is limited. Up to now, a variety of methods have been demonstrated to estimate the 

LST when the LSE is unknown [13], including temperature-independent spectral-indices method 

(TISI); MODIS day/night method; ASTER temperature and emissivity separation method (TES) and 

Alpha derived emissivity method (ADE), etc. [15,19,38–42]. Based on the radiative transfer equation; 

a single multispectral measurement with N bands only presents N observations for N+1unknown 

parameters. Without any prior information, it is impossible to recover both LST and emissivities 

exactly. Many temperature and emissivity methods use one additional empirical equation so that N+1 

unknowns can be solved by N+1 equations. However, because any added equations are based on 

empirical formula, the solutions are likely to be unstable. The inversion problem is called well posed if 

the solution exists, can be uniquely determined, and depends continually on the data [19]. Therefore, 

simultaneously retrieving the LST and the LSE is a typical ill-posed problem. Additional information 

is needed to turn it into a well posed problem. The MODIS day/night method solves the ill-posed 

problem by assuming the emissivity has no significant change between day and night [40]. The 

ASTER TES algorithm comprises of three modules: normalized emissivity method (NEM); mean 

maximum-minimum apparent emissivity difference method (MMD); and ratio algorithm. Based on the 

empirical relationship between the spectral contrast and the minimum emissivity, the MMD method 

provides an additional equation, and the ratio algorithm is used to keep the shape of the emissivity 

spectrum. Similarly, the ADE method introduces one equation depicting the empirical relationship 

between the mean and variance of Alpha spectra whose shape is almost the same as the emissivity. 

Since the SC and SW methods need the prior knowledge of the LSE and the accuracy of the 

retrieved LST is primarily dependent on the accuracy of the LSE, simultaneous determination of the 
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LSE and the LST by TES algorithms would be an alternative approach to retrieve the LST from TIRS 

data. Although previous studies demonstrate that the TES methods require at least four TIR bands and 

no studies have been conducted with only two TIR bands [43,44], this present paper would like to 

investigate the possibility of TES algorithm using the two TIR bands of TIRS. From the above 

description, there are two main issues concerning the temperature and emissivity separation algorithms: 

(1) provide one additional equation or other additional information; (2) recover the emissivity spectrum 

by keeping the form of the actual emissivity spectral curve. Consequently, an empirical relationship 

between the minimum emissivity and the minimum-maximum emissivity difference (MMD) is 

developed based on the laboratory spectral data. Besides, the ratio module is infeasible because TIRS 

only has two bands. Thus, the emissivity log difference method, which is based on the modified Wien’s 

approximation, is developed to maintain the shape of the emissivity spectral curve. 

2. Data Sets 

2.1. Simulation Data 

Simulation data is obtained from the MODTRAN 5 radiative transfer code [45], which needs the 

atmospheric profiles, LSE and LST as inputs. The six model atmospheric profiles of MODTRAN are 

used as atmospheric profile inputs, and a total of 96 emissivity spectra (including vegetation, water, 

ice, snow, soil and rock) are used as LSE inputs in the simulation. For the LST inputs, according to the 

previous studies [34], the following individual values are considered for the LST: T0 − 5, T0, T0 + 5,  

T0 + 10 and T0 + 20, where T0 is the temperature at the lowest layer of the atmospheric profile. However, 

the highest temperature T0 + 20 would be too low for some desert areas, thus T0 + 30 is added for the 

simulation. The outputs consist of brightness temperature, atmospheric transmittance and atmospheric 

thermal radiance (upward and downward atmospheric thermal radiance), which are obtained by 

convolution between the MODTRAN spectral outputs and the TIRS spectral response functions. 

2.2. Ground LST Measurements 

In order to support climate research with long-term, continuous and accurate surface radiation 

measurements, SURFRAD was established for the United States in 1995 [46,47]. High-quality in situ 

measurements of upward and downward solar and infrared radiation are provided. The downwelling 

and upwelling radiation data are measured by a pyrgeometer which is deployed 10 m above the sea 

level, collecting a sample every minute in a spectral window from 3 to 50 μm. Four SURFRAD sites 

are selected in this study, as described in Table 1. 

Table 1. Descriptions of the four SURFRAD sites. 

Site Lat/Lon Elevation (km) Land Cover 

Bondville, Illinois 40.05N, 88.37W 0.213 Crop Land 

Fort Peck, Montana 48.31N, 105.10W 0.634 Grass Land 

Goodwin Creek, Mississippi 34.25N, 89.87W 0.098 Evergreen Needle Leaf Forest 

Sioux Falls, South Dakota 43.73N, 96.62W 0.473 Rural Land 
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In this study, the upward and downward infrared radiations measured by SURFRAD are used for the 

evaluation of retrieved LST. According to the Stefan-Boltzmann law, the LST can be estimated from: 

 
1/4

1 ε

ε

b

b

s

L L
T


 
   

  
 

 (1) 

where L↑ and L↓ are the surface upwelling and downwelling longwave radiation, respectively, σ is the 

Stefan- Boltzmann’s constant (5.67 × 10−8 W∙m−2∙K4), and ε𝑏  is the broadband emissivity. The 

broadband emissivity can be estimated from MODIS narrowband emissivities in the thermal region [48]: 

29 31 320.2122 0.3859 0.4029b        (2) 

where ε29, ε31 and ε32 are narrowband emissivities of MODIS band 29, 31 and 32, respectively. 

The accuracy of the LST estimated from Equation (1) depends on the accuracy of the upward and 

downward radiation and the satellite broadband emissivity measurements. The accuracy of the 

pyrgeometer is measured as about 9 W∙m−2 [46], and the study using the same type of pyrgeometers 

shows that the error is about 3–5 W∙m−2, equivalent to an error of 0.5–0.8 °C in the LST [49]. The 

accuracy of the LST also depends on the broadband emissivity retrieval. Comparison results with 

ground measurements demonstrate that accuracy of broadband emissivity by Equation (2) is about 

0.0085 [48]. Moreover, the sensitivity of LST to broadband emissivity is about 0.10K/0.01 to 

0.35K/0.01, which means that the accuracy of the LST is about 0.1–0.4K when the error of broadband 

emissivity is about ±0.01 [49]. The L↑ is measured in the 10 m tower. At night, when there is a 

temperature inversion and the air at the 10 m elevation is warmer than at the surface, the measured L↑ 

will be greater than the actual L↑. Thus, the LST obtained from Equation (1) would be greater than the 

actual LST during nighttime, with an error of about 0–0.3 °C, while the conditions are just the opposite 

during the daytime [49]. 

2.3. Landsat-8 TIRS Data 

In this study, 40 Landsat-8 TIRS images during 2013–2014 were downloaded from the  

United States Geological Survey (USGS) Earth-Explorer Website, corresponding to the four 

SURFRAD sites. Owing to the stray light, the USGS has reported a calibration problem of TIRS bands 

(http://landsat.usgs.gov/mission_headlines2014.php). Therefore, the reprocessed data after 3 February 

2014 were ordered to avoid the problem. Following the guidelines at the USGS website, the digital 

number (DN) is converted to radiance and brightness temperature with the calibration parameters 

directly accessed from the metadata file. In order to avoid the influence of the clouds, a cloud mask is 

generated based on band 9 (the cirrus band) and band 11 (the quality band) (http://landsat.usgs.gov/ 

L8QualityAssessmentBand.php). 

2.4. Atmospheric Profiles 

Atmospheric profiles are obtained from ground-based radiosoundings, numerical weather prediction 

(NWP) models or satellite vertical sounders. If actual radiosonde balloons are launched near the same 

area when the satellite passes over, ground-based radiosoundings can provide the most accurate 

description of the atmospheric state coincident with the satellite measurements spatially and 

http://landsat.usgs.gov/mission_headlines2014.php
http://landsat.usgs.gov/L8QualityAssessmentBand.php
http://landsat.usgs.gov/L8QualityAssessmentBand.php
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temporally. However, due to insufficient spatial density of the ground-based radiosoundings, they are 

more suitable for validation at some certain sites rather than as a globally applicable algorithm [13]. 

On the contrary, atmospheric profiles provided by satellite vertical sounders can be used to retrieve the 

LST globally. In particular, Aqua AIRS is a high spectral resolution sounder with 2378 bands between 

3.7 and 15 μm, providing atmospheric profiles with 45 km spatial resolution. Additionally, the MOD07 

L2 atmospheric profiles with spatial resolution of 5 km from MODIS Terra also can be used to retrieve 

the LST, although their accuracy is lower than AIRS. Moreover, the air temperatures of MOD07 L2 

profiles are consistently 1 K larger than that of AIRS, which would result in a slight overestimation of 

the ground LST by the single-channel algorithm [50]. Nevertheless, the observation time of the 

Terra/Aqua and Landsat-8 satellites are not the same over the entire world. The effect of the temporal 

gap might be significant for retrieving the LST. 

In addition to the radiosonde and satellite sounded atmospheric profiles, meteorological forecasting 

models constitute an alternative source of the atmospheric profiles, such as the National Centers for 

Environmental Prediction (NCEP). As the reanalysis result of the radiosoundings data, ground 

measurements and satellite measurements, the NCEP reanalysis product provides 1°×1° resolution 

atmospheric profiles every 6 h globally [51]. The data are provided in 26 mandatory pressure levels 

from 1000 to 10 hPa, and consist of eastward and northward wind components, geopotential height, 

the air temperature and the relative humidity. The on-line atmospheric correction tool is used to extract 

the profile [52], which spatially interpolates the profiles to the sites and then temporally interpolates 

them to the observation time of the satellite. Benefitting from global coverage and high temporal 

resolution, the NCEP atmospheric profiles have been widely used for a variety of studies, which 

demonstrate that they can yield reasonable results to meet the required accuracy [50,53]. Therefore, the 

atmospheric profiles provided by NCEP reanalysis data are used to retrieve the LST in this study. 

3. Experimental Section 

An infrared sensor viewing the earth’s surface measures thermal radiation from the ground and the 

atmosphere along the line of sight. Since the ground is not a blackbody, the land surface emissivity has 

to be considered for calculating the emitted radiation of the ground. The atmosphere plays an 

important role in the transfer of the radiation from the surface propagating to the height of the satellite. 

Under the presumption of a cloud-free sky, the channel infrared radiance Li at the top of the 

atmosphere (TOA) can be formulated as: 

         ε 1 ε 1 ε cos θ θ
i i i i s i i bi i s i sati si ati si

L B T L L E L L
   

             (3) 

where 𝜏𝑖 is the effective transmittance of the atmosphere in channel i, 𝜀𝑖 is the effective emissivity of 

the land surface in channel i, Ts is the LST, Lati↑ and Lati↓ are the upwelling and downwelling 

atmospheric radiance, respectively, Lati↑ and Lati↓ are the upward and downward solar diffuse radiance, 

respectively, 𝜌𝑏𝑖  is the bi-directional reflectivity of the surface, Ei is the solar irradiance along solar 

zenith angle 𝜃𝑠 at the TOA. As the contribution of solar radiation in the infrared bands (8–14 μm) is 

negligible during day and night, the solar related items in Equation (3) can be neglected, thus the 

equation can be simplified as: 
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i i i i s i ati ati

L B T L L
 

       (4) 

On the basis of known atmospheric profiles, upwelling and downwelling atmospheric radiance and 

atmospheric transmittance can be calculated by MODTRAN. As discussed in Section 1, without any 

prior information of the LSEs, additional information is needed to solve the ill-posed problem by 

temperature and emissivity separation algorithms, which is presented in the following part. Besides, 

while calculating the LST, the form of the actual emissivity spectral curve has to be maintained by a 

certain method, which is also presented in this section. 

3.1. MMD Module for TIRS Data 

In order to solve the ill-posed retrieval problem, a variety of methods have been developed, 

including the TISI method, day/night method, ADE method and MMD method. The day/night 

algorithm doubles the number of measurements by assuming the LSE has no significant change 

between day and night, which suffers from the critical problem of geometry mis-registration and 

variation in the VZA (viewing zenith angle). By utilizing an empirical relationship between the 

standard deviation and mean emissivity of multiple observations, the ADE method can restore the 

amplitude of the emissivity. However, the use of Wien’s approximation will introduce large emissivity 

error, and at least three infrared bands are needed to fit the empirical relationship. Based on the 

laboratory emissivity spectrum data, the MMD method calculates the minimum LSE by the empirical 

relationship between the minimum LSE and the spectral contrast in N channels. Owing to the 

advantages of the MMD method, it is utilized in this study to separate the temperature and emissivity 

of Landsat-8 TIRS data. 

The MMD method is established by the laboratory emissivity spectrum data, which is  

obtained from the ASTER spectral library (version 2.0, available on CD-ROM or on-line at 

http://speclib.jpl.nasa.gov). The library is a collection of contributions in a standard format from the Jet 

Propulsion Laboratory (JPL), Johns Hopkins University (JHU) and USGS. A comprehensive collection 

of over 2300 spectra of a wide variety of materials covering the wavelength ranges from 0.4 to  

15.4 μm is provided in the dataset [54]. In total, 96 laboratory emissivity spectra of natural surfaces 

(including vegetation, water, snow, ice, soils and rock) are utilized in this study. Individual emissivity 

spectra are deduced from Kirchhoff’s law. Following the previous study [55], because they may not 

follow Kirchhoff’s law, the spectra of fine powdered samples (particle size smaller than 75 μm for the 

JHU library or smaller than 45 μm for the JPL library) are eliminated. 

Since the LSE varies with the wavelength, the effective emissivity in channel j for a given 

wavelength ranging from λ1 to λ2 can be calculated by: 

   

 

2

1

2

1

ε
ε , 10,11

j

j

j

f d
j

f d









    
 

  
 (5) 

where 𝑓𝑖(λ)  is the sensor’s normalized spectral response function for channel j, which satisfies 

∫ 𝑓𝑖(λ)𝑑λ = 1
λ2

λ1
. 

After obtaining the effective emissivity of the 96 laboratory emissivity spectra, the relative 

emissivity can be calculated from the following equation: 
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1

β 2 ε ε , 10,11
j j j

j


       (6) 

where β𝑗 is the relative emissivity of band j. Then, the spectral contrast, namely the maximum and 

minimum relative emissivity difference (MMD), is determined by: 

   max β mix β
j j

MMD    (7) 

The relationship between the minimum LSE and the MMD is fitted and the equation can be 

formulated as: 

0.861 2

min
ε 0.983 1.027 , R 0.945MMD     (8) 

The empirical relationship between the ε𝑚𝑖𝑛  and MMD is presented in Figure 1. Four types of 

vegetation, six types of water/ice/snow, 52 types of soils and 34 types of rocks are included in this 

study. The average absolute error, the RMSE and the regression coefficient (R) are about 0.006, 0.010 

and 0.972, respectively. As shown in [19], the squared correlation coefficient of ASTER MMD 

algorithm is 0.983, which is a bit better than the MMD method of TIRS. The main difference between 

them is that Landsat-8 only has two infrared bands while ASTER has five infrared bands. With the 

empirical equation, the LST/LSE can be determined, although the empirical equation has some error 

which cannot be eliminated. Nevertheless, based on the maintenance of the emissivity spectral shape 

by a certain method, the LSEs of the TIRS bands can be calculated precisely after a few iterations, and 

thus the LST can be derived accordingly. 

 

Figure 1. The empirical relationship between the 𝜀𝑚𝑖𝑛 and MMD of Landsat-8 TIRS data. 

R is the regression coefficient, RMSE is the root mean square error and n is the number of 

surface types. 
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3.2. Maintenance of the Emissivity Spectral Shape 

Based on the MMD module, additional information is added to make the ill-posed problem solved, 

yet the MMD method may have some error. To increase the accuracy of the temperature and 

emissivity algorithm, an iterative process is always needed to maintain the emissivity spectral shape by 

a certain method. The ASTER TES algorithm keeps the emissivity spectral shape through the ratio 

algorithm. Nevertheless, more than three infrared bands are needed to use the ratio algorithm [13,19]. 

The ADE method defines an alpha-residual spectrum based on the Wien’s approximation, which 

maintains the shape of the emissivity spectrum and can be applied to satellite data with only two 

infrared bands, such as the TIRS [41]. Therefore, an emissivity log difference method is developed in 

this study to maintain the emissivity spectrum shape, which is based on the modified  

Wien’s approximation. 

As shown in the previous part, the channel radiance Li at the top of the atmosphere (TOA) can be 

expressed as Equation (4). In Equation (4), the Bi(Ts) term is the radiance of a blackbody at land 

surface temperature Ts: 

 
 2

1

15 j s
j s C T

j

C
B T

e
 


 

 
(9) 

where 𝐶1 = 2𝜋ℎ𝑐2  is the first radiation constant, 𝐶2 = ℎ𝑐 𝑘⁄  is the second radiation constant, h is 

Planck’s constant, c is the speed of light, k is Boltzmann’s constant and λ𝑗 is the wavelength of band j. 

Wien’s approximation neglects the −1 term in Equation (9), which will introduce slope errors into the 

emissivity spectrum. In this study, an adjustment item is added to modify the Wien’s approximation: 
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2

1

5 j sj s C T j s

j

C
B T N T

e


 
 

 (10) 

where 𝑁𝑗(𝑇𝑠) = 1 (1 − 𝑒−𝐶2 λ𝑗𝑇𝑠⁄ )⁄  is the adjustment item of band j, which is only affected by the LST. 

Moreover, in order to separate the emissivity and the temperature, the adjustment item has to be 

known. Thus, the sensitivity of the adjustment item to temperature has been conducted in TIRS band 

10 and band 11 at 300 K, as seen in Figure 2. This result shows that the adjustment item changes about  

0.2%–0.3% every 10 K, and that the largest relative errors of the adjustment item are about 0.62% and 

0.83% for band 10 and 11, respectively, when the temperature gap is 30 K. Therefore, the adjustment 

item is not strongly sensitive to the variation of temperature. Ts can be replaced by the brightness 

temperature of band j(Tj), whose gap with the Ts would not exceed 30 K under normal circumstances. 

The modified Wien’s approximation can be expressed as: 

   
2

1

5 j sj s C T j j

j

C
B T N T

e


 
 

 (11) 

Based on the simulation data by the MODTRAN model presented in Section 2, the comparisons 

between the Wien’s approximation and the modified Wien’s approximation are shown in Table 2. 

From Table 2 we can see that Wien’s approximation would lead to about 1%–2.5% underestimation of  

the blackbody radiance, which will bring slope error into the emissivity shape. The modified Wien’s 
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approximation yields better results with about 0.20% relative error on average, although there is still a 

slight underestimation. 

 

Figure 2. The relative error of the adjustment item which takes 300 K as a reference  

(
𝑁𝑗(𝑇𝑗)−𝑁𝑗(300)

𝑁𝑗(300)
). 

Table 2. Comparisons between the Wien’s approximation and the modified Wien’s approximation. 

Temperature 
Relative Error between the Approximation and the True Value of Bj(Ts) (%) (2) 

Wien’s Approximation Modified Wien’s Approximation 

T0 
(3) − 5 −1.04/−1.59 (1) −0.04/−0.06 

T0 −1.13/−1.70 −0.07/−0.11 

T0 + 5 −1.21/−1.82 −0.10/−0.17 

T0 + 10 −1.30/−1.95 −0.13/−0.23 

T0 + 20 −1.50/−2.21 −0.21/−0.36 

T0 + 30 −1.71/−2.48 −0.28/−0.49 

Note: (1) For an example, −1.04/−1.59 means that the relative errors are about −1.04% for band 10 and −1.59% 

for band 11, respectively; (2) The relative error based on the Modified Wien’s approximation is the average 

value of simulation data from 96 laboratory emissivity spectra; (3) T0 is the temperature at the first layer of the 

atmospheric profile. 

In order to maintain the emissivity spectrum shape, the ELD method is developed in this study. 

Firstly, Equation (4) can be modified as: 

   ε 1 ε
τ

j atjground

j j j s j atj

j

L L
L B T L






     

(12) 

where 𝐿𝑗
𝑔𝑟𝑜𝑢𝑛𝑑

 is the ground-leaving radiance. τ𝑗, Lati↑ and Lati↓ can be obtained by convolution between 

the MODTRAN spectral outputs and the TIRS spectral response functions. Based on the modified 

Wien’s approximation and a correction term of the downwelling atmospheric radiance Mj [56], 𝐿𝑗
𝑔𝑟𝑜𝑢𝑛𝑑
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where 𝑀𝑗(𝑇𝑠) =
1−𝐿 𝐵(𝑇)⁄

1−𝐿 𝐿𝑔𝑟𝑜𝑢𝑛𝑑⁄
. Since the Mj is insensitive to the temperature [56], the original correction 

term Mj(Ts) can be replaced by Mj(Tj)  in the above equation. It means that the known brightness 

temperature is utilized rather than the unknown surface temperature. Take the natural logarithm on 

both sides of Equation (13) and then multiply by 𝜆𝑗: 

 2

1
ln ε , ln 5ln ln ln lnground

j j j j j j j j j

s

C
K K L C N M

T
            (14) 

Calculate the difference between band j and j+1, and define it as the ELDj (emissivity log difference 

of band j): 

1 1 1
ln ε lnε , 10,11

j j j j j j j
ELD K K j

  
       (15) 

Therefore, through the ELD method, we can theoretically maintain the emissivity spectrum shape of 

the Landsat-8 TIRS data. To analyze the accuracy of the ELD method, simulation data of six model 

atmospheres from MODTRAN5 are utilized. By assuming one emissivity of the two TIRS bands is 

known, the emissivity of the other band is calculated using the ELD method. Then, the accuracy is 

evaluated and the results are shown in Figure 3. The RMSE of the calculated emissivity of band 10 and 

band 11 are 0.080 and 0.075, respectively, which demonstrate that the ELD method can be applied to 

maintain the emissivity spectral shape of TIRS data. 

 

Figure 3. Accuracy evaluation of the ELD method based on the simulated dataset. The 

results are based on the simulation dataset by the MODTRAN model. (a) shows the 

comparison between the calculated and the reference emissivity of band 10, and (b) has a 

similar meaning. N is the number of simulation data, Bias is the average difference 

between the calculated and the reference emissivity, RMSE is the root mean square error. 
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3.3. Procedures of the Algorithm 

As discussed in Section 1, the TES algorithms are designed for and perform well with multispectral 

thermal data. The TES algorithms comprise of MMD method and ratio algorithm. Since 

simultaneously retrieving the LST and the LSE is a typical ill-posed problem, the MMD method is 

used to turn it into a well posed problem. The ratio algorithm is used to keep the shape of the 

emissivity spectrum, while it cannot be applied to Landsat-8 data. Similarly, the proposed TES 

algorithm for Landsat-8 data comprise of TIRS MMD module and ELD module. Based on the MMD 

module in Section 3.1, the ill-posed problem for separating the emissivity and temperature can be 

resolved. In order to maintain the emissivity spectrum shape, the ELD method is proposed based on 

the modified Wien’s approximation. Accuracy evaluation of the ELD method demonstrates that it can 

theoretically maintain the emissivity spectrum shape of the Landsat-8 TIRS data. 

The procedures of the temperature and emissivity separation algorithm have been summarized as 

the following. Inputs to the algorithm include the atmospheric transmittance, atmospheric upwelling and 

downwelling radiances, the radiance at the TOA and the brightness temperature. The iterative process 

works as follows. Firstly, an initial LST (𝑇0) is set to be the larger brightness temperature between TIRS 

bands 10 and 11. The corresponding initial emissivity 𝜀𝑗 is calculated by the following equation:  

 0

ε

ground

j atj

j

j atj

L L

B T L









 (16) 

where j is the band whose brightness temperature is larger, and the initial emissivity of the other band 

is derived through the ELD method (namely Equation (15)). Secondly, the relative emissivity and the 

MMD are acquired, and the minimum emissivity can be estimated from the empirical relationship 

between MMD and 𝜀𝑚𝑖𝑛 afterwards. The ELD method is utilized again to calculate the LSE of the two 

bands from 𝜀𝑚𝑖𝑛, which could maintain the emissivity spectrum shape. After that, because the uncorrected 

out-of-field stray light of TIRS has a larger effect on band 11 [57], the LST is retrieved from the 

radiation transfer equation at band 10: 
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 (17) 

 

Figure 4. The flow chart of the algorithm in this study. 
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Using the calculated emissivities as the input values of the MMD module and the ELD module, this 

process is repeated until the change of the LST is less than 0.1 K. The change of the LST means the 

difference between the calculated LST of this iteration loop and the previous one. The flow chart of the 

algorithm is illustrated in Figure 4. 

4. Results and Discussion 

4.1. Algorithm Testing from the Simulated Data 

The objective of this testing is to determine if the algorithm can accurately retrieve the surface 

emissivities and the LST values. The temperature and emissivity separation algorithm has been applied 

to the simulated data based on the model atmosphere of MODTRAN over the 96 emissivity spectra. 

Detailed parameter settings of the simulation are listed in Section 2.1. The results are shown in Table 3. 

For the retrieved LST from the simulated data, the bias varies from 0.16 to 0.33 K, with an average 

of 0.21 K; the mean absolute error varies from 0.32 to 0.54 K, with an average of 0.48 K; the RMSE 

varies from 0.40 to 0.81 K, with an average of 0.67 K; and the correlation coefficient is 1.0. The 

histogram of the differences between the retrieved LST and the reference LST is shown in Figure 5. 

More than 62% of the retrieved results that differed from the actual LST are within 0.5 K, 94.3% are 

within 1.0 K and 97.9% are within 1.5 K. Although the algorithm gives a slight overestimation of the 

LST of about 0.2 K, it can retrieve the land surface temperature precisely. The RMSE of retrieval 

results is only 0.7 K, which is better than the single-channel algorithm (about 1.7 K) and the split-

window algorithm (about 1 K) [34,58]. 

 

Figure 5. Histogram of the differences between the retrieved LST and the reference LST. 
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Table 3. Test results of the algorithm from the simulated data. Bias (the LST/LSE retrieved from the algorithm minus the reference 

LST/LSE), Mean absolute errors (Mean), RMSE values of the LST/LSE and linear correlation coefficient (R) are shown. 

Model Atmosphere 
Temperature (K) Emissivity(10 band) Emissivity(11 band) 

Bias Mean RMSE R Bias Mean RMSE R Bias Mean RMSE R 

Tropical 0.19 0.32 0.40 1.0 0.008 0.016 0.025 0.96 0.003 0.009 0.013 0.86 

Mid-Latitude 

Summer 
0.33 0.48 0.58 1.0 −0.002 0.014 0.017 0.98 0.000 0.008 0.011 0.87 

Mid-Latitude Winter 0.16 0.51 0.76 1.0 −0.004 0.008 0.012 0.97 −0.001 0.007 0.010 0.84 

Mid-Arctic Summer 0.30 0.51 0.65 1.0 −0.004 0.011 0.014 0.98 −0.001 0.007 0.010 0.86 

Mid-Arctic Winter 0.03 0.51 0.81 1.0 −0.002 0.008 0.011 0.97 −0.000 0.007 0.011 0.83 

1976 U.S. Standard 0.28 0.54 0.71 1.0 −0.005 0.010 0.012 0.98 −0.002 0.007 0.010 0.85 

All 0.21 0.48 0.67 1.0 −0.002 0.011 0.016 0.95 0.000 0.007 0.011 0.83 
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The algorithm not only can retrieve the LST with high accuracy, but it also can estimate the surface 

emissivities on the basis of accurate atmospheric correction. As shown in Table 3, both the emissivities 

of TIRS band 10 and 11 can be derived with almost no bias. Moreover, their mean absolute errors are 

about 0.011 and 0.007, respectively. Although the correlation coefficient is only 0.83, the RMSE of 

emissivity in band 11 is only 0.011, which is actually more accurate than band 10 with a RMSE of 

0.016. The histogram of the differences between the retrieved LSE and the reference LSE are shown in 

Figure 6. More than 53.2% of the retrieved results that differed from the actual LSE are within 0.010, 

82.1% are within 0.015 for band 10; and more than 80.9% are within 0.010, 92.3% are within 0.015 for 

band 11. As shown in the left part of Figure 6, the retrieved surface emissivities of TIRS band 10 have 

a slight underestimation, unlike band 11. However, the retrieved LSE may be higher than the actual 

LSE in some cases, which can be seen in Figure 6. The uncertainty of the empirical equation in the 

MMD module and the error of the atmospheric correction in the ELD module could be the reasons. 

 

Figure 6. Histogram of the differences between the retrieved LSE and the reference LSE. 

As shown in Table 3, the RMSE of temperature increases when moisture decreases from tropical to 

polar, while the RMSE of emissivities are opposite. Under normal circumstances, more moisture 

results in worse retrieval. Additionally, the scene temperature is also an important factor that affects 

the retrievals of the LST. Because the temperature decreases from tropical to polar, so does the 

brightness temperature. Cold scenes have larger observation noises in brightness temperature, which 

will result in worse retrievals. In order to analyze the influence of the brightness temperature, the 

RMSE of LST and LSE are calculated according to different temperatures, which are presented in 

Figure 7. Results show that the RMSE of LST increases when the temperature decreases from tropical 

to polar, while the RMSE of LSE decreases. Therefore, compared to the moisture, observation noises 

have larger effects on the LST retrievals. 
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Figure 7. The RMSE of LST and LSE according to different temperatures. 

To further analyze the accuracy and the practicability of the algorithm for different surface types, 

we summarize the performance corresponding to different laboratory spectra types. The results are 

shown in Table 4. As shown in Table 4, the algorithm developed in this paper can provide the best 

results of LST for surfaces with soil and stones, and their RMSE are about 0.42 K and 0.49 K, 

respectively. Moreover, the accuracy of the retrieved surface emissivity is about 0.010 (RMSE value), 

which is much better than vegetated surfaces. However, the retrieved surface emissivities have a slight 

bias for both soils and stones. For surfaces with water, snow and ice, the algorithm can provide 

moderate accuracy for both the LST and the LSE. Nevertheless, the accuracy of the algorithm is the 

worst for the vegetated surfaces, whose RMSE of the LST is greater than 2 K and the RMSE of the 

LSEs are greater than 0.035. It is possibly because the emissivity spectra from vegetation types do not 

fit the MMD module perfectly (Equation (8)), which can be seen from Figure 2. Besides, the 

temperature and emissivity separation algorithms will provide a worse result for low spectral contrast 

surfaces, such as high-vegetated areas, which have been demonstrated by the ASTER TES  

algorithm [19]. Some studies have been conducted to solve the problems [42], thus further efforts are 

needed to analyze the algorithm for vegetation surfaces in the future. 

Table 4. Accuracy of the algorithm for different surface types. 

Surface Type 
Number 

of Cases 

Temperature (K) Emissivity(10 Band) Emissivity(11 Band) 

Bias Mean RMSE Bias Mean RMSE Bias Mean RMSE 

Vegetation 144 −0.76 1.80 2.16 0.012 0.032 0.035 0.016 0.032 0.037 

Water/Snow/Ice 216 0.70 0.70 0.79 −0.014 0.014 0.015 −0.005 0.008 0.009 

Soil 1872 0.38 0.43 0.49 −0.008 0.009 0.010 −0.004 0.005 0.006 

Stone 1188 0.00 0.34 0.42 0.008 0.012 0.016 0.004 0.007 0.009 

The atmospheric profiles used in the algorithm are one of the biggest sources of errors in LST and 

LSE retrievals. A sensitivity analysis has been performed to assess the uncertainty of the LST in 

response to errors in the atmospheric profiles. The six model atmospheres in MODTRAN are used. 
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The effect of atmospheric profile uncertainties is simulated in two ways [50]. First, the air temperature 

varies by 1 K at each level. Second, the water vapor content is changed by 10% at each profile level. 

The difference (in absolute value) between the LST calculated with the modified and the original 

profile is the corresponding LST error. The total uncertainty is the RMSE of the above. Detailed 

results are shown in Table 5. According to these results, water vapor content is the larger source of 

errors in the LST retrievals, while air temperature has a lower impact. Because moisture decreases 

from tropical to polar, so does the imposed uncertainty of water vapor. Thus, the impact of the water 

vapor on the LST retrieval decreases from tropical to polar. Overall, the uncertainties of LST in 

response to air temperature error and water vapor error are 0.60 K and 0.98 K, respectively. 

Table 5. Uncertainty of the derived LST/LSE for different sources of uncertainty. 

Model Atmosphere 

Air Temperature (1K) Water Vapor (10%) 

LSE  

(Band 10) 

LSE  

(Band 11) 

LST 

(K) 

LSE  

(Band 10) 

LSE  

(Band 11) 

LST 

(K) 

Tropical 0.008 0.003 1.05 0.016 0.007 1.63 

Mid-Latitude 

Summer 
0.012 0.009 0.70 0.013 0.006 1.22 

Mid-Latitude Winter 0.003 0.001 0.32 0.005 0.003 0.42 

Mid-Arctic Summer 0.004 0.002 0.56 0.011 0.005 1.02 

Mid-Arctic Winter 0.002 0.001 0.20 0.003 0.002 0.24 

1976 U.S. Standard 0.003 0.001 0.34 0.007 0.003 0.56 

All 0.006 0.004 0.60 0.010 0.005 0.98 

4.2. Algorithm Validation Based on SURFRAD Ground Measurements 

Since the datasets have hardly any error, algorithm validation by simulated data can only reveal the 

accuracy of the method itself. However, in addition to the inner precision of the algorithm, the 

accuracy of the temperature and emissivity algorithms depends largely on the errors of the calibration, 

atmospheric correction and radiometric noises. To further evaluate the algorithm, comparisons have 

been conducted between the retrieval results from the real Landsat-8 TIRS data and the referenced 

LST based on SURFRAD ground measurements. Four SURFRAD sites are chosen in this study. The 

atmospheric profiles and software used in this study and the processing of the Landsat-8 images are 

listed in Section 2. The validation results are shown in Table 6. 

Figure 8 shows the scatterplots of the comparison between the LST from Landsat-8 TIRS data and 

the LST from ground-based measurements at four SURFRAD sites. Table 7 summarizes the statistical 

parameters of the comparison by each SURFRAD ground site. Figure 8 demonstrates that the two 

LSTs agree well for most cases at the four sites, whose correlation coefficients are about 0.99 for all 

sites. The bias in three sites varies from −0.70 to 0.74 K and one site has a 1.69 K bias, with an average 

of 0.66 K. Maybe the number of cases is too few to include all the circumstances, and the LSTs 

calculated from SURFRAD ground measurements have about a −0.3 K bias during daytime. The 

average mean absolute error over the four sites is 1.74 K and varies from 1.04 to 2.56 K. The RMSE 

varies from 1.42 to 3.34 K, with an average of 2.32 K. Of all the 40 cases, 45% of the retrieved LSTs 

that differed from the actual LST are within 1 K, and 62.5% are within 2 K. 
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Table 6. Validation cases based on the SURFRAD ground measurements. Retrieved 

LST/LSE means the LST/LSE is retrieved from satellite images by the algorithm in this study, 

the reference LST means the LST is calculated from SURFRAD ground measurements. 

Bias is the retrieved LST minus the reference LST. 

Sites Time (d/m/y) 
Retrieved 

LST (K) 

Reference 

LST (K) 
Bias (K) 

Retrieved LSE 

10 Band 11 Band 

Bondville 

22 April 2013 297.56 295.07 2.48 0.944 0.965 

28 August 2013 307.58 306.78 0.80 0.967 0.974 

18 December 2013 261.98 265.10 −3.12 0.970 0.957 

11 February 2014 258.73 259.37 −0.64 0.944 0.964 

16 April 2014 287.13 286.48 0.65 0.969 0.953 

18 May 2014 300.03 295.93 4.10 0.980 0.978 

3 June 2014 304.33 302.41 1.92 0.979 0.977 

23 September 2014 296.00 296.20 −0.19 0.982 0.982 

25 October 2014 294.31 293.65 0.65 0.981 0.979 

Goodwin 

Creek 

11 July 2013 287.61 286.05 1.56  0.973 0.963 

25 December 2013 280.18 280.89 −0.70 0.969 0.953 

27 February 2014 284.61 285.96 −1.35 0.974 0.965 

16 April 2014 294.07 294.83 −0.75 0.976 0.970 

5 July 2014 303.35 305.50 −2.15 0.979 0.977 

6 August 2014 306.86 307.24 −0.37 0.977 0.972 

22 August 2014 307.17 307.23 −0.06 0.964 0.973 

23 September 2014 302.25 302.76 −0.51 0.947 0.966 

10 November 2014 293.10 295.02 −1.92 0.969 0.954 

Sioux Falls 

10 June 2013 305.65 301.00 4.65 0.968 0.975 

12 July 2013 308.30 305.04 3.26 0.976 0.970 

28 July 2013 305.39 300.01 5.38 0.970 0.956 

29 August 2013 310.09 307.75 2.34 0.973 0.964 

16 October 2013 287.50 286.75 0.75 0.971 0.959 

1 November 2014 285.52 285.28 0.24 0.967 0.948 

25 March 2014 277.37 276.26 1.10 0.970 0.956 

28 May 2014 306.76 305.45 1.32 0.971 0.976 

29 June 2014 307.26 304.98 2.28 0.965 0.944 

17 September 2014 299.11 298.97 0.13 0.979 0.977 

19 October 2014 294.38 295.09 −0.70 0.975 0.978 

4 November 2014 284.64 285.13 −0.49 0.973 0.965 

Fort Peck 

6 July 2013 304.40 301.23 3.17 0.981 0.980 

24 September 2013 300.31 297.96 2.35 0.962 0.973 

26 October 2013 284.11 284.87 −0.76 0.971 0.959 

11 November 2013 270.42 270.49 −0.07 0.963 0.938 

19 March 2014 278.92 284.60 −5.69 0.969 0.955 

9 July 2014 314.79 309.81 4.97 0.976 0.970 

25 July 2014 306.20 303.37 2.84 0.964 0.973 

26 August 2014 300.03 298.99 1.04 0.983 0.982 

13 October 2014 295.12 295.03 0.09 0.981 0.982 

30 November 2014 252.58 254.77 −2.20 0.947 0.973 
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Figure 8. The comparison scatterplots of LST from Landsat-8 TIRS data and the LST from 

ground-based measurements at four SURFRAD sites. Data used here are from 2013 to 2014. 

Table 7. Summaries of the validation results according to different ground sites. Bias, 

Mean, RMSE and R have the same meaning as Table 3. 

Sites Number of Cases 
Temperature (K) 

Bias Mean RMSE R 

Bondville 9 0.74 1.62 2.34 0.996 

Goodwin Creek 9 −0.70 1.04 1.42 0.994 

Sioux Falls 12 1.69 1.89 2.52 0.989 

Fort Peck 10 0.39 2.56 3.34 0.993 

All 40 0.66 1.74 2.32 0.991 

The errors may come from different sources. The majority of the error stems from the empirical 

equation between the minimum emissivity and the MMD, which is not a perfect fit for all cases. Three 

of the four sites are covered by vegetated surfaces, whose residuals in the MMD equation are 

especially high, thus resulting in bigger errors. The accuracy of calibration in TIRS channels also has a 

significant effect on the accuracy of the algorithm. Although a calibration update was implemented on 

3 February 2014 in the USGS/EROS processing system for both bands to correct a bias error (0.29 and  

0.51 W/m2·sr·μm or −2.1 K and −4.4 K at 300 K in Band 10 and 11, respectively), the residuals are 

still larger than desired for both bands (0.12 and 0.2 W/m2·sr·μm or 0.87 K and 1.67 K at 300 K). 

While the out-of-field stray light is small enough in band 10, the effect in band 11 is larger and studies 
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suggest that band 11 data should not be used for quantitative analysis at present [57,59]. Therefore, the 

accuracy could be better if the calibration issue of TIRS band 11 is resolved in the future. Besides, the 

accuracy of the NCEP reanalysis datasets also will affect the accuracy of the algorithm. In summary, 

the algorithm can retrieve the LST with an average absolute error of 1.7 K, which is slightly worse than the 

split-window algorithm. However, since the temperature and emissivity algorithm does not need the 

LSE a priori, it can be used as an alternative method to retrieve the LST over the areas where the LSE 

is not known. 

5. Conclusions 

In this study, a temperature and emissivity separation algorithm is developed to simultaneously 

retrieve the LST and the LSE from Landsat-8 TIRS data. According to the radiative transfer equation, 

simultaneously retrieving the LST and the LSE from Landsat-8 TIRS is a typical ill-posed problem. 

However, by making full use of the information between the emissivities in different bands, the  

ill-posed problem can be resolved. Therefore, based on the laboratory emissivity spectra data, the 

MMD module for TIRS data is developed. Moreover, in order to maintain the emissivity spectrum 

shape in the iterative process, an emissivity log difference method (ELD method) is developed in this 

study, which is based on the modified Wien’s approximation. In support of the above studies, the LST 

and LSE can be recovered simultaneously from TIRS data. 

The performance of the algorithm is examined based on the MODTRAN5 model and 96 emissivity 

spectra over natural surfaces. The RMSEs are 0.67 K, 0.016 and 0.011 for LST and the emissivities of 

bands 10 and 11, respectively. More than 94% of the retrieved results that differed from the actual LST 

are within 1.0 K. Results show that both the LST and LSE can be estimated with a good accuracy by 

the algorithm. In addition, this algorithm is practicable for different surface types including vegetation, 

water, snow, ice, soils and rocks. To further analyze the algorithm, the evaluation between the 

retrieved LST and the reference LST from SURFRAD ground measurements is conducted. The 

average absolute error of the LST is 1.7 K with an average bias of 0.6 K, which is better than the 

single-channel methods but slightly worse than the split-window algorithm [34]. The imperfect fit of 

the empirical equation in the MMD module and the calibration errors in the TIRS channels are the 

main sources which affect the accuracy of the algorithm. Therefore, the algorithm in this study makes 

it possible to retrieve the LST from Landsat-8 TIRS data without the prior knowledge of surface 

emissivity. Although there are some issues that need to be addressed in the future, such as the 

calibration errors of band 11, the algorithm consisting of the MMD and ELD modules is capable of 

retrieving the LST and LSE simultaneously from Landsat-8 TIRS data with good results. 
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