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Abstract: The Soil Moisture and Ocean Salinity (SMOS) mission was initiated in 2009 with 

the goal of acquiring global soil moisture data over land using multi-angular L-band 

radiometric measurements. Specifically, surface soil moisture was estimated using the  

L-band Microwave Emission of the Biosphere (L-MEB) radiative transfer model. This study 

evaluated the applicability of this model to the Heihe River Basin in Northern China for 

specific underlying surfaces by simulating brightness temperature (BT) with the  

L-MEB model. To analyze the influence of a ground sampling strategy on the simulations, 

two resampling methods based on ground observations were compared. In the first method, 

the simulated BT of each point observation was initially acquired. The simulations were then 

resampled at a 1 km resolution. The other method was based on gridded data with a 

resolution of 1 km averaged from point observations, such as soil moisture, soil temperature, 

and soil texture. The simulated BTs at a 1 km resolution were then obtained using the  

L-MEB model. Because of the large variability in soil moisture, the resampling method 

based on gridded data was used in the simulation. The simulated BTs based on the calibrated 

parameters were validated using airborne L-band data from the Polarimetric  

L-band Multibeam Radiometer (PLMR) acquired during the HiWATER project. The root 

mean square errors (RMSEs) between the simulated results and the PLMR data were 6 to  

7 K for V-polarization and 3 to 5 K for H-polarization at different angles. These results 
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demonstrate that the model effectively represents agricultural land surfaces, and this study 

will serve as a reference for applying the L-MEB model in arid regions and for selecting a 

ground sampling strategy. 

Keywords: soil moisture; microwave brightness temperature; L-MEB model;  

PLMR; HiWATER  

 

1. Introduction 

Soil moisture is a key component between the hydrosphere, biosphere and atmospheric water cycle 

and significantly affects the redistribution of rainfall into infiltration, surface runoff and evaporation at 

the earth’s surface [1]. For a small watershed, in situ soil moisture data can be acquired through 

gravimetric sampling or time domain reflectometry (TDR) sensors [2]; however, data collection is time 

consuming when applied at a large scale. Recently, progress in remote sensing technology has provided 

a new approach to global soil moisture monitoring. New satellite missions, such as the Advanced 

Microwave Scanning Radiometer 2 (AMSR2) [2], Soil Moisture and Ocean Salinity (SMOS) [3], Soil 

Moisture Active Passive (SMAP) [4], and Aquarius [5], have produced soil moisture datasets. Compared 

with other space-borne radiometer bands, the L-band (1–2 GHz) is the most sensitive to soil moisture [6]. 

Additionally, microwave radiation has all-weather, all-day capabilities. Therefore, developing a soil 

moisture inversion algorithm for the L-band is important for monitoring the global water cycle. 

In 2009, the European Space Agency launched SMOS with the goal of obtaining global soil  

moisture and ocean salinity estimates. The L-band Microwave Emission of the Biosphere model  

(L-MEB) is used as a forward model in developing a SMOS soil moisture inversion algorithm. The 

model considers the contributions of various underlying surface types, including bare soil, vegetation 

and open water, to the total radiative energy [6]. Based on the L-MEB model, Pellarin et al. [7] simulated 

brightness temperature (BTs) over land surfaces at a half-degree resolution globally in 2003. These 

authors significantly contributed to the evaluation of the sensitivity of satellite-based L-band radiometry 

data to soil moisture. In 2015, Li et al. [8] analyzed and reduced uncertainties in soil moisture retrieval 

based on the L-MEB model using L-band microwave BTs. The retrieval uncertainties in soil moisture 

were mainly caused by observation error, parameter uncertainty and the retrieval strategy. The soil 

moisture retrieval accuracy was determined using both the total sensitivity of each model parameter and 

the coupling effect between soil moisture and other parameters. Because the L-MEB model is a crucial 

component of the SMOS Level 2 (SMOS L2) algorithm, calibrating the soil and vegetation parameters 

of the model is important. In 2007, Wigneron et al. [9] further detailed the L-MEB model and evaluated 

the applicability of the model with several experimental datasets that involved agricultural crops in 

Avignon and Michigan. In 2008, Grant et al. [10] simulated the BTs of coniferous and deciduous forest 

canopies in Bordeaux and West Germany, respectively, using the L-MEB model. The authors calibrated 

the vegetation parameters under forest cover and verified the optical thickness relationship with the leaf 

area index (LAI). The results were then used in the SMOS L2 soil moisture algorithm. 
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To understand the relative roles of various underlying components in L-band microwave radiation, 

most researchers have studied the influence of land surface parameters using a large number of ground 

observation experiments and BT simulations [11–14]. Saleh et al. [11] simulated the BT of grasslands 

using the L-MEB model, established a nonlinear regression relationship between the simulation results 

and soil moisture, and proposed a new method for estimating the effects of vegetation and soil roughness 

on soil moisture retrieval. Ferrazzoli et al. [12] observed that in the process of simulating forest canopy 

BTs, the microwave radiation in the L-band mainly derives from the branches, whereas the effects of the 

trunk are smaller. Wigneron et al. [13] simulated the BTs of various crop types using the L-MEB model 

and adjusted the optical thickness and single-scattering albedo for each crop type. Over mountainous 

areas, the effects of relief on soil moisture inversion must be carefully represented. In 2008,  

Mialon et al. [14] simulated the BTs of three types of topographic features using the L-MEB model, and 

the simulation results were compared with the simulation of a flat surface. The results showed that 

because of terrain influences, the BT difference can reach 5 K, which verified the influence of variable 

terrain on L-band microwave radiation.  

For other microwave bands, many studies have analyzed the influence of models based on BT 

simulations. In 1990, the BTs of the four Special Sensor Microwave Imager (SSM/I) channels were 

simulated based on the Regional Atmospheric Modeling System (RAMS). The contributions of the 

atmosphere, cosmic rays and surface parameters to microwave radiation were analyzed. The study 

concluded that the 19.35 GHz signal was primarily from rain, which was significant to the development 

of the precipitation inversion algorithm [15]. The microwave BTs of the tropical rainfall system were 

then simulated by combining a 3D cloud model with a microwave radiative transfer model. The 

relationship between precipitation and other physical characteristics over the tropical oceans was 

analyzed [16]. In 1998, Lin et al. analyzed the response of the SSM/I sensor to ocean surface microwave 

radiation by simulating the BTs of the four SSM/I channels based on the Microwave Radiation Transfer 

Model (MWRTM) [17]. Overall, simulating the BTs is effective for evaluating the factors that influence 

models, and many scholars have analyzed the factors that influence the L-MEB model and the model’s 

applicability. However, there is minimal research on the applicability of the model in Northwest China 

for specific underlying surfaces despite its significance for disaster prediction and crop monitoring. 

In this study, the L-MEB model was proposed for computing the microwave BT in the L-band at 

three incidence angles. The simulations were compared with the Polarimetric L-band Multibeam 

Radiometer (PLMR) microwave BT data. This comparison was used to evaluate the suitability of the  

L-MEB model in the Heihe River Basin.  

The text is organized as follows. Section 2 describes the field datasets used in the research.  

Section 3 describes the forward model used to simulate BTs. Section 4 presents a sensitivity analysis of 

the L-MEB model used to obtain optimal simulation results. Calibrated vegetation canopy and soil 

parameters suitable for the Heihe River Basin were acquired by minimizing the error between the 

simulation results and the airborne observation data (Section 5.1). During the calibration, two resampling 

methods were compared based on ground observations: (a) the simulations of each point were initially 

calculated, after that the simulations were resampled to 1 km resolution; and (b) 1km resolution gridded 

data including soil moisture, soil temperature, and soil texture, were acquired by averaging from the 

point observations. The simulated BTs at 1 km resolution were then obtained using the L-MEB model. 
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Section 5.2 validates the calibrated parameters and explains the errors between the simulations and 

observations. The conclusions are presented in Section 6. 

2. Data 

Datasets from the Heihe Watershed Allied Telemetry Experimental Research (HiWATER) project 

were used in this study, including airborne PLMR BT data and WATERNET observation data. The 

dataset details are presented in Sections 2.1 and 2.2. 

The HiWATER experiment was a coordinated collaborative effort of an interdisciplinary science 

team sponsored by the Cold and Arid Regions Environmental and Engineering Research Institute, 

Chinese Academy of Sciences, State Key Laboratory of Remote Sensing Science, School of Geography 

and Remote Sensing Science, Beijing Normal University, Institute of Remote Sensing Applications, 

Chinese Academy of Sciences, and other agencies [18,19]. 

The Heihe River Basin was selected for this experiment because it is a typical inland river basin and 

the second largest inland river basin in China. The basin features include complicated eco-hydrological 

processes and a fragile environment. 

2.1. The Airborne PLMR Microwave Brightness-Temperature Data 

The middle sections of the Heihe River Basin represent a key experimental area of the HiWATER 

experiment. The area is characterized by irrigated oases, and the land cover types include grasslands, 

urban areas, forests, and bare land [20].  

To improve the remote sensing methods for observing key eco-hydrological processes,  

aircraft-based PLMR and Thermal Airborne Spectrographic Imager (TASI) observations were 

conducted to measure the BTs across a 50 km × 50 km region in the middle section of the Heihe River 

Basin (Figure 1). The incidence angles were ±7.5°, ±21.5°, and ±38.5° for the V- and H-polarizations, 

and measurement details are shown in Table 1. Depending on the observation dates, the flight height 

ranged from 0.3 to 3 km, and the spatial resolution ranged from 0.1 to 0.75 km. The flight on  

2 August did not pass over the study area, and the flight time over the study area on 5 July was short; 

therefore, the observations from 5 July and 2 August were not used in the study. 

Table 1. Measurement details of the PLMR observations. 

Observation Date Flight Height Spatial Resolution Data Source 

30 June 2012 2.50 km None doi:10.3972/hiwater.013.2013.db 

3 July 2012 0.35 km 100 m doi:10.3972/hiwater.014.2013.db 

4 July 2012 1.00 km 300 m doi:10.3972/hiwater.015.2013.db 

5 July 2012 2.00 km 600 m doi:10.3972/hiwater.016.2013.db 

7 July 2012 2.00 km 600 m doi:10.3972/hiwater.017.2013.db 

10 July 2012 2.50 km 750 m doi:10.3972/hiwater.018.2013.db 

26 July 2012 2.30 km 700 m doi:10.3972/hiwater.019.2013.db 

1 August 2012 1.00 km 300 m doi:10.3972/hiwater.020.2013.db 

2 August 2012 2.30 km 700 m doi:10.3972/hiwater.021.2013.db 
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Figure 1. Geographical location of the Heihe River Basin (left), land cover map of the Heihe 

River Basin [21] and Polarimetric L-band Multibeam Radiometer (PLMR) flight 

area (right). 

To facilitate a comparison with satellite products in the future, the PLMR BTs were resampled to 

raster data with a spatial resolution of 1 km, as shown in Figure 2. This figure shows that for a given 

angle of incidence, the BTs for V-polarizations were higher than those for H-polarizations. With the 

incidence angle gradually increasing (from 7.5° to 38.5°), the BTs of H-polarization gradually decreased, 

whereas those of V-polarization gradually increased. Additionally, the V-polarization BTs at 38.5° were 

primarily greater than 310 K, which might be caused by radio frequency interference (RFI) [22]. 

2.2. Field Observation Data 

To integrate a variety of hydrological, ecological, and meteorological observation facilities 

throughout the Heihe River Basin, an eco-hydrological wireless sensor network (WSN) spanning  

5.5 km × 5.5 km was established in the middle region [23].  

This network includes three types of new sensor nodes: BNUNET [23,24], SoilNET [23,24], and 

WATERNET [23,24]. The main observation parameters included soil moisture, soil temperature, soil 

conductivity and the complex dielectric constant. Figure 3 shows the distributions of the three new sensor 

nodes in the WSN.  
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The WATERNET datasets were mainly used to simulate BT in this study, and there were 

50 WATERNET observation nodes. Except for two nodes implemented in a pea field and orchard, the 

remaining nodes were all implemented in cornfields. In this study, observations from the two nodes in 

the pea field and orchard were excluded, and simulations were conducted using data from the cornfield nodes.  

   

    

Figure 2. PLMR brightness temperature on 30 June 2012, at incidence angle of 7°, 21.5°, 

and 38.5°for H- and V-polarization during the HiWATER project. 

The observation dates of the WATERNET system ranged from 9 June to 18 September 2012. The 

observation parameters included soil temperature, soil moisture, soil conductivity and dielectric 

constants at 4 and 10 cm. When the airborne radiometer passed over the experiment area, the soil  

surface temperature ranged from 19 °C to 30 °C, whereas the soil moisture ranged from 0.2 to  

0.5 cm3/cm3. Additionally, the soil texture data [25] of the Heihe River Basin were used to calculate the 

dielectric constant of the soil. The LAI data [26] measured in the flux observation matrix were used to 

calculate the optical depth of the vegetation in the study. The sand and clay contents of the study area 

were approximately 40% and 10%, respectively. 

7° 38.5° 21.5° 

V                     

H                     
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Figure 3. Geographical location of aircraft observation, land cover map of the aircraft 

observation area and the distribution of the three types of new sensor nodes in the wireless 

sensor work (WSN). 

3. The L-MEB Model 

As an important forward model in the SMOS soil moisture inversion algorithm, the L-MEB model 

was composed of four components: bare soil, low vegetation, forest and others. The BT of a pixel was a 

weighted sum of the four components, expressed as follows [6]: 

bare Pbare lowveg Plowveg forest Pforest other PotherP f TB f TB f TB f TBTB      (1) 

where TBP is the BT of an entire pixel, f* is the proportional area of each component, TBP* is the BT of 

each component, and the subscript P represents polarization. The land surface of the study area is 

primarily covered by crops, and the emissions from a vegetated soil surface are modeled by L-MEB and 

the τ-ω model as follows [27]: 

     model * *1 1 1 1B soil veg veg veg soil veg soilT r r T r T        (2) 

where Tveg is the vegetation temperature, Tsoil is the soil temperature, 𝛤𝑠𝑜𝑖𝑙
∗  is the reflectivity of the soil, 

ω is the vegetation scattering albedo, and rveg is the transmissivity of the vegetation layer.  
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3.1. Soil Effective Temperature 

Tsoil is an important parameter in Equation (2) that accounts for the contribution of the soil temperature 

profile to emissions. Based on the radiative transfer theory [28], the effective temperature can be 

calculated via the following equation: 

   
0

soil Ts z W z dzT


   (3) 

where Ts(z) is the soil thermodynamic temperature at depth z, and W(z) is a temperature weighting 

function of the contribution of each soil layer. The latter parameter is defined as follows: 

     
0

exp
z

W z z z dz     
    (4) 

 
 

  
0.5
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2

Ei z
z

Er z





 
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 
 (5) 

where α(z) is an attenuation coefficient related to the soil dielectric constant, λ is the observed wavelength, 

and Er and Ei are the real and imaginary soil dielectric constant variables, respectively. This method 

details the influence of several temperatures at different soil layers on the soil’s total radiation, but the 

calculation is not easily implemented. For applied studies at a large scale, simple parameterizations are 

necessary. The most straightforward parameterization was proposed by Choudhury et al. [29]:  

 soil deep surf deep CtT T T T    (6) 

where Tdeep is the deep soil temperature (10 cm in this study), Tsurf is the surface temperature 

(approximately over a depth of 0–5 cm), and Ct is an adjustable parameter that is affected by the 

observation frequency and soil moisture. This adjustable parameter can be calculated using the 

imaginary (Ei) and real (Er) soil dielectric constant variables [30]:  

0
/

0

b
Ei Er

Ct
E

 
  
 

 (7) 

where E0 and b0 are empirical parameters that depend on specific soil characteristics. In the study, Tsurf 

and Tdeep are equal to the soil temperature at 4 and 10 cm, respectively, as measured by the WATERNET 

system; E0 = 0.3 and b0 = 0.3 are set as the default values.  

3.2. Soil Reflectivity 

Soil reflectivity is calculated using the Q-H model proposed by Wang and Choudhury [31]:  

        * * *1 exp cos PN
soil P QQs Qs hR R           (8) 

where 𝑅𝑃
∗ (𝜃) and 𝑅𝑄

∗ (𝜃) are Fresnel reflectance values. Qs and h are the semi-empirical parameters that 

model the intensity of the roughness effects and the polarization-mixing effects, respectively. The 

parameter NP is an exponent that is affected by polarization mode, θ is the observation angle, and P is 

polarization. Qs, NH and NV are set to zero, as indicated by published studies based on large experimental 

datasets [32]. 
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In earlier research, the h parameter was found to be correlated with the slope parameter (the standard 

deviation in surface height (SD) and the associated correlation length (LC)) and the surface soil moisture [33]. 

Based on a new method proposed by Escorihuela et al., the h parameter depends on the soil moisture as 

follows [34]: 

 

   
2

2

2 4.4 ,

2 ,

FC FC

FC

k ws ws ws ws
h

k ws ws

    
 

 

 (9) 

where k is the wavenumber, and σ is the root-mean-square (RMS) height. The RMS height was not 

measured during the HiWATER experiments. Therefore, the RMS height is a fitting parameter that 

compares TB simulations and PLMR observations. In addition, because the simulation was conducted 

at the corn surface with row structure, the RMS height value could be larger [35]. Hence, an RMS height 

of 1.5 cm was derived as a fitting parameter. ws is soil moisture, and WSFC is the field capacity related 

to soil texture.  

3.3. Vegetation Effects 

Vegetation layer transmissivity rveg is calculated from the vegetation optical depth τ by accounting 

for the variation in the vegetation slant height angle: 

 exp secvegr      (10)  

The vegetation optical thickness τ, calibrated by Wigneron et al., depends on observation θ and 

polarization P, written as follows [36]:  

 , constanth     (11)  

    2 2, ,h cos sinv Cpol         (12)  

where Cpol is a correction parameter. Jackson et al. [37] indicated that vegetation (such as corn, 

soybeans, and alfalfa) optical thickness is generally linearly related to the total vegetation water content 

(VWC), and ignored the effect of polarization on optical thickness. Cpol can then be set to 1 as the 

default value, i.e., ignoring the polarization effect of optical thickness. 

Vegetation optical thickness for H-polarization is generally linearly related to VWC (kg/m2) using 

the b parameter [38]: 

b VWC    (13) 

VWC is correlated with the LAI for crop-covered surfaces and can be expressed as follows [6]: 

0.5VWC LAI  (14) 

The values of b and ω have been calibrated for different crop types by Wigneron et al. [13]. The study 

area is covered with corn, thus, b = 0.15 and ω = 0.06 are set as the model’s default parameters in 

this study.  
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4. Sensitivity Analysis of L-MEB 

According to the above description of the L-MEB model, many studies have calibrated the parameters 

of the L-MEB model for different areas. However, these calibrated parameters of the  

L-MEB model may not be suitable for the Heihe River Basin, and were thus recalibrated. For a 

reasonable calibration, the features of the L-MEB model must be determined. A sensitivity analysis of 

the model was thus conducted. In this study, the BTs of the vegetation canopy were simulated, and the 

microwave radiation signal received by the airborne sensors was detected. This signal derived mainly 

from soil and vegetation, which are influenced by underlying surface roughness, soil moisture, soil 

texture, vegetation temperature, VWC, and LAI. The input parameters of the model can be divided into 

two categories: (a) ground observation parameters, such as soil moisture, soil temperature and LAI; and 

(b) semi-empirical parameters, such as Qs, NH, NV, Cpol, b and ω. 

Table 2. Ranges of the ground observation parameters in WATERNET. 

Input Parameter Ranges Mean 

soil moisture (cm3/cm3) 0.14–0.46 0.26 

Soil temperature at 4 cm (°C) 21.86–38.04 27.42 

Soil temperature at 10 cm (°C) 18.85–29.44 23.94 

LAI 1.75–5.25 3.50 

Based on the observed data from the study area; the soil moisture; soil temperature and LAI ranges 

used in the model were set according to Table 2. Because there were no obvious differences between 

surface temperature and vegetation temperature in the study area, vegetation temperature is assumed to 

be equal to surface temperature. The soil texture in the model was set to a constant value (sand = 0.35; 

clay = 0.08); and other semi-empirical parameters were set to default values. 

Figure 4 shows that with an increase in soil moisture, the BTs significantly decrease for both 

polarizations. Furthermore, with an increase in soil temperature at 4 cm, the BTs significantly increase 

for both polarizations. The model is much less sensitive to the soil temperature at 10 cm. The principal 

components of the sensor’s surface microwave radiation reception are attributable to the soil effective 

temperature and vegetation temperature, and the soil effective temperature is mainly affected by soil 

moisture and soil surface temperature. Therefore, soil temperature at 4 cm and soil moisture are crucial 

to the simulations. 

The semi-empirical parameters that required adjustment included Qs, NH, NV, Cpol, b and ω. Based 

on multiple experiments, Qs and NP range from 0 to 1 and –4 to 4, respectively, and Qs tends to be 0 at 

low frequencies [32,39,40]. At 1.4 GHz, b = 0.12 ± 0.03 is suitable for most crop types [6], and omega 

is approximately 0.06 for corn [13]. Cpol represents the correction parameter, which is equal to 1 and 

2.6 for soybeans and wheat, respectively [36]. Cpol in this study ranged from 1 to 3. The RMS height 

was set as a fitting parameter in the study, and the influence of the RMS height on the simulated BT was 

also analyzed, as shown in Figure 5. 
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Figure 4. The effects of ground observation data including soil moisture, soil temperature 

(4 cm and 10cm), and LAI on the modeled BT at L-band. 

 

 

Figure 5. The effects of fitting parameter and semi-empirical parameters on the modeled BT 

at L-band. 

The sensitivity analysis of the model with respect to the semi-empirical parameters showed that the 

L-MEB model was more sensitive to the RMS height and N (NH and NV). With an increase in RMS 
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height, the BTs of both polarizations gradually increased. When the soil roughness increased, soil 

reflectance decreased, and soil emissivity increased; therefore, the radiation of the surface increased. 

With an increase in Qs, the V-polarization BTs decreased and the H-polarization BTs increased, as 

shown in Figure 5. 

5. Results and Discussion 

5.1. Calibration of the Semi-Empirical Parameters 

According to the model’s sensitivity, the above semi-empirical parameters could be appropriately 

adjusted with ranges referenced in previous studies [6,13,32,36,39,40]. Calibration was based on 

minimizing the difference between the L-MEB modeled BTs and the PLMR measurements.  

Because each observation node stored WATERNET data, the simulation results were aggregated to 

a 1 km spatial resolution to match the airborne PLMR data. However, during the simulation process, two 

resampling methods could be used to obtain a simulated BT: (1) simulation from point observations (soil 

moisture, soil temperature, LAI, etc.). In this case, the simulated BT of each point observation was 

initially calculated, and the simulated BT was then resampled at a 1 km resolution; (2) Simulation based 

on gridded field data with a resolution of 1 km averaged from the point observations. In this method, the 

ground parameters (soil moisture, soil temperature, LAI, etc.) were initially resampled at a 1 km 

resolution. The simulation was then conducted using the L-MEB model based on these gridded field 

data, and the simulated BTs at a 1 km resolution were obtained. It should be noted that because there 

may be several point observations within one pixel, the arithmetic average method, which is the simplest, 

most convenient and most frequently used method of all calculations for area-averaged parameters, was 

used to calculate the gridded data at a 1 km resolution [40–45]. 

The differences between the two resampling methods were mainly related to the different resample 

objects and times. In this study, one method was applied to the BT after the simulation process (Method 1), 

whereas the other method was applied to the ground parameters before the simulation process (Method 2). 

It can be assumed that the simulation process was also an error propagation process. Because soil 

moisture was the most sensitive parameter to BT, it can be expected that the overall relationship between 

BT and the parameters was mainly affected by soil moisture. In this study, the average soil moisture of 

the ground observations ranged from 0.21 to 0.33 cm3/cm3, as shown in Figure 6, and the relationship 

between simulated BT and soil moisture tended to be an upward parabola in this range, as shown in 

Figure 4. Therefore, we assumed that the overall relationship between BT and all parameters could be 

represented using a concave upward parabola, as shown in Figure 7. 

To analyze the differences between the two resampling methods, a mathematical strategy was used 

in which we assumed that there were only two point observations in one pixel and the observation error 

for each point was ψ1 andψ2. After the simulation process, which can also be observed as an error 

propagation process, ψ1 andψ2 were amplified into y1 and y2, as shown in Figure 7. Using Method 2, the 

area-averaged observation error was0 and transferred into f(ψ0) after the simulation process, whereas 

using Method 1, the final error corresponded to the average simulated BT error y0. It was obvious that 

f(ψ0) was smaller than y0, which indicated that Method 2 was more accurate than Method 1.  
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Figure 6. Temporal evolution of mean soil moisture content calculated from the average of 

ground observations. Vertical bars correspond to the standard deviation of the soil moisture. 

 

Figure 7. The mathematical expression of two resampling methods. 

Through the above analysis, it can be concluded that the resampling strategy was related to the 

uniformity of the observations. If the observations were uniform, e.g., ψ1 =ψ2, then f(ψ0) = y0. However, 

based on the analysis of the WATERNET observations shown in Figure 6, the standard deviation varied 

between 0.03 and 0.13 cm3/cm3. Thus, soil moisture variability within the study area was high. 

Therefore, the resampling method based on gridded data was used in this study. 

Based on ground observation data, the simulation results were calculated using the L-MEB model 

with a resampling method based on gridded data. The results were compared to the PLMR data on  

30 June, 3 July, 4 July, 26 July and 2 August 2012 to calibrate the semi-empirical parameters. The 

calibrated model parameters that were suitable for the study area are shown in Table 3. Calibrated Qs, 

NH, NV, Cpol, b and ω values were similar to previous results. Cpol was greater than 1, and  

Equations (11) and (12) indicated that the vegetation optical thickness at V-polarization was larger than 

that at H-polarization and that vegetation transmissivity would be lower and canopy emissivity 

(1−ω)(1−γ) would be higher at V-polarization. This result can be attributed to the vertical structure of 
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corn. At L-band, the influence of vertically oriented canopy elements, i.e., corn stalks, plays a greater 

role in scattering and absorption. 

Table 3. Calibrated parameters using the resampling method based on the gridded data. 

Qs NH NV Cpol b ω 

0.0 –1.0 –4.0 3.0 0.12 0.05 

5.2. Validation of the Calibrated Parameters 

In this study, the PLMR data on 7 and 10 July 2012 were used to validate the calibrated parameters. 

Figure 8 shows scatterplots of the simulation results against the PLMR data at different incidence angles 

for both polarizations on 7 and 10 July 2012. Both the BT of the PLMR data and the simulation results 

at V-polarization tended to increase with an increase in incident angle (7°–38.5°), whereas there were 

no obvious differences for H-polarization at different angles. This result could be attributed to the land 

cover of the study area. According to previous studies [46], for bare land, the emissivity at  

V-polarization would increase with an increase in the incident angle from 7° to 38.5°, whereas emissivity 

would decrease at H-polarization. However, when the surface is covered with corn, the vertical stalks 

dominate the scattering pattern within the corn canopy and increase surface emissivity at both 

polarizations. Therefore, emissivity of the corn’s surface increases with increases in incidence angle at 

V-polarization but not H-polarization. Table 4 shows the RMSE and R (the correlation coefficient) 

values. The results were 12.15 K (9.24 K) at an incidence angle of 7°, 9.05 K (5.83 K) at 21.5°, and  

9.16 K (4.06 K) at 38.5° at V-polarization (H-polarization). R was approximately 0.180 (0.264) at an 

incidence angle of 7°, 0.241 (0.696) at 21.5°, and –0.116 (0.614) at 38.5° at V-polarization  

(H-polarization). The simulation results at H-polarization were more accurate, whereas the correlation 

between PLMR data and the simulation results was not adequate at V-polarization. This result was 

mainly attributed to the influence of RFI on the PLMR observations at V-polarization, according to 

the metadata.  

 

Figure 8. Comparison of the PLMR data and simulation results at three incidence angles for 

both polarizations on 7 and 10 July 2012. 
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Table 4. RMSE and R between the PLMR data and the simulation results on 7 and  

10 July 2012. 

θ RMSE (V) RMSE (H) R (V) R (H) 

7° 12.15 K 9.24 K 0.180 0.264 

21.5° 9.05 K 5.83 K 0.241 0.696 

38.5° 9.16 K 4.06 K –0.116 0.614 

The LAI data used in this study were from ground measurements, and for the lack of data on 7 July, 

the LAI data used to simulate the BT on 7 July were identical to those for 5 July, which indicates that 

the LAI data for 7 July might be underestimated and might influence validation accuracy. According to 

the effect of LAI on the simulations, as shown in Figure 4, the simulated BT tended to increase with an 

increase in LAI, which indicates that an underestimation of LAI would lead to an underestimation of the 

simulation results. Therefore, the 7 July simulations were removed in the final validation. Figure 9 shows 

the scatterplots of the simulation results against the PLMR data at different incidence angles for both 

polarizations on 10 July. Table 5 shows the RMSE and R (the correlation coefficient) values of the 

results. The results were 6.05 K (4.23 K) at an incidence angle of 7°, 7.26 K (4.67 K) at 21.5°, and 7.05 K 

(2.70 K) at 38.5° at V-polarization (H-polarization).  

As can be seen in Table 5, the RMSEs are lower and at a relatively reasonable accuracy. In addition, 

in Figure 9, it can be seen that when putting together all of data at three incidence angles, the simulations 

show a good correlation with the observations both at H and V polarization. However, if we analyze the 

correlation at the view of each angle, the amount of data is limited. R was approximately 0.438 (0.460) 

at an incidence angle of 7°, –0.208 (0.038) at 21.5°, and –0.008 (0.779) at 38.5° at V-polarization  

(H-polarization). The values at each angle almost concentrated in a small range, which finally influence 

the R value, and leading to that R was lower than 0.50 in most cases. Nevertheless, relatively speaking, 

due to the RFI influence, the R of V-polarization at 21.5° and 38.5° also show lower values than most 

of the other cases. 

Table 5. RMSE and R between the PLMR data and the simulation results on 10 July 2012. 

θ RMSE (V) RMSE (H) R (V) R (H) 

7° 6.05 K 4.23 K 0.438 0.460 

21.5° 7.26 K 4.67 K −0.208 0.038 

38.5° 7.05 K 2.70 K −0.008 0.779 

It should be noted that some PLMR values were higher than 305 K at V-polarization at an incidence 

of 38.5°. Based on the WATERNET measurements, the soil temperature at 4 cm ranged from 21.86 °C 

to 38.04 °C, and the average value was approximately 30 °C (303 K). The surface emissivity was 

assumed to be 1; thus, the highest BT was 303 K. Consequently, the PLMR values that were larger than 

303 K are problematic. Therefore, in the final simulation, BTs greater than 303 K were removed. 
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Figure 9. Comparison of the PLMR data and simulation results at three incidence angles for 

both polarizations on 10 July 2012. 

6. Conclusions 

In this study, a calibration of the semi-empirical parameters in L-MEB model has been implemented 

over the middle region of the Heihe River Basin in Northern China. In the process, the ground 

observations, including soil moisture, temperature and texture, from the HiWATER project were used 

as input parameters of L-MEB model. The model calibration was conducted by minimizing the 

difference between the L-MEB simulated BTs and the airborne PLMR measurements on 30 June,  

3 July, 4 July, 26 July and 2 August 2012. The semi-empirical parameters of L-MEB model were 

acquired and validated by the PLMR data on 10 July. In the validation process, the RMSE between the 

simulations and measurements were 6 to 7 K for V-polarization and 2.7 to 4.7 K for H-polarization at 

different angles. This work demonstrated that the calibrated parameters of the L-MEB model are suitable 

for this region. 

In order to match the grid resolution of airborne PLMR data, point data were processed with the  

area-averaged method to represent the grid value. There were two methods to aggregate point 

measurements into airborne brightness temperature simulation. One simulation at the airborne scale was 

conducted from the area-averaged surface parameters (soil moisture, soil temperature and soil texture). 

The other was derived from the averaging point simulated BTs at field scale. It was found that 

simulations based on the area-averaged surface parameters showed a relative smaller error. It is because 

that simulated BT was a nonlinear decreasing function of surface soil moisture. The grid TB simulation 

based on spatial average of ground parameters was closer to PLMR value, compared with aggregated 

TB simulation at point measurements.  

Meanwhile, it should be noted was that some errors still exist in the validation. Three possible explanations 

for these results are as follows: (a) During the PLMR observations, pitch and rotation frequently occurred, 

and RFI also occurred at the largest incidence angle (38.5°) at the V-polarization [8], thus leading to 

uncertainty in the observations; (b) It is notable that RMS height was set a constant during the model 

simulation. However, the value might change across pixels for an expansive study area. This assumption 

might affect the final simulations accuracy; (c) The standard deviation of soil moisture in the study area 

was more than 0.1, the maximum could be up to 0.3. This indicated a relative large spatial heterogeneity 
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of the surface soil moisture. Although the area-averaged method was used to reduce the influence of the 

spatial heterogeneity on the simulations, the area-averaged soil moisture used in the simulation would 

cause errors in the simulation. It is still a challenge to estimate the upscaled pixel-averaged soil moisture 

based on point observations on the ground, especially for those areas with large spatial heterogeneity.  

Overall, the calibration of L-MEB in this study performed reasonable simulation over the crop-covered 

land surface. The calibrated parameters could be used in future applications of L-MEB for soil moisture 

retrieval over arid areas with similar terrains and climatology. Further study is needed to focus on 

estimations of pixel-averaged soil moisture using in situ moisture measurements. 
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